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classification of re- Abshucf-We DreSent an auaroach for .. 
motely sensed imagery using spatial information extracted from 
multi-resolution approximations. The wavelet transform is used 
to obtain multiple representations of an image at different reso- 
lutions to capture different detaiIs inherently found in direerent 
structures. Then, pixels at each resolution are grouped into con- 
tiguous regions using clustering and malhematical morphology- 
based segmentation algorithms. The resulting regions are mod- 
eled using the statistical summaries of their spectral, textural and 
shape properties. These models are used to cluster the regions, 
and the cluster memberships assigned to each region in multiple 
resolution levels are used to classify the corresponding pixels 
into land coverfland use categories. Final classification is done 
using decision tree classifiers. Experiments with two ground truth 
data sets show the effectiveness of the proposed approach over 
traditional techniques that do not make strong use of region- 
based spatial information. 

1. INTRODUCTlON 

Remote sensing image analysis has been an important re- 
search area for the last four decades. There is also an extensive 
literature on cIassification of remotely sensed imagery using 
parametric or nonparametric statistical or structural techniques 
[I] .  Advances i n  satellite technology and computing power 
have enabled the stgdy of multi-modal, multi-spectral, multi- 
resolution and multi-temporal data sets for applications such 
as urban land use monitoring and management, GIS and 
mapping, environmental change, site suitability, agricultural 
and ecological studies. 

'The usual choice for the level of processing image data has 
been pixel-based analysis in both academic and commercial 
remote sensing image analysis systems. However, a recent 
study 121 that investigated classification accuracies reported 
in the Iast 15 years showed that there has not been any 
significant improvement in the performance of classification 
methodologies over t h i s  period. We believe that the reason 
behind this problem is the fact that there is a large semantic 
gap between the low-level features used for classification and 
the high-leve1 expectations and scenarios required by the users. 

Remote sensing experts use spatial information to interpret 
the land cover because pixels alone do not give much infor- 
mation about image content. Image segmentation techniques 
[3] automatically group neighboring pixels into contiguous 
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regions based on similarity criteria on pixels' properties. Even 
though image segmentation has been heavily studied in image 
processing and computer vision fields. and despite the early 
effoforts 141 that use spatial information For classification of 
remotely sensed imagery, segmentation algorithms have only 
recently started receiving emphasis in remote sensing image 
analysis. Examples of image segmentation in the remote sens- 
ing literature include region growing IS] and Markov random 
field models [6] for segmentation of natural scenes. hierar- 
chical segmentation for image mining 171, region growing for 
object level change detection [XI, and boundary delineation of 
agricultural fields [9]. 

We model spatial information by segmenting images into 
spatially contiguous regions and classifying these regions 
according to the statistics of their pixel properties and shape 
features. To develop segmentation algorithms that group pixels 
into regions. first. we perform multi-resolution analysis using 
wavelets [lo], [ I l l  to model image content in different lev&. 
These levels are used to capture different derails inherently 
found in different structures. Then, each image obtained after 
the multi-resolution analysis is segmented using clustering- 
based and mathematical morphology-based algorithms. These 
algorithms are developed to produce oversegmented regions, 
especially at higher resolution levels, 10 capture the details of 
small structures. 

Resulting regions are modeled using the statistical sum- 
maries of their spectral and textural properties along with 
shape fearures that are computed from region polygon bound- 
aries. Then, these attributes are used as features to cluster 
the regions. Finally, the cluster memberships assigned to each 
region in multiple levels of the resolution hierarchy are used 
to classify the corresponding pixels in to  land coverlland i i ~ e  

categories defined by the user. Final classification is done using 
decision tree classifiers. 

The rest of the paper is organized as follows. Mdti-  
resolution analysis based on wavelets is presented in Section 
11. Segmentation of images is described in Section 111. Feature 
data used for modeling pixels and regions are described in  
Section IV. Classification of pixels and regions are discussed 
in Section V. Experiments are presented in Section VI and the 
approach is summarized in Section VII. 
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Fig. I .  Wavelet pyramid representarion for multiple resolutions. The bottom 
image is at the original resolution. Images [hat gct smalier towards top are 
results of successive wavelet decompositions. 

11. MULTI-RESOLUTION ANALYSIS 

Different physical structures that we want to recognize in 
images may generally have very different sizes, In order to 
cope with this variability, either the features used must be 
designed to he size invariant or the image must be processed 
at different resolutions, since different resolutions characterize 
different structures in the image. As the resolution gets coarser 
from that of the original imase, larger structures that provide 
the general image context can be represented without being 
convoluted with the details. It is therefore natural to anaIyze 
first the image content at a coarse resolution and then gradually 
increase the resolution 1 IO].  This process is also similar to the 
strategy used by the human vision system Ill]. 

In this work, we use the wavelet transform [lo], [ I  I ]  
to obtain multiple representations of an image at different 
resolutions. The wavelet transform provides a hierarchical 
framework for interpreting the image. At each level of the . 
hierarchy, the image is passed through a low-pass filter that 
provides a smooth approximation, arid a band-pass filter that 
captures the detaik. After the filtering, the corresponding 
images are subsampled by two and the resolurion is reduced by 
half. This procedure can be repeated for further decomposition 
using a filter bank. The low-pass filtered versions can be used 
as the representations that best approximate the original image 
at multiple resolutions. 

The resulting low-pass filtered smooth approximations can 
be represented as a pyramid as shown in Fig. 1. Let 21 
( j  5 0) represent the resoluiion of an image where j = 0 
is the resolution of the original image. A single pixel at 
resolution 2j covers a block of 2 - j  pixels in the original 
image. Processing of a spatial neighborhood of size IC at this 
resolution is equivalent to processing over a neighborhood 
of size 2 - 3  K in the original image. Therefore, the coarse 
information is anajyzed over large neighborhoods whereas the 
detail information is  analyzed over small neighborhoods [ I  I]. 

The wavelet decompositions of the images used in the ex- 
periments in this paper are shown in Figs. 2 and 3. The first im- 
age consists of a 145 x 145 section of an AVlRIS data set with 
220 spectral bands recorded over a mixed agdculturelforestry 
landscape in the Indian Pine Test Site [I]. The second image 
consists of an airborne hyperspectral data flightline over the 
Washingtan DC Mall area and has 1,280 x 307 pixels with 

(a) 145 x 145 pix- 
ets (original) 

(b) 76 x 76 pixels (c) 41 x 41 pixels 

Fig. 2. Wavelct decomposition of the Indian Pine data set. The bands 50. 27 
and 17 were used to generate the False color images and Ihese images were 
resized to show Lhc details. 

[a) 1 , 2 8 0 ~  (b) 643 x (c) 325x82 (d) 1 6 6 ~ 4 d  
307 (ong ) 157 ~ I X C I S  pixels pixels 

Fig. 3. Wavelet decomposition of the DC Mall data set. The bands 63, 5 2  
and 36 were used to generate the false color images and these images were 
resized to show the details. 

191 spectral bands [l]. For hyperspectrat images like these, 
we appiy the wavelet decomposition independently to each 
spectral band to form new images at lower resohtions with 
the same number of bands. 

111. IMAGE SEGMENTATION 

Different wavelet levels capture different detail< inherentlv 
found in different structures. Image segmentation is used 
to group pixels that belong to the same structure with the 
goal of delineating each individual structure as an individ- 
ual region. We have experimented with severaI segmentation 
algorithms from the computer vision literature. Algorithms 
that are based on graph clustering [12], mode seeking [I31 
and classification [14] have been reported to be successful in 
moderately sized color images with relatively homogeneous 
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structures. However, we could not apply these techniques 
successfully to our data serS because the huge amount of data 
in hyperspectral images made processing infeasible due to 
both memory and computational requirements, and the detailed 
structure in high resolution remotely sensed imagery restricted 
the use of sampling that has been often used to reduce the 
computational requirements of these techniques. 

The segmentation approach we have used in this work con- 
sists of clustering and mathematical morphology. First, the k-  
means algorithm 1151 is used to cluster the spectral data. After 
this unsupervised clustering step, each pixel is assigned the 
label Qf the cluster that it belongs in the spectral feature space. 
Since the k-means algorithm uses only spectral information 
and ignores spatial correlations, the resulting segmentation 
may contain isolated pixels with labels different from those of 
their neighbors, We use an iterative split-and-merge algorithm 
[ 161 to conven this intermediate step to contiguous regions as 
follows: 

1) Merge pixels with identical labels to find the initial set 
of regions and mark these regions as foreground, 

2) Mark regions with areas smaller than a threshold as 
background using connected components analysis [3], 

3) Use region growing to iteratively assign background 
pixels to the foreground regions by placing a window 
at each background pixel and assigning it to the label 
that occurs the most in its neighborhood. 

This procedure corresponds to a spatial smoothing of the 
clustering results. We further process the resulting regions 
using mathematical morphology operators 131 to automatically 
divide large regions into more compact sub-regions as follows 
[ 161: 

I ) Find individual regions using connected components 

2) For all regions, compute the erosion transform [3] and 

a)  Threshold erosion transform at steps of 3 pixels in 
every iteration, 

b) Find connected components of the thresholded 
image, 

c) Select sub-regions that have an area smaller than a 
threshold. 

d) Dilate these sub-regions to restore the effects of 
erosion, 

e) Mark these sub-regions in the output image by 
masking the dilation using the original image, 

until no more sub-regions are found, 
3) Merge the residues of previous iterations to their small- 

est neighbors. 
The parameters for the algorithms were empirically cho- 

sen to produce oversegmented regions, especially at higher 
resolution levels, to capture the details of small structures. 
For exampIe, the value of I; for clustering was set to powers 
of 2 between 2 and 16, and the minimum area threshold 
for merging was set 10 multiples of 2 linearly between 4 
and 10 pixels for the wavelet levels j = 0, - 1 ,  -2, -3. The 

analysis for each label. 

repeat: 

(a) Indian Pine 
segmentation 

(b) DC Mall segmentation 

Fig. 4. Segmentation examples for the Indian Pine and the DC Mall data sets. 
For b t h  sets [he first image shows segmentation at the original resolution and 
the second image shows segmentation at the second wavelei level (J’ = -2). 
Region boundaries are marked as white. 

neighborhood size for growing was fixed as 3 x 3 for all levels. 
Fig. 4 shows examples of segmentation results for different 
resolutions. 

IV. FEATURE EXTRACTlON 

We use multiple feature representations for both pixels 
and segmented regions. These features correspond to spectral, 
textural and shape properties, and are described below. 

A. Pixel Leve! Dura 

The DC Mall and Indian Pine images consist of 191 and 
220 spectral bands, respectively. To simplify computations and 
to avoid the curse of dimensionality, we use the 9-band subset 
that came with the original data for the Indian Pine data set. 
For the DC Mall data set, we apply Fisher’s linear discriminant 
analysis (LDA) [is] that finds a projection to a new set of 
bases that best separates the data in a least-squares sense, The 
resulting number of bands for this set is 6 (corresponding CO 

7 classes as described in Section VI). These values are used 
as spectral features. 

We also apply principal components analysis (PCA) 1151 
to images at each resolution and then extract Gabor texture 
features [ 171 by filtering the first principal component image 
at each resolution with Gabor kernels at different scales and 
orientations. We used kemels rotated by n7r/4, R = 0, . . . , 3 ,  at 
three scales resulting in feature vectors of length 12. Examples 
for pixel features are shown in Fig. 5.  
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clustered using the k-means algorithm. This process assigns a 
cluster label to each region for each feature used, In particular, 
for each region at each resolution, we obtain three labels from 
I clustering of the statistics of the original 9 bands, 

clustering of the statistics of the 12 Gabor bands, 
clustering of the 10 shape features, 

respeclively, for the Indian Pine data set, and three labels from 
clustering of the statistics of the 6 LDA bands, 
clustering of the statistics of the 12 Gabor bands, 
clustering of the 10 shape features, 

respectively, for the DC Mall data set. 
These region level labels can be converted to pixel level 

features by collecting the labels of the regions at multiple 
resolmions corresponding to each pixel. We use two successive 
wavelet levels as the multi-resolution approximation for both 
data r;&. Therefore, a pixel at the original resolution is 
assigned a new feature vector of length 9 containing three 
values from the corresponding region at the original resolution, 
three values from the corresponding region at the first wavelet 
level, and three values from the corresponding region at the 
second wavelet level. Region correspondences are found using 
the dependencies between different resolutions as shown in the 
wavelet pyramid in Fig. 1. 

In the next section, we evaluate the performance of these 
new features for classifying pixels into land coverhid use 
categories defined by the user. Classification is done using a 
binarj decision tree classifier with the gini impurity criterion 
[ 151, and its perfarmancc is compared to that of a traditional 
maximum likelihood classifier with the multivariate Gaussian 
wilh full covariance matrix assumption for each class. 

VI. EXPERIMENTS 
The proposed algorithms were evaluated using the Indian 

Pine and DC Mall data sets. Multi-resolution analysis, image 
segmentation and feature extraction were applied to both 
images as described in the previous sections. Finally, region 
features were extracted and classifiers were trained using the 
corresponding pixel features. 

Tile 16 land cover classes fhat were used for the In- 
dian Pine data set include alfalFd, corn-notill. corn-min, 
corn, grasslpastute, grassltrees, gradpasture-mowed, hay- 
windrowed, oats, soybeans-notill, soybeans-min, soybean- 
clean, wheat, woods, building-gr~s-tree-drives, and stone- 
steeltowers. A thematic map with ground truth labels for 
10,249 pixels was supplied with the original data [ I ] .  The 
ground truth was divided into half as independent training 
(5,128 pixels) and test (5,121 pixels) sets. Both training and 
testing were done using the. labels at the original resolution. 
Details are given in Fig. 6. 

The 7 Iand cover classes that were used for the DC Mall data 
set include roof, street, path, grass, trees, water, and shadow. 
A thematic map with ground truth labels for 8,079 pixels was 
supplied with the original data ( I ] .  We used this ground truth 
for testing and separately labeled 37.941 pixels for training 
Both training and testing were done using the labels at the 
original resolution. Details are given in Fig. 7. 

l a )  lndian Pine 
fCdtUIeS 

(b) DC Mall features 

Fig 5. Pixel feature examples for the Indian Pine and the DC Mall data 
seu. In (a), the first PCA band and the corresponding Gabor image for 0 
degree orientalion a1 the third scale are shown from top [D bottom. In (b), the 
firs1 LDA band. the firs[ PCA band and the corresponding Gabor image for 0 
degree orientaiion at the third scale are shown from left to right. Histogram 
equdlimion was applied tu all images for better visualization. 

E .  Region Level Data 
Regions are modeled using the statistical summaries of their 

spectral and textural properties along with shape features that 
are computed from region polygon boundaries. The statistical 
summary for a region is computed as the means and standard 
deviations of features of the pixels in that region. The shape 
properties of a region correspond to i t s  area, orientation of 
the region’s major axis wilh respect to the L axis, eccentricity 
(ratio of the distance between the foci to the length o f  the 
major axis; e.g., a circle is an ellipse with zero eccentricity), 
Euler number (1  minus the number of holes in the region), 
solidily (ratio of the area to the convex area), extent (ratio 
of the area to the area of the bounding box), spatial variances 
along the I and y axes, and spatial variances along the region’s 
principal (major and minor) axes [3] ,  resulting in a feature 
vector of length 10. 

v. IMAGE CLASSlFlCATlON 

Image classification is usually done by using pixel features 
as input to classifiers such as minimum distance, maximum 
likelihood, neural networks or decision trees. However, large 
within-class variations and small between-class vanations of 
these features at the pixel level and the lack of spatial 
information limit the accuracy af these classifiers. 

In this work, we perform classification using region level 
information. First, the region Features at each resolution are 
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(a) Original map 
f 

r l  

(b) Training map (c) Test map 

Fig. 6. Training and testing ground truth maps for he Indian Pine data set. 
The number of pixels for each class are shown in parenthesis in  the legend. 

’ I  
,3  

Confusion matrices for the cases where all region-based 
features were used with the decision tree classifier are shown 
in Tables I and I1 for the Indian Pine and DC Mall data sets, 
respectively. Confusion matrices for the maximum likelihood 
classifier are not given due to page limitations but the results 
are summarized in Table 111. Classification maps are shown in 
Fig. S. 

The results show that the proposed approach performed 
significantly better than the traditional maximum likelihood 
classifier with Gaussian density assumption for the lndian Pine 
data set and gave comparable resuIts for the DC Mall data 
set. Using texture features in addition to the spectral ones 
improved the performance of both approaches. In addition, 
using multi-resolution approximation and spatial information 
with region features and shape properties improved the results 
for the proposed approach further but the maximum likelihood 
classifier could not avoid producing groups of misclassified 
pixels due to the lack of spatial information. 

VII. SUMMARY 
We have presented an approach for classification of re- 

motely sensed imagery using multi-resolution and spatial 
techniques. Wavelet decomposition was used to model image 
content in different levels. Then, each resolution level was 
independently segmented into contiguous regions using clus- 
tering and mathematical morphology-based algorithms: The 
resulting regions were modeled using the statistical summaries 
of their spectral and textural features and shape properlies. 
Then, these models were used to cluster the regions, and the 
cluster labels assigned to each region in multiple Levels of the 
resolution hierarchy were used to classify the corresponding 

(a) Training map 

E 

I - .. 1 .  

(b) Test map 

Fig. 7. Training and testing ground truth maps for the DC Mall data set. 
The number of pixels for each class are shown i n  parenthesis in the Icgend. 

pixels with a decision tree classifier. We investigated the 
performance of multi-resolution analysis and usefulness of dif- 
ferent region features in classification. Experiments with two 
data sets showed the effectiveness of the proposed approach 
over the traditional maximum likelihood classifier because of 
the use of spatial information extracted from multi-resolution 
approximations. 
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