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Abstract—In this paper, we study the capacity of multiple-
input multiple-output (MIMO) systems under the constraint
that amplitude-limited inputs are employed. We compute the
channel capacity for the special case of multiple-input single-
output (MISO) channels, while we are only able to provide upper
and lower bounds on the capacity of the general MIMO case.
The bounds are derived by considering an equivalent channel
via singular value decomposition, and by enlarging and reducing
the corresponding feasible region of the channel input vector,
for the upper and lower bounds, respectively. We analytically
characterize the asymptotic behavior of the derived capacity
upper and lower bounds for high and low noise levels, and study
the gap between them. We further provide several numerical
examples illustrating their computation.

I. INTRODUCTION
Capacities of various single-user memoryless channels with

different constraints on the channel input have been exten-
sively studied. The most commonly used constraint is the av-
erage power constraint, for which the capacity of the Gaussian
channel is first derived by Shannon. Although transmissions
subject to both average and peak power constraints is of utmost
importance as it is a better representative of the limitations
in practical communication systems, channel capacity studies
under these assumptions have been very limited.
Capacity of a Gaussian channel with peak and average

power constraint was first studied by Smith [1] where he
showed that under these constraints on the input the capacity-
achieving distribution is discrete. Finding the mass point
locations of this discrete distribution and its associated prob-
abilities is done through a numerical optimization algorithm,
which is feasible since the problem is reduced to a finite-
dimensional one. Tchamkerten [2] extended Smith’s results
on channel capacity with amplitude limited inputs to general
additive noise channels and he derived sufficient conditions on
the noise probability density functions that guarantee that the
capacity-achieving input has a finite number of mass points.
Discrete input distributions show up as the optimal input

distributions in other scenarios as well. For instance, the
authors in [3] study the quadrature Gaussian channel, they
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show that a uniform distribution of the phase and discrete
distribution of the amplitude achieves the channel capacity.
In [4], the authors consider the transmission over Rayleigh
fading channels where neither the transmitter nor the receiver
has channel state information. They prove that the capacity-
achieving distribution with an average power constraint on the
input is discrete. In [5], the authors study non-coherent additive
white Gaussian noise (AWGN) channels, and prove that the
optimal input distribution is discrete. They also consider
some suboptimal distributions (inspired by the structure of the
optimal distributions) to provide upper and lower bounds on
the channel capacity. In [6], the authors investigate the capacity
of Rician fading channels with inputs that have constraints on
the second and forth moments, and prove that the capacity-
achieving distribution is discrete with a finite number of
mass points. They further study channels with peak power
constraints and show that the optimal input distribution is
discrete in this case as well.
Recently, multi-users systems with amplitude-limited inputs

have also been considered. In [7], [8], the authors study the
multiple access channel (MAC) with amplitude-constrained
inputs. They show that the sum-capacity achieving distribution
is discrete, and that this distribution achieves rates at any of
the corner points of the capacity region.
In this paper, we consider multi-antenna systems with

amplitude-limited inputs. Unfortunately, extending the results
of Smith to vector random variables is unattainable since the
Identity Theorem, used to show that the capacity-achieving
distribution has a finite number of mass points, is only
available for one-dimensional functions. Thus, we derive upper
and lower bounds on the channel capacity. These bounds are
derived for an equivalent channel obtained from the singular
value decomposition of the MIMO channel. By constraining
the inputs to rectangular regions that inscribe the feasible
region and are inscribed by the feasible region, we obtain
upper and lower bounds on the capacity, respectively. For
the special case of MISO systems, we are able to compute
the capacity as it follows directly from Smith’s results by
defining an auxiliary variable representing the sum of the
channel inputs.
The paper is organized as follows. In Section II, we describe

the channel model. In Section III, we analyze the capacity
of MIMO systems under amplitude constraints, that is, we
compute the capacity of MISO systems, and provide upper
and lower bounds on the capacity of MIMO systems. In
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Section IV, we study the asymptotic behavior of the upper
and lower bounds on the capacity and characterize the gap
between them at low and high signal-to-noise ratio (SNR)
values. Finally, in Section V, we present numerical examples
that illustrate these bounds.

II. CHANNEL MODEL

We consider a MIMO system where the received signal y
is written as

y = Hx+ z, (1)

where H is an Nr ×Nt channel matrix, Nr is the number of
receive elements, and Nt is the number of transmit elements.
The channel matrix H is assumed to be deterministic. The
vector z denotes AWGN such that z ∼ N (0,Σ), where Σ is
the covariance matrix given by Σ = diag(σ2

1 ,σ
2
2 , · · · ,σ

2
Nr

),
where diag represents a diagonal matrix. We assume that the
channel inputs and outputs, the channel matrix and noise terms
are all real valued to simplify the exposition of the results.
However, a more practical model could needs to consider
complex valued quantities.
For much of the paper, we consider the case of a 2 × 2

MIMO system with Nr = 2 and Nt = 2. Hence, the channel
input x has a two-dimensional joint distribution f(x1, x2) and
the channel inputs are amplitude limited as |x1| ≤ Ax1 and
|x2| ≤ Ax2 . As the channel under consideration is determin-
istic, we assume that it is known both at the transmitter and
the receiver. The capacity of the 2 × 2 MIMO system is the
maximum of the mutual information between the input and
the output of the channel under the given input constraints,
i.e.,

C = max
f(x1,x2):|x1|≤Ax1 ,|x2|≤Ax2

I(y1, y2;x1, x2). (2)

The main issue in solving this optimization problem using
Smith’s original approach is that the Identity Theorem used
in characterizing the capacity achieving distribution is only
applicable for one-dimensional functions.
III. CAPACITY OF MIMO SYSTEMS WITH AMPLITUDE

LIMITED INPUTS
In this section, we provide the main results of this paper,

namely, we compute the capacity of MISO systems under
amplitude limited input constraints and we provide upper and
lower bounds on the on the capacity of the 2 × 2 MIMO
channels. We also discuss extensions to the case of general
MIMO systems as well as to the case of amplitude and power
limited inputs.
A. Capacity of MISO Systems
Since there is only one receive antenna in this case, the

received signal y can be written as

y = h1x1 + h2x2 + z. (3)

Define an auxiliary variable u such that u = h1x1 + h2x2.
Since x1 and x2 are amplitude-limited, u will also be ampli-
tude limited, i.e.,

−|h1|Ax1 − |h2|Ax2 ≤ u ≤ |h1|Ax1 + |h2|Ax2 . (4)

Thus, the received signal y can be written as y = u + z,
and the problem boils down to the classical point-to-point
scalar problem that has been investigated by Smith. Hence, the
distribution of the auxiliary random variable U that achieves
the capacity is discrete, i.e.,

fU (u) =
N−1
∑

i=0

p(ui)δ(u − ui) (5)

where the number of mass points N are to be determined
numerically by solving the capacity optimization problem
using the algorithm given in [1]. The specific channel inputs
x1 and x2 can be arbitrarily generated such that their weighted
sum (weighted by the channel coefficients) follows the optimal
probability mass function of the random variable U .

B. Bounds on the Capacity of 2× 2 MIMO Systems
For a 2× 2 MIMO system, we obtain an equivalent model

via the singular value decomposition of the channel matrix H,
i.e., H = UΩWH . That is,

ỹ = Ωx̃+ z̃, (6)

where ỹ = UHy, x̃ = WHx, and z̃ = UHz, whereU andW
are unitary matrices. DefineV = WH . Since the amplitude of
the first channel input is constrained by Ax1 and the amplitude
of the second input is constrained by Ax2 , the domain of x
is a rectangular region. However, after applying the singular
value decomposition, in the equivalent formulation, the region
defining the input constraint turns out to be a parallelogram.
Further, this region will be centered at origin (since the original
rectangular region is symmetric around origin).
Define the following terms that characterize the new input

constraint

a =
det(V)

v22
, b =

v12
v22

,

and
c = −

det(V)

v21
, d =

v11
v21

,

where vij is the ijth element of the matrix V.
Then the feasible region of the equivalent channel in (6) is,

−
1

a
x+

b

a
y ≤ Ax1 ,

1

a
x−

b

a
y ≤ Ax1 ,

and
−
1

c
x+

d

c
y ≤ Ax2 ,

1

c
x−

d

c
y ≤ Ax2 .

We derive upper and lower bounds on the capacity using
this new formulation. We obtain the lower bound by looking
for a smaller feasible region inside the parallelogram, i.e., we
consider a rectangle inside, and we compute the corresponding
mutual information between the input and output with the
channel input vector constrained to be inside this rectangular
region. For the upper bound, we follow a similar approach,
i.e., we look for the the smallest rectangle that inscribes the
parallelogram. This geometrical interpretation of the approach
is illustrated in Fig. 1.
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Fig. 1. The actual feasible region and a smaller region represents the lower
bound and an outer region represent the upper bound.

In both the lower and upper bounds, we choose to replace
the feasible region with a rectangular one as the rectangular
feasible region enables us to separate the two-dimensional
problem into two one-dimensional problems whose solutions
are readily available.
1) An Upper Bound on the Capacity of 2 × 2 MIMO

Systems: A capacity upper bound is derived by solving the
capacity optimization problem over the smallest rectangle
that inscribes the original feasible region. This rectangle is
constructed from the intersection points of every pair of lines
forming the feasible region. The first intersection point is

x =
bc

d− b
Ax2 −

ad

d− b
Ax1 , y =

c

d− b
Ax2 −

a

d− b
Ax1 ,

the second point is

x = −
bc

d− b
Ax2 −

ad

d− b
Ax1 , y = −

c

d− b
Ax2 −

a

d− b
Ax1 ,

the third point is

x =
bc

d− b
Ax2 +

ad

d− b
Ax1 , y =

c

d− b
Ax2 +

a

d− b
Ax1 ,

and the forth point is

x = −
bc

d− b
Ax2 +

ad

d− b
Ax1 , y = −

c

d− b
Ax2 +

a

d− b
Ax1 .

Using the geometric interpretation of the feasible region, it
is easy to show that in the equivalent formulation of the 2× 2
MIMO system, the new amplitude limits on the two inputs

∆xupp =

∣

∣

∣

∣

bc

d− b
Ax2

∣

∣

∣

∣

+

∣

∣

∣

∣

ad

d− b
Ax1

∣

∣

∣

∣

, (7)

∆yupp =

∣

∣

∣

∣

c

d− b
Ax2

∣

∣

∣

∣

+

∣

∣

∣

∣

a

d− b
Ax1

∣

∣

∣

∣

, (8)

can be used to compute an upper bound on the channel
capacity of the original MIMO system. Namely, the upper
bound of the channel capacity is given by

C ≤ C0(∆xupp) + C0(∆yupp), (9)

where C0(A) is the capacity of the point-to-point AWGN
channel for a given amplitude constraint A (computed using
Smith’s approach).
2) A Lower Bound on the Capacity of MIMO Systems: A

lower bound on the capacity of the channel can be found by
optimizing the mutual information over a smaller rectangular
region inside the feasible region (parallelogram). To find such
a rectangle, we determine the intersection of a straight line,
y = mx, that passes through the origin (as the region is
centered at the origin) and the boundary of the feasible region.
In this case, it is easy to show that

∆xlow = min

(
∣

∣

∣

∣

aAx1

1 + bm

∣

∣

∣

∣

,

∣

∣

∣

∣

aAx1

1− bm

∣

∣

∣

∣

,

∣

∣

∣

∣

cAx2

1 + dm

∣

∣

∣

∣

,

∣

∣

∣

∣

cAx2

1− dm

∣

∣

∣

∣

)

, (10)

∆ylow = min

(
∣

∣

∣

∣

amAx1

1 + bm

∣

∣

∣

∣

,

∣

∣

∣

∣

amAx1

1− bm

∣

∣

∣

∣

,

∣

∣

∣

∣

cmAx2

1 + dm

∣

∣

∣

∣

,

∣

∣

∣

∣

cmAx2

1− dm

∣

∣

∣

∣

)

, (11)

for some arbitrary values for the slope m such that the set of
points

{(l∆xlow, k∆ylow) ∈ R : l, k ∈ {1,−1}} ,

where R is the feasible region. Thus, the lower bound on the
channel capacity is given by

C ≥ C0(∆xlow) + C0(∆ylow). (12)

C. Bounds on the Capacity of General MIMO Systems
For the case of MIMO systems with larger number of

transmit and receive elements, a similar approach can be
followed to derive upper and lower bounds on the capacity of
the channel with amplitude constraints. However, the feasible
region of the capacity optimization problem will not be a
simple rectangle in the two-dimensional space as in the case
of 2×2 systems. In other words, although numerical methods
can be used to compute the resulting upper and lower bounds
on the channel capacity for different noise levels, closed form
expressions may not be easy to obtain.

D. Capacity of 2× 2 MIMO Systems with Amplitude-Limited
and Power-Limited Inputs
Smith in [1] showed that for any amplitude-limited and

power-limited point-to-point Gaussian channel, a unique
capacity-achieving distribution exists and it is discrete. Again,
extending these results to the case of MIMO systems is
not feasible since there is no result corresponding to the
Identity Theorem used in Smith’s proof for multi-dimensional
functions. However, we can follow a similar procedure to find
upper and lower bounds on the capacity of MIMO systems
with amplitude-limited inputs by relaxing the constraint on
the amplitude and solving the capacity optimization problem
over rectangular regions that inscribe and are inscribed by the
original feasible region, respectively. We do not pursue this
problem formulation any further in this work.
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IV. ASYMPTOTIC BOUNDS ON THE CAPACITY OF THE
2× 2 MIMO SYSTEMS

In this section we study the asymptotic behavior of the upper
and lower bounds on the capacity of MIMO systems at very
high and low noise levels.

A. Very Low Noise Levels
For the point-to-point scalar Gaussian channel for very

low noise variances, the entropy of the noise is very small
compared to the entropy of the input. Thus, the following
approximations are valid,

h(y) ≫ h(y|x) and h(x) ≫ h(x|y).

As a result,

h(x) = I(x; y) + h(x|y) = h(y)− h(y|x) + h(x|y) ≈ h(y).

That is, the capacity can be approximated as

C = max I(x; y),

≈ maxh(x)− h(y|x),

= log(2A)−
1

2
log(2πeσ2).

Therefore, the capacity of the 2 × 2 MIMO system can be
upper and lower bounded for low noise variances as

C ≤ log(4∆xupp∆yupp)−
1

2
log(2πeσ2

1)−
1

2
log(2πeσ2

2),

(13)
C ≥ log(4∆xlow∆ylow)−

1

2
log(2πeσ2

1)−
1

2
log(2πeσ2

2).

(14)
The lower bound on the capacity can be optimized by

choosing the slope m (as defined in the previous section) that
maximizes the mutual information between the input and the
output. We have

C ≥ max
m

log (4 |∆xlow∆ylow|)

−
1

2
log(2πeσ2

1)−
1

2
log(2πeσ2

2), (15)

such that the set of points

{(l∆xlow, k∆ylow) ∈ R : l, k ∈ {1,−1}} ,

where ∆xlow, ∆ylow, and R are as defined in the previous
section.

B. Very High Noise Levels
For very high noise variances, the optimal distribution is

discrete and consists of only two mass points with the same
probability [9]. The capacity of this discrete-time binary-input
AWGN is well known [10], and the upper and lower bounds
on the capacity are

C ≤ g

(

∆xupp

σ1

)

+ g

(

∆yupp
σ2

)

, (16)

C ≥ g

(

∆xlow

σ1

)

+ g

(

∆ylow
σ2

)

, (17)

where g(x) = 1−
∫∞
−∞

1√
2π

e−
(u−x)2

2 log2
(

1 + e−2ux
)

du.

C. The Gap Between the Upper and Lower Bounds
For very low noise variances, it is easy to see that the gap

between the upper and lower bounds does not depend on the
amplitude constraint if Ax1 = Ax2 . From (7) and (8), and if
Ax1 = Ax2 = A0 we have,

∆xupp = GuppA0, ∆yupp = HuppA0,

where Gupp and Hupp are only function of the channel
coefficients. Also from (10) and (11),

∆xlow = GlowA0, ∆yupp = HlowA0,

where Glow and Hlow are only functions of the channel
coefficients.
Thus, the gap between the upper and lower bounds∆C can

be written as

∆C = log
(

4GuppHuppA
2
0

)

− log
(

4GlowHlowA
2
0

)

,

= log

(

GuppHupp

GlowHlow

)

,

which is independent of the amplitude constraints imposed on
the inputs.

V. NUMERICAL EXAMPLES
In this section, we present numerical examples that show

the upper and lower bounds for different channel coefficient
matrices and different amplitude constraints. For the given
channel coefficient matrices and amplitude constraints we
use the results of the previous section to come up with
new rectangular regions for the channel inputs, and then we
numerically evaluate the mutual information as

I(ỹ1, ỹ2; x̃1, x̃2) = I(ỹ1; x̃1) + I(ỹ2; x̃2),

= h(ỹ1) + h(ỹ2)−D1 −D2,

where h(!) is the differential entropy, and Di = 1
2 log(2πeσ

2
i )

is the entropy of the Gaussian noise with variance equals to
σ2
i , i = 1, 2.
We consider two arbitrarily picked channel matrices given

by

H1 =

[

0.177 0.28
1 0.31

]

, H2 =

[

0.997 0.295
1 0.232

]

.

We assume that the amplitude constraints imposed on the
inputs are identical, and both channels have the same noise
variances.
Fig. 2 and Fig. 3 show the upper and lower bounds

on the capacity and their asymptotic behavior for the two
channels considered. The gap between the upper and lower
bounds indicate that there is more work to be done for a
tighter characterization of the MIMO channel capacity with
amplitude constraints. We also observe that the asymptotic
characterizations of the bounds are tight. Fig. 4 shows the
upper and lower bounds on the capacity of the second channel
for different values of amplitude constraints. Clearly, when
the amplitude constraint is increased, the capacity upper and
lower bounds are also increased. Also, we observe that the
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Fig. 2. Upper and lower bounds on the capacity for H1, along with the
asymptotic capacity at low and high noise variances, with an amplitude
constraint of 2 (for both inputs).
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Fig. 3. Upper and lower bounds on the capacity for H2, along with the
asymptotic capacity at low and high noise variances, with an amplitude
constraint of 2 (for both inputs).

gap between the upper and lower bounds does not depend
on the amplitude constraint for very low noise variance values
given that the same amplitude constraints are imposed on both
antenna elements. As the value of the noise variance increases,
i.e., the SNR decreases, the gap between the upper and lower
bound decreases as the number of mass points for the optimal
input distribution decreases (eventually it converges to only
two mass points).

VI. CONCLUSIONS
We studied the capacity of multi-antenna AWGN channels

with amplitude-limited inputs. We computed the capacity of
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Fig. 4. Illustration of capacity upper and lower bounds of the capacity of
H2 for different amplitude constraints on the inputs.

MISO systems using the direct approach proposed by Smith.
We derived upper and lower bounds on the capacity of 2× 2
MIMO systems and characterized their asymptotic behavior.
We also illustrated the results using numerical examples.
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