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Tayfun Aytaç and Billur Barshan
Department of Electrical Engineering

Bilkent University
TR-06800 Bilkent, Ankara, Turkey
{taytac, billur}@ee.bilkent.edu.tr

Abstract— In this study, surfaces with different properties
are differentiated with simple low-cost infrared (IR) emitters
and detectors in a location-invariant manner. The intensity
readings obtained from such sensors are highly dependent on
the location and properties of the surface, which complicates
the differentiation and localization process. Our approach,
which models IR intensity scans parametrically, can distinguish
different surfaces independent of their positions. The method
is verified experimentally with wood, Styrofoam packaging
material, white painted wall, white and black cloth, and white,
brown, and violet paper. A correct differentiation rate of 100%
is achieved for six surfaces and the surfaces are localized
within absolute range and azimuth errors of 0.2 cm and
1.1◦, respectively. The differentiation rate decreases to 86%
for seven surfaces and to 73% for eight surfaces. The method
demonstrated shows that simple IR sensors, when coupled with
appropriate processing, can be used to differentiate different
types of surfaces in a location-invariant manner.

Index Terms— surface differentiation, infrared sensors, posi-
tion estimation, Lambertian reflection, feature extraction

I. INTRODUCTION

Surface differentiation and localization is of considerable
interest for intelligent autonomous systems that need to
explore their environment and identify different types of
surfaces in a cost-effective manner. In this study, we propose
the use of a simple IR sensor consisting of one emitter and
one detector, where the emitted light is reflected from the
target and the return intensity is measured at the detector.
Although these devices are inexpensive, practical, and widely
available, their use has been mostly limited to the detection
of the presence or absence of objects in the environment
for applications such as obstacle avoidance or counting.
Gathering further information about the objects with simple
IR sensors has not been much investigated. However, due to
the limited resources of autonomous systems, the available
resources need to be exploited as much as possible. This
means that the ability of simple sensor systems to extract
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information about the environment should first be maximally
exploited before more expensive sensing modalities with
higher resolution and higher resource requirements (such as
computing power) are considered for a given task. Therefore,
one of the aims of this study is to explore the limits of simple
and inexpensive IR sensors for surface differentiation and
localization in order to extend their usage to tasks beyond
simple proximity detection.

One problem with the use of simple IR detectors is that
it is not possible to deduce the surface properties and the
geometry of the reflecting target based on a single intensity
return without knowing its position and orientation, because
the reflected light depends highly on the distance and the an-
gular orientation of the reflecting target. Similarly, one cannot
make accurate range estimates based on a single intensity
return. Due to single intensity readings not providing much
information about an object’s properties, the recognition
capabilities of IR sensors have been underestimated and
underused in most work. One way around this problem is
to employ IR sensors in combination with other sensing
modalities to acquire information about the surface properties
of the object once its distance is estimated. Such an approach
is taken in [1] and [2] where colors are differentiated by
employing IR and ultrasonic sensors in a complementary
fashion. Reference [3] is based on a similar approach where
the properties of planar surfaces at a known distance (mea-
sured by an ultrasonic sensor) are determined first. Once the
surface type is determined, the IR sensor is used as a range
finder for the same type of surface at other distances. In this
paper, we propose a scanning technique to collect intensity
signals and a method for surface differentiation by parametric
modeling of IR intensity scans. The proposed approach can
differentiate a moderate number of surfaces and estimate their
positions accurately.

IR sensors are used in robotics and automation, process
control, remote sensing, and safety and security systems.
More specifically, they have been used in simple object
and proximity detection [4], counting, distance and depth
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Fig. 1. (a) Diffuse reflection and (b) specular reflection from an opaque
surface.

monitoring, floor sensing, position measurement and control,
obstacle/collision avoidance [5], and map building [6]. IR
sensors are used in door detection and mapping of open-
ings in walls [7], as well as monitoring doors/windows of
buildings and vehicles, and “light curtains” for protecting
an area. In our earlier works [8]–[10], we considered the
differentiation and localization of objects using a template-
based approach, which uses distinctive natures of the IR
intensity scans. Our approach in these earlier works can be
considered as non-parametric, unlike the approach taken in
this paper.

II. MODELING OF IR INTENSITY SCANS

Light reflected from objects depends on the wavelength,
the distance, and the properties of the light source (i.e., point
or diffuse source), and the surface properties of the objects
such as reflectivity, absorbtivity, transmittivity, and orienta-
tion [11]. Depending on the surface properties, reflectance
can be modeled in different ways:

Matte materials can be approximated as ideal Lambertian
surfaces which absorb no light and reflect all the incident
light with equal intensities in all directions with respect to
the cosine of the incidence angle [11]. When a Lambertian
surface is illuminated by a point source of radiance li, then
the radiance reflected from the surface will be

ls,L = li[kd(l.n)] (1)

where kd is the coefficient of the diffuse reflection for a
given material and l and n are the unit vectors representing
the directions of the light source and the surface normal,
respectively, as shown in Figure 1(a).

In perfect or specular (mirror-like) reflection, the incident
light is reflected in the plane defined by the incident light and
the surface normal, making an angle with the surface normal
which is equal to the incidence angle α [Fig. 1(b)].

The Phong model [12], which is frequently used in
computer graphics applications to represent the intensity of
energy reflected from a surface, combines the three types
of reflection, which are ambient, diffuse (Lambertian), and
specular reflection, in a single formula:

ls,total = laka + li[kd(l.n)] + li[ks(r.v)m] (2)

where ls,total is the total radiance reflected from the surface, la
and li are the ambient and incident radiances on the surface,
ka, kd, and ks are the coefficients of ambient light, diffuse,
and specular reflection for a given material, l, n, r, and v are
the unit vectors representing the directions of the light source,
the surface normal, the reflected light, and the viewing angle,
respectively, as shown in Figure 1(b), and m refers to the
order of the specular fall-off or shine. The scalar product
in the second term of the Phong model equals cos α, where
α is the angle between the vectors l and n. Similarly, the
scalar product in the last term of the Phong model equals
cos β where β is the angle between r and v. Since the IR
emitter and receiver are situated at approximately the same
position, then the angle β between the reflected vector r and
the viewing vector v is equal to 2α.

In [3], the simple non-empirical mathematical model rep-
resented by (2) is used to model reflections from planar
surfaces located at a known distance (10 cm) by fitting the
reflectance data to the model to improve the accuracy of the
range estimates of IR sensors over a limited range interval
(5–23 cm). A similar approach with a simplified reflection
model is employed in [13], where an IR system can measure
distances up to 1 m. The requirement of prior knowledge of
the distance to the surface is eliminated in [14] by considering
two angular intensity scans taken at two different known
distances (10 and 12 cm). The distance error is less than
1 cm over a very limited range interval (10–18 cm) for the
reflection coefficients found based on the scans at 10 and
12 cm. As the distance increases to the maximum operating
range (24 cm), the distance error increases. For five different
surfaces, a correct classification rate of 75% is achieved
by considering the invariance property of the sum of the
reflection coefficients below a certain range (14 cm).

Our approach differs from those in [3] and [13] in that it
takes distance as a variable and does not require prior knowl-
edge of the distance. Another difference is that, those works
concentrate mainly on range estimation over a very limited
range interval rather than the determination of the surface
type, whereas in this study, we focus on the determination
of the surface type over a broader range interval. When we
compare our results with those of [14], we can conclude
that the proposed approach is better in terms of the correct
differentiation rate and the number of surfaces considered.

The surface materials considered are wood, Styrofoam
packaging material, white painted wall, white and black
cloth, and white, brown, and violet paper. The IR sensor [15]
[Fig. 2(a)] is mounted on a 12 inch rotary table [16] to obtain
angular intensity scans from these surfaces. A photograph of
the experimental setup and its schematics can be seen in
Figs. 2(b) and 3, respectively.

Reference intensity scans are collected for each surface
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Fig. 2. (a) The IR sensor used and (b) the experimental setup.
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Fig. 3. Top view of the experimental setup. Both the scan angle α and the
azimuth θ are measured counter-clockwise from the horizontal axis.

type by locating the surfaces between 30 to 52.5 cm with
2.5-cm distance increments, at θ=0◦. The resulting reference
scans for the eight surfaces are shown in Fig. 4 using
dotted lines. These intensity scans have been modeled by
approximating the surfaces as ideal Lambertian surfaces. The
received return signal intensity is proportional to the detector
area and inversely proportional to the square of the distance
to the surface and is modeled with three parameters as

I =
C0 cos(αC1)

[ z
cos(α)+R( 1

cos(α)−1)]2
(3)

which is a modified version of the second term in the
model represented by (2). In our case, the ambient reflection
component, which corresponds to the first term in (2), can
be neglected with respect to the other terms because the
IR filter, covering the detector window, filters out this term.
In (3), the product of the intensity of the emitter, the area
of the detector, and the reflection coefficient of the surface
is lumped into the constant C0, and C1 is an additional
coefficient to compensate for the change in the basewidth
of the intensity scans with respect to distance (Fig. 4). A
similar dependence on C1 is used in sensor modeling in [17].
The z is the horizontal distance between the rotary platform
and the surface as shown in Fig. 3. The denominator of I
is the square of the distance d between the IR sensor and

the surface. From the geometry of Fig. 3, d + R = z+R
cos(α) ,

from which we obtain d as z
cos(α) + R( 1

cos(α) − 1), where R
is the radius of the rotary platform and α is the angle made
between the IR sensor and the horizontal.

Besides the model represented by (3), we tried to fit a
number of other models to our experimental data, which
were basically different variations of (2). The increase in
the number of model parameters results in overfitting to the
experimental data, whereas simpler models result in larger
curve fitting errors. The model represented by (3) was the
most suitable in the sense that it provided a reasonable trade-
off.

Based on the model represented by (3), parameterized
curves have been fitted to the reference intensity scans by
using a nonlinear least-squares technique based on a model-
trust region method using MATLABTM [18]. Resulting curves
are shown in Fig. 4 in solid lines. For the reference scans,
z is not taken as a parameter since the distance between the
surface and the IR sensing unit is already known. The initial
guesses of the parameters must be made cleverly so that the
algorithm does not converge to local minima and curve fitting
is achieved in a smaller number of iterations. The initial guess
for C0 is made by evaluating I at α=0◦, and corresponds
to the product of I with z2. Similarly, the initial guess for
C1 is made by evaluating C1 from (3) at a known angle α
other than zero, with the initial guess of C0 and the known
value of z. While curve fitting, C0 value is allowed to vary
between ± 2000 of its initial guess and C1 is restricted to
be positive. The variations of C0, C1, and z with respect to
the maximum intensity of the reference scans are shown in
Fig. 5. As the distance d decreases, the maximum intensity
increases and C0 first increases then decreases but C1 and z
both decrease, as expected from the model represented by (3).
The model fit is much better for scans with smaller maximum
intensities because our model takes only diffuse reflections
into account, but the contribution of the specular reflection
components around the maximum value of the intensity scans
increases as the distance decreases. This effect can be seen in
the C0 coefficient, where C0 value begins to decrease beyond
a certain range, whose average value over all surfaces is
approximately 36 cm. However, the same effect cannot be
observed in the variation of C1 [Fig. 5(b)], which is critical
in our decision process. This way, the operating range of our
system is extended at the expense of the error in curve fitting
at smaller ranges.

III. EXPERIMENTAL VERIFICATION AND DISCUSSION

In this section, we experimentally verify the proposed
method. In the test process, the surfaces are randomly located
at azimuth angles varying from –45◦ to 45◦, and range values
between 30 to 52.5 cm. In the given region, the return signal
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(b) Styrofoam
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(c) white painted wall

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

scan angle (deg)

in
te

ns
ity

 (
V

)

(d) white cloth

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

2

4

6

8

10

12

scan angle (deg)

in
te

ns
ity

 (
V

)

(e) black cloth
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(f) white paper
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(g) brown paper
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(h) violet paper

Fig. 4. Intensity scans of the eight surfaces collected between 30 to 52.5 cm with 2.5-cm increments. Solid lines indicate the model fit and the dotted lines
indicate the actual data.
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Fig. 5. Variations of the parameters (a) C0, (b) C1, and (c) z with respect to maximum intensity.

intensities do not saturate. In fact, we have experimented with
fitting models to the saturated scans so that the operating
range of the system is extended to include the saturation
regions. However, these trials have not been very successful.
For unsaturated scans, first, the maximum intensity of the
observed intensity scan is found and the angular value where
this maximum occurs is taken as the azimuth estimate of the
surface. If there are multiple maximum intensity values, the
average of the minimum and maximum angular values where
the maximum intensity values occur is calculated to find the
azimuth estimate of the surface. Then, the observed scan is
shifted by the azimuth estimate and the model represented
by (3) is fitted using a model-trust region based nonlinear
least-squares technique. The initial guess for the distance z
is found from Fig. 5(c) by taking the average of the maximum

possible and the minimum possible range values correspond-
ing to the maximum value of the recorded intensity scan.
(Linear interpolation is used between the data points in the
figure.) This results in a maximum absolute range error of
approximately 2.5 cm. Therefore, the parameter z is allowed
to vary between ±2.5 cm of its initial guess. Using the initial
guess for z, the initial guesses for C0 and C1 are made in
the same way as explained before for the reference scans.
After nonlinear curve fitting to the observed scan, we get
three parameters C∗

0 , C∗
1 , and z∗. In the decision process,

the maximum intensity of the observed scan is used and a
value of C1 is obtained by linear interpolation between the
data points in Fig. 5(b) for each surface type. In other words,
Fig. 5(b) is used like a look-up table. Surface-type decisions
are made based on the absolute difference of C1 − C∗

1 for



TABLE I

SURFACE CONFUSION MATRIX: INITIAL RANGE IS ESTIMATED USING

THE MAXIMUM INTENSITY OF THE SCAN. (WO: WOOD, ST:

STYROFOAM, WW: WHITE WALL, WC: WHITE CLOTH, BC: BLACK

CLOTH, WP: WHITE PAPER, BR: BROWN PAPER, VI: VIOLET PAPER).

surface differentiation result total

WO ST WW WC/BC WP BR VI

WO 4 – – – 7 – 1 12

ST – 12 – – – – – 12

WW – – 12 – – – – 12

WC/BC – – – 12 – – – 12

WP 4 – – – 8 – – 12

BR – – – – – 12 – 12

VI – – – – – – 12 12

total 8 12 12 12 15 12 13 84

each surface because of the more distinctive nature of the
C1 variation with respect to the maximum intensity. The
surface type giving the minimum difference is chosen as
the correct one. The decision could have also been made
by comparing the parameters with those at the estimated
range. However, this would not give better results because
of the error and the uncertainty in the range estimates. We
have also considered taking different combinations of the
differences C0−C∗

0 , C1−C∗
1 , and z−z∗ as our error criterion.

However, the criterion based on C1 −C∗
1 difference was the

most successful.
The best differentiation results are achieved for a set

of surfaces including Styrofoam packaging material, white
painted wall, white or black cloth, and white, brown, and
violet paper. We get a correct differentiation rate of 100% for
these six surfaces and the surfaces are located with absolute
range and azimuth errors of 0.2 cm and 1.1◦, respectively.
We can increase the number of surfaces differentiated at the
expense of a decrease in the correct differentiation rate. For
example, if we add wood to our test set keeping either white
or black cloth, we get a correct differentiation rate of 86% for
seven surfaces (Table I). For these sets of surfaces, absolute
position errors are 0.6 cm and 1.1◦. Similarly, if we form
a set of surfaces excluding wood but keeping both white
and black cloth, we achieve a correct differentiation rate
of 83% for seven surfaces (Table II) and the surfaces are
located with absolute position errors of 0.5 cm and 1.1◦. The
differentiation results for all eight surfaces considered are
tabulated in Table III. Over these eight surfaces, an overall
correct differentiation rate of 73% is achieved and surfaces
are located with absolute position errors of 0.8 cm and
1.1◦. In the estimation results, note that the range estimation
accuracy improves with increasing correct classification rate,
whereas the azimuth estimation accuracy is independent of
it, as expected. In the last case, white and black cloth as well

TABLE II

SURFACE CONFUSION MATRIX: INITIAL RANGE IS ESTIMATED USING

THE MAXIMUM INTENSITY OF THE SCAN.

surface differentiation result total

ST WW WC BC WP BR VI

ST 12 – – – – – – 12

WW – 12 – – – – – 12

WC – – 7 5 – – – 12

BC – – 9 3 – – – 12

WP – – – – 12 – – 12

BR – – – – – 12 – 12

VI – – – – – – 12 12

total 12 12 16 8 12 12 12 84

TABLE III

SURFACE CONFUSION MATRIX: INITIAL RANGE IS ESTIMATED USING

THE MAXIMUM INTENSITY OF THE SCAN.

surface differentiation result total

WO ST WW WC BC WP BR VI

WO 4 – – – – 7 – 1 12

ST – 12 – – – – – – 12

WW – – 12 – – – – – 12

WC – – – 7 5 – – – 12

BC – – – 9 3 – – – 12

WP 4 – – – – 8 – – 12

BR – – – – – – 12 – 12

VI – – – – – – – 12 12

total 8 12 12 16 8 15 12 13 96

as wood and white paper are surface pairs mostly confused
with each other.

To investigate the effect of the initial range estimate of the
surface on the differentiation process, we now assume that
the distance to the surface is known beforehand. For this case,
only the two variables C0 and C1 are taken as parameters.
For the same six surfaces considered as in the previous
case (where the initial range to the surface is estimated
using the maximum intensity of the scan), the same correct
classification rate of 100% is achieved. If we add wood to our
test set keeping either white or black cloth, we get a correct
differentiation rate of 87% for seven surfaces (see Ref. [19]
for the detailed results). Similarly, if we form a set of surfaces
excluding wood but keeping both white and black cloth,
we achieve a correct differentiation rate of 88% for seven
surfaces. The differentiation result over all eight surfaces is
78%. When we compare these results with those obtained
without exact knowledge of the distance to the surface, we
can conclude that similar surfaces are confused with each
other (wood/white paper and white/black cloth) with smaller
confusion rates.



IV. CONCLUSION

The main accomplishment of this study is that we achieved
position-invariant surface differentiation and localization with
simple IR sensors despite the fact that their individual inten-
sity readings are highly dependent on the surface position
and properties, and this dependence cannot be represented
by a simple analytical relationship. The intensity scan data
acquired from a simple low-cost IR emitter and detector
pair was processed and modeled. Different parameterized
reflection models were considered and evaluated to find the
most suitable model fit to our experimental data which also
best represents and classifies the surfaces under considera-
tion. The proposed approach can differentiate six different
surfaces with 100% accuracy. In [9], where we considered
differentiation and localization of surfaces by employing non-
parametric approaches, a maximum correct differentiation
rate of 87% over four surfaces was achieved. Comparing this
rate with that obtained in this study, we can conclude that the
parametric approach is superior to non-parametric ones, in
terms of the accuracy, number of surfaces differentiated, and
memory requirements, since the non-parametric approaches
we considered require the storage of reference scan signals.
By parameterizing the intensity scans and storing only their
parameters, we have eliminated the need to store complete
reference scans.

This work demonstrates that simple IR sensors, when
coupled with appropriate processing, can be used to extract
substantially more information about the environment than
such devices are commonly employed for. We expect this
flexibility to significantly extend the range of applications in
which such low-cost single sensor based systems can be used.
Specifically, we expect that it will be possible to go beyond
relatively simple tasks such as simple object and proximity
detection, counting, distance and depth monitoring, floor
sensing, position measurement, obstacle/collision avoidance,
and deal with tasks such as differentiation, classification,
recognition, clustering, position estimation, map building,
perception of the environment and surroundings, autonomous
navigation, and target tracking. The approach presented here
would be more useful where self-correcting operation is
possible due to repeated observations and feedback.

The demonstrated system would find application in in-
telligent autonomous systems such as mobile robots whose
task involves surveying an unknown environment made of
different surface types. Current and future work involves
designing a more intelligent system whose operating range
is adjustable based on an initial range estimate to the sur-
face. This will eliminate saturation and allow the system to
accurately differentiate and localize surfaces over a wider
operating range. Another issue we are considering is the

extension of the model to include specular reflections from
glossy surfaces. We are also working on the recognition
of surfaces through the use of artificial neural networks
in order to improve the accuracy. Parametric modeling and
representation of intensity scans of different geometries is
also being considered to employ the proposed approach in the
simultaneous determination of the geometry and the surface
type of targets.
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