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Department of Computer Engineering
Bilkent University

Ankara, 06800, Turkey
{kamer, selcuk, zahir}@cs.bilkent.edu.tr

Abstract. In this paper, we investigate how threshold cryptography can
be conducted with the Asmuth-Bloom secret sharing scheme and present
two novel function sharing schemes, one for the RSA signature and the
other for the ElGamal decryption functions, based on the Asmuth-Bloom
scheme. To the best of our knowledge, these are the first threshold cryp-
tosystems realized using the Asmuth-Bloom secret sharing. The proposed
schemes compare favorably to the earlier function sharing schemes in
performance as well as in certain theoretical aspects.

1 Introduction

Threshold cryptography deals with the problem of sharing a highly sensitive
secret among a group of n users so that only when a sufficient number t of
them come together can the secret be reconstructed. Well-known secret sharing
schemes (SSS) in the literature include Shamir [8] based on polynomial interpo-
lation, Blakley [2] based on hyperplane geometry, and Asmuth-Bloom [1] based
on the Chinese Remainder Theorem.

A further requirement of a threshold cryptosystem can be that the subject
function (e.g., a digitial signature) should be computable without the involved
parties disclosing their secret shares. This is known as the function sharing
problem. A function sharing scheme (FSS) requires distributing the function’s
computation according to the underlying SSS such that each part of the compu-
tation can be carried out by a different user and then the partial results can be
combined to yield the function’s value without disclosing the individual secrets.
Several protocols for secret sharing [1, 2, 8] and function sharing [4, 3, 5, 7, 9]
have been proposed in the literature. Nearly all existing solutions for function
sharing have been based on the Shamir SSS [8].

In this paper, we show how sharing of cryptographic functions can be achieved
using the Asmuth-Bloom secret sharing scheme. We give two novel FSSs, one
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for the RSA signature and the other for the ElGamal decryption functions, both
based on the Asmuth-Bloom SSS. The proposed schemes, to the best of our
knowledge, are the first realization of function sharing based on the Asmuth-
Bloom SSS.

The organization of the paper is as follows: In Section 2, we give an overview
of threshold cryptography and review the existing secret and function sharing
schemes in the literature. In Section 3, we discuss the Asmuth-Bloom SSS in
detail. After describing the proposed FSSs in Section 4, the paper is concluded
with an assessment of the proposed schemes in Section 5.

2 Background

In this section, we give an overview of the field of threshold cryptography and
discuss briefly some of the main secret and function sharing schemes in the
literature.

2.1 Secret Sharing Schemes

The problem of secret sharing and the first solutions to it were introduced inde-
pendently by Shamir [8] and Blakley [2] in 1979. A (t, n)-secret sharing scheme
is used to distribute a secret d among n people such that any coalition of size
t or more can construct d but smaller coalitions cannot. Furthermore, a SSS is
said to be perfect if coalitions smaller than t cannot obtain any information on
d; i.e., the candidate space for d cannot be reduced even by one candidate by
using t − 1 or fewer shares.

The first scheme for sharing a secret was proposed by Shamir [8] based on
polynomial interpolation. To obtain a (t, n) secret sharing, a random polynomial
f(x) = at−1x

t−1 +at−2x
t−2 + . . .+a0 is generated over Zp[x] where p is a prime

number and a0 = d is the secret. The share of the ith party is yi = f(i),
1 ≤ i ≤ n. If t or more parties come together, they can construct the polynomial
by Lagrangian interpolation and obtain the secret, but any smaller coalitions
cannot.

Another interesting SSS is the scheme proposed by Blakley [2]. In a t dimen-
sional space, a system of t non-parallel, non-degenerate hyperplanes intersect at
a single point. In Blakley’s scheme, a point in the t dimensional space (or, its first
coordinate) is taken as the secret and each party is given a hyperplane passing
through that point. When t users come together, they can uniquely identify the
secret point, but any smaller coalition cannot.

A fundamentally different SSS is the scheme of Asmuth and Bloom [1], which
shares a secret among the parties using modular arithmetic and reconstructs it by
the Chinese Remainder Theorem. We describe this scheme in detail in Section 3.

2.2 Function Sharing Schemes

Function sharing schemes were first introduced by Desmedt et al. [4] in 1989.
key-dependent function is distributed among n people such that any coalition
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of size t or more can evaluate the function but smaller coalitions cannot. When
a coalition S is to evaluate the function, the ith user in S computes his own
partial result by using his share yi and sends it to a platform which combines
these partial results. Unlike in a secret sharing scheme, the platform here need
not be trusted since the user shares are not disclosed to the platform.

FSSs are typically used to distribute the private key operations in a public
key cryptosystem (i.e., the decryption and signature operations) among several
parties. Sharing a private key operation in a threshold fashion requires first
choosing a suitable SSS to share the private key. Then the subject function
must be arranged according to this SSS such that combining the partial results
from any t parties will yield the operation’s result correctly. This is usually a
challanging task and requires some ingenious techniques.

Several solutions for sharing the RSA and ElGamal private key operations
have been proposed in the literature [4, 3, 5, 6, 7, 9]. Almost all of these schemes
are based on the Shamir SSS, with the only exception of one scheme in [4] based
on Blakley. Lagrangian interpolation used in the secret reconstruction phase
of Shamir’s scheme makes it a suitable choice for function sharing, but it also
provides several challenges. One of the most significant challenges is the com-
putation of inverses in Zφ(N) for sharing the RSA function where φ(N) should
not be known by the users. The first solution to this problem, albeit a relatively
less efficient one, was proposed by Desmedt and Frankel [3], which solved the
problem by making the dealer compute all potentially needed inverses at the
setup time and distribute them to users mixed with the shares. A more elegant
solution was found a few years later by De Santis et al. [7]. They carried the
arithmetic into a cyclotomic extension of Z, which enabled computing the in-
verses without knowing φ(N). Finally, a very practical and ingenious solution
was given by Shoup [9] where he removed the need of taking inverses in La-
grangian interpolation altogether by a slight modification in the RSA signature
function.

To the best of our knowledge, so far no function sharing schemes based on the
Asmuth-Bloom SSS have been proposed in the literature. We show in this paper
that the Asmuth-Bloom scheme in fact can be a more suitable choice for function
sharing than its alternatives, and the fundamental challanges of function sharing
with other SSSs do not exist for the Asmuth-Bloom scheme.

3 Asmuth-Bloom Secret Sharing Scheme

In the Asmuth-Bloom SSS, sharing and reconstruction of the secret are done as
follows:
– Sharing Phase: To share a secret d among a group of n users, the dealer does

the following:
1. A set of pairwise relatively prime integers m0 < m1 < m2 < . . . < mn,

where m0 > d is a prime, are chosen such that
t∏

i=1

mi > m0

t−1∏

i=1

mn−i+1. (1)
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2. Let M denote
∏t

i=1 mi. The dealer computes

y = d + am0

where a is a positive integer generated randomly subject to the condition
that 0 ≤ y < M .

3. The share of the ith user, 1 ≤ i ≤ n, is

yi = y mod mi.

– Construction Phase:
Assume S is a coalition of t users to construct the secret. Let MS denote∏

i∈S mi.
1. Given the system

y ≡ yi (mod mi)

for i ∈ S, solve y in ZMS using the Chinese Remainder Theorem.
2. Compute the secret as

d = y mod m0.

According to the Chinese Remainder Theorem, y can be determined uniquely
in ZMS . Since y < M ≤ MS the solution is also unique in ZM .

The Asmuth-Bloom SSS is a perfect sharing scheme: Assume a coalition S′ of
size t−1 has gathered and let y′ be the unique solution for y in ZMS′ . According
to (1), M/MS′ > m0, hence y′ + jMS′ is smaller than M for j < m0. Since
gcd(m0, MS′) = 1, all (y′ + jMS′) mod m0 are distinct for 0 ≤ j < m0, and
there are m0 of them. That is, d can be any integer from Zm0 , and the coalition
S′ obtains no information on d.

4 Function Sharing Based on the Asmuth-Bloom Scheme

In this section, we present two novel FSSs based on the Asmuth-Bloom SSS for
sharing the RSA signature and ElGamal decryption functions.

In the original Asmuth-Bloom SSS, the authors proposed a recursive process
to solve the system y ≡ yi (mod mi). Here, we give a direct solution which is
more suitable for function sharing. Suppose S is a coalition of t users gathered
to construct the secret d.

1. Let MS\{i} denote
∏

j∈S,j �=i mj and M ′
S,i be the multiplicative inverse of

MS\{i} in Zmi , i.e.,

MS\{i}M ′
S,i ≡ 1 (mod mi).

First, the ith user computes

ui = yiM
′
S,iMS\{i} mod MS .
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2. y is computed as
y =

∑

i∈S
ui mod MS . (2)

3. The secret d is computed as

d = y mod m0.

As a separate point, note that m0 in the Asmuth-Bloom SSS need not be
a prime, and the scheme works correctly for a composite m0 as long as m0 is
relatively prime to mi, 1 ≤ i ≤ n.

Also note that m0 need not be known during the secret construction process
until the 3rd step above. In the FSSs described below, mi, 1 ≤ i ≤ n, are known
by all users, but m0 is kept secret by the dealer unless otherwise is stated.

4.1 Sharing of the RSA Signature Function

The following is a FSS based on the Asmuth-Bloom SSS for the RSA signature
function:

1. In the RSA setup, choose the RSA primes p = 2p′ +1 and q = 2q′ +1 where
p′ and q′ are also large random primes. N = pq is computed and the public
key e and private key d are chosen from Z

∗
φ(N) where ed ≡ 1 (mod φ(N)).

Use Asmuth-Bloom SSS for sharing d with m0 = φ(N) = 4p′q′.
2. Let w be the message to be signed and assume a coalition S of size t wants

to obtain the signature s = wd mod N . The ith person in the coalition knows
mj for all j ∈ S and yi = y mod mi as its secret share.

3. Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS , (3)

si = wui mod N. (4)

4. The incomplete signature s is obtained by combining the si values

s =
∏

i∈S
si mod N. (5)

5. Let λ = w−MS mod N be the corrector. The partial signature can be cor-
rected by trying

(sλj)e = se(λe)j ?≡ w (mod N) (6)

for 0 ≤ j < t. Then the signature s is computed by

s = sλδ mod N

where δ denotes the value of j that satisfies (6).
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We call the signature s generated in (5) incomplete since we need to obtain
y =

∑
i∈S ui mod MS as the exponent of w. Once this is achieved, we have

wy ≡ wd (mod N) as y = d + am0 for some a and we chose m0 = φ(N).
Note that the equality in (6) must hold for some j ≤ t − 1 since the ui

values were already reduced modulo MS . So, combining t of them in (5) will
give d+am0 + δMS in the exponent for some δ ≤ t−1. Thus in (5), we obtained

s = wd+δMS mod N ≡ swδMS mod N ≡ sλ−δ mod N

and for j = δ, equation (6) will hold. Also note that the mappings we mod N
and wd mod N are bijections in ZN , hence there will be a unique value of s = sλj

which satisfies (6).

4.2 Sharing of the ElGamal Decryption Function

The following is a FSS based on the Asmuth-Bloom SSS for the ElGamal de-
cryption function:

1. In ElGamal setup, choose p = 2q + 1 where q is a large random prime and
let g be a generator of Z

∗
p. Let α ∈ {1, . . . , p − 1} and β = gα mod p be the

private and the public key, respectively. Use Asmuth-Bloom SSS for sharing
the private key α with m0 = 2q.

2. Let (c1, c2) be the ciphertext to be decrypted where c1 = gk mod p for
some k ∈ {1, . . . , p − 1} and c2 = βkw where w is the plaintext message.
The coalition S of t users wants to obtain the plaintext w = sc2 mod p for
s = (cα

1 )−1 mod p. The ith person in the coalition knows mj for all j ∈ S
and yi = y mod mi as its secret share.

3. Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS , (7)

si = c1
−ui mod p, (8)

βi = gui mod p. (9)

4. The incomplete decryptor s is obtained by combining the si values

s =
∏

i∈S
si mod p. (10)

5. The βi values will be used to find the exponent which will be used to correct
the incomplete decryptor. Compute the incomplete public key β as

β =
∏

i∈S
βi mod p. (11)

Let λs = c1
MS mod p and λβ = g−MS mod p be the correctors for s and β,

respectively. The corrector exponent δ can be obtained by trying

βλj
β

?≡ β (mod p) (12)

for 0 ≤ j < t.
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6. Compute the plaintext message w as

s = sλs
δ mod p, (13)

w = sc2 mod p. (14)

where δ denotes the value for j that satisfies (12).

As in the case of RSA, the decryptor s is incomplete since we need to obtain
y =

∑
i∈S ui mod MS as the exponent of c−1

1 . Once this is achieved, (c−1
1 )y ≡

(c−1
1 )α (mod N) since y = α + aφ(p) for some a.
When the equality in (12) holds we know that β = gα mod p is the correct

public key. This equality must hold for one j value, denoted by δ, in the given
interval because since the ui values in (7) and (9) are first reduced in modulo
MS . So, combining t of them will give α + am0 + δMS in the exponent in (11)
for some δ ≤ t − 1. Thus in (11), we obtained

β = gα+am0+δMS mod p ≡ gα+δMS ≡ βgδMS ≡ βλ−δ
β (mod p)

and for j = δ equality must hold. Actually, in (11) and (12), our purpose is
not computing the public key since it is already known. We want to find the
corrector exponent δ to obtain s, which is also equal to one we use to obtain β.
The equality can be verified as seen below:

s ≡ c1
−α ≡ β−r (mod p)

≡
(
g−(α+(δ−δ)MS)

)r

(mod p)

≡ c1
−(α+am0+δMS) (

c1
MS

)δ ≡ sλs
δ (mod p)

5 Discussion of the Proposed Schemes

In this paper, sharing of the RSA signature and ElGamal decryption functions
with the Asmuth-Bloom SSS is investigated. Previous solutions for sharing these
functions were typically based on the Shamir SSS [4, 3, 7, 9] and in one occa-
sion, the Blakley SSS was used for ElGamal decryption [4]. To the best of our
knowledge, the schemes described in this paper are the first that use the Asmuth-
Bloom SSS for function sharing.

Computational complexity of the proposed schemes also compare quite fa-
vorably to the earlier proposals. In a straightforward implementation, each user
needs to do t+1 multiplications, one inversion, and one exponentiation for com-
puting a partial result, which is comparable to the earlier schemes and in fact
better than most of them [4, 3, 7, 9]. Combining the partial results takes t − 1
multiplications, plus possibly a correction phase which takes an exponentiation
and t − 1 multiplications.
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