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ABSTRACT
The fact that plane waves are solutions of the Helmholtz equation in free space allows us to write the exact
solution to the diffraction problem as a superposition of plane waves. The solution of other related problems
can also be expressed in similar forms. These forms are very well suited for directly importing various signal
processing tools to diffraction related problems. Another signal processing-diffraction link is the application of
novel sampling theorems and procedures in signal processing to diffraction for the purpose of more convenient and
efficient discrete representation and the use of associated computational algorithms. Another noteworthy link
between optics and signal processing is the fractional Fourier transform. Revisiting diffraction from a modern
signal processing perspectiv is likely to yield both interesting viewpoints and improved techniques.
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1. REVIEW OF DIFFRACTION FROM A SIGNAL PROCESSING PERSPECTIVE
The relationships between signals and systems concepts and basic diffraction and optical systems is well establised
in classic 2 We begin with a brief review of these basics in order to prepare the ground for more advanced
concepts.

Probably the best way to show how optical wave propagation fits into a signals and systems framework is
the planar wave decomposition approach:

b(x) = [ B(k) exp (jkTx) dk (1)

where x represent the space coordinates [x y z]T, k is the wave vector [k k k]T, B(k) is the amplitude of
the plane wave propagating along the k direction, and b(x) is the corresponding three-dimensional (3D) field.
Various restrictions reduce the domain of integration. For example, for monochromatic waves with wavelength
A, the integration set becomes the sphere whose radius is equal to k = Iki = (2ir)/A (the Ewald sphere). It
is also common to limit the propagation direction only along the positive z-axis, and therefore, the domain of
integration reduces to the positive z semisphere. For the monochromatic case, Eq. 1 becomes,

b(x) = f B(k) exp (jkTx) dk
k2 +k2 +k2=k2y

(2)
= ff B(k)j exp (jkz) exp [j(kx + ky)] dkdk

k+k<k2

where the term - is due to the Jacobian as a consequence of the change of integration variables; k = (k2 —

k — k)'/2, is now a function of (ks, k) due to the monochromaticity constraint.
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A planar cross-section of b(x) at z =0 yields the 2D field which is usually called the "object mask":

'02D0(X,y) ib(x,y,O) =

= ffB(k)_exP[i(kxx+kyY)]dkxdky (3)

=
_1{42B(k)}.

where 9:•—1 represents the inverse Fourier transform from the (k ,k) domain to the (x, y) domain. It is quite
common to absorb the Jacobian into a new function by defining A(k, k) = 4ir2B (ks, k, (k2 — k —

A similar cross-section of the 3D field at the z = Z plane yields the expression for the corresponding diffraction
pattern over that plane as,

1/'2D(X,y) b(x,y,Z) =

= ffB(k)- exp [j(k2 k — k)h/2Z] exp [j(kx + ky)] dkdk (4)

= Sr—' {A(k, k)Hz(k, k)}.

where Hz(k ,k) exp [j(k2 —k — k)'/2Z] represents the transfer function of a linear shift-invariant system.
Eqs. 1, 2, 3, 4 are exact solutions for a homogeneous linear isotropic medium since the plane wave is a solution
of the Helmholtz equation. The impulse reponse corresponding to this system is the kernel of the well-known
Rayleigh-Sommerfeld

23 For Z >> A, the impulse response reduces to the kernel representing wave
propagation in free space due to a point source as,

z 2ir 2 2 21/2h(x,y)
jA(x2 + y2 + Z2) exp [i —i- (x + y + Z ) ] (5)

which is known as the Rayleigh-Sommerfeld diffraction formula.2

As a result of the simple linear shift-invariant model with exactly specified transfer function, diffraction
between parallel planes can be conveniently modeled and therefore associated signal processing techniques can
be immediately applied. Furthermore, issues associated with discretization, etc. can be rather easily understood
due to this simple product form in the Fourier domain. The analytically known transfer function and the impulse
response provide additional benefits.

A discrete simulation of diffraction for the 1D case (2D field), corresponding to Eq. 4, is shown in Figure
1. Here the bottom line is the input mask, which is a simple pulse (transparent opening) at the center of an
otherwise opaque object. The vertical axis is the z-axis representing the distance between the object and the
diffraction plane. Please note that the spatial scale is not the same for the horizontal and the vertical axes.

There has been significant efforts reported in the literature to compute the diffraction pattern between tilted
planes The presented plane wave decomposition approach provides an efficient and elegant solution
based on signa1 processing techniques: It is easy to find out the 2D functions over two different arbitrarily
oriented 2D planes by intersecting a single 3D plane wave by those planes: each intersection is merely a 2D
complex sinusoidal function (i.e., a 2D plane wave) whose orientation and frequency are different and depend
on the positions and orientations of the intersecting planes. Therefore, by just forming the superposition of
plane waves in 3D space and the corresponding superposition of the 2D plane waves over the two 2D intersecting
planes, we can easily find the diffraction relation between the tilted planes4:

g(x, y) = ,k)-(x,y){(x,Y)-(k,k){f(x,} R,b) } (6)

where F represents the 2D Fourier transform, and the arrowed subscripts under the symbol .7 denote the
variables of the pre- and post-Fourier transform domains, and the function H(k', R, b) provides the kernel of
the corresponding system, represented by

H(k', R, b) = (7)
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due to this simple product form in the Fourier domain. The analytically known transfer function and the impulse
response provide additional benefits.
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1. Here the bottom line is the input mask, which is a simple pulse (transparent opening) at the center of an
otherwise opaque object. The vertical axis is the z-axis representing the distance between the object and the
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There has been significant efforts reported in the literature to compute the diffraction pattern between tilted
planes The presented plane wave decomposition approach provides an efficient and elegant solution
based on signal processing techniques: It is easy to find out the 2D functions over two different arbitrarily
oriented 2D planes by intersecting a single 3D plane wave by those planes: each intersection is merely a 2D
complex sinusoidal function (i.e., a 2D plane wave) whose orientation and frequency are different and depend
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plane waves in 3D space and the corresponding superposition of the 2D plane waves over the two 2D intersecting
planes, we can easily find the diffraction relation between the tilted planes4:

g(x, y) = (k ,k)-(x,y) {2(x,y)—+(k ,k) {f(x, } R,b) } (6)

where T represents the 2D Fourier transform, and the arrowed subscripts under the symbol .7 denote the
variables of the pre- and post-Fourier transform domains, and the function H(k', R,b) provides the kernel of
the corresponding system, represented by

H(k', R, b) = (7)
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Figure 1. Simulation of diffraction using Eq. 4. A 1-D object case is presented for better visualization. (The scale is not
the same along the horizontal (x), and the vertical (z) axes. The numerical values are for A =633nm.) (The simulation
was conducted by Ali Ozgiir Yöntem.)

Here, the relation between k and W is given by a rotation as k = P.k. Physically, k is the direction of
propagation with respect to the object plane, and W is the same direction with respect to the orientation of the
tilted diffraction plane. A similar rotation and translation relation exists between the corrdinates of the tilted
planes as x' = Rx + b where the matrix R represents the rotation of the two planes and the vector b represents
the translation.

2. OPTICAL PROPAGATION AS FRACTIONAL FOURIER TRANSFORMATION
The purpose of this section is to briefly review fractional Fourier transforms and linear canonical transforms,
as they are related to wave propagation, diffraction, and holography. It is not the purpose of this section to
attempt any review of the fractional Fourier transform in general; other sources are available for this 67
Excellent references on linear canonical transforms exist.8 The fractional Fourier transform was introduced into
signal processing9'2 and optics'3'9 during the early nineties.

A key result is that relating free-space propagation in the Fresnel approximation (namely the Fresnel in-
tegral or the Fresnel transform20), to the fractional Fourier transform. Several papers deal with this relation-
ship.'7' 18,21—26 Extensions of this result relate arbitrary linear canonical transforms (quadratic-phase integrals)
to the fractional Fourier transform.'9 Linear canonical transforms are a three-parameter family of integral
transforms. This family of transforms includes the Fourier and fractional Fourier transforms, simple scaling
including the identity and parity operations (corresponding to imaging in optics), chirp multiplication and con-
volution operations (corresponding to passage through a thin lens and free-space propagation in the Fresnel
approximation respectively), and hyperbolic transforms as special cases.8'27 Since optical systems consisting
of arbitrary concatenations of lenses and section of free space can be modeled as linear canonical transforms,
it follows that propagation through such systems, as well as free-space propagation can be viewed as an act of
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Here, the relation between k and k' is given by a rotation as k = Rk'. Physically, k is the direction of
propagation with respect to the object plane, and k' is the same direction with respect to the orientation of the
tilted diffraction plane. A similar rotation and translation relation exists between the corrdinates of the tilted
planes as x' = Rx + b where the matrix R represents the rotation of the two planes and the vector b represents
the translation.

2. OPTICAL PROPAGATION AS FRACTIONAL FOURIER TRANSFORMATION
The purpose of this section is to briefly review fractional Fourier transforms and linear canonical transforms,
as they are related to wave propagation, diffraction, and holography. It is not the purpose of this section to
attempt any review of the fractional Fourier transform in general; other sources are available for this 67
Excellent references on linear canonical transforms exist.8 The fractional Fourier transform was introduced into
signal processing9'2 and optics'3'9 during the early nineties.

A key result is that relating free-space propagation in the Fresnel approximation (namely the Fresnel in-
tegral or the Fresnel transform20) , to the fractional Fourier transform. Several papers deal with this relation-
hi'8' 21—26 Extensions of this result relate arbitrary linear canonical transforms (quadratic-phase integrals)

to the fractional Fourier transform.19 Linear canonical transforms are a three-parameter family of integral
transforms. This family of transforms includes the Fourier and fractional Fourier transforms, simple scaling
including the identity and parity operations (corresponding to imaging in optics), chirp multiplication and con-
volution operations (corresponding to passage through a thin lens and free-space propagation in the Fresnel
approximation respectively), and hyperbolic transforms as special cases.8'27 Since optical systems consisting
of arbitrary concatenations of lenses and section of free space can be modeled as linear canonical transforms,
it follows that propagation through such systems, as well as free-space propagation can be viewed as an act of
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continual fractional transformation. The wave field evolves through fractional Fourier transforms of increasing
order as it propagates through free space or the multi-lens system.

In order to mathematically express the above result, we first give the definition of the fractional Fourier
transform (FRT).6 The FRT fa(X) of f(x) is defined as

fa(X) Aair,t2x:exp[iir(x2 cot(air/2) —2xx' csc(a'ir/2) + x'2 cot(air/2))]f(x') dx', (8)

where Aa/2 a factor depending on a whose exact form is not of importance here. Restricting ourselves to
one-dimensional notation for simplicity, the output g(x) of a quadratic-phase system is related to its input /(x)
through

g(x) = e_1/4r:exp[iir(cx2 — 2j9xx' + 'yx'2)]f(x') dx', (9)

where c, 3, 'y are the three parameters of the system. When all three of these parameters equal 1/AZ, this
expression reduces to the Fresnel integral (within an inconsequential phase factor) . The same relationship can
also be written in terms of an alternate set of parameters a, M, R as follows:

g(x) = [ (cot(air/2) —2-csc(air/2) +xl2cot(a7r/2))] f(x')dx', (10)

where s is an arbitrary scale factor. This relationship maps a function s1/2f(x/s) to exp(iirx2/AR)/1/sM fa(x/sM).
That is, g(x) is essentially the ath order fractional Fourier transform of s1/2f(x/s), scaled by M, and multiplied
by a residual quadratic-phase factor. In optics scaling corresponds to magnification of the distribution of light in
the transverse direction. The existence of the quadratic-phase factor means that the magnified fractional Fourier
transform is observed on a spherical reference surface, rather than on a plane. Comparing Eqs. 9 and 10, we can
relate the two sets of parameters as follows:

cot(air/2) 1
c —

S2M2 (11)

— csc(air/2) 121— s2M ' ( )

,y
— cot(air/2)

(13)

These equations allow us to switch between the two sets of parameters and thus interpret any quadratic-phase
integral and thus the wide class of optical systems they represent as fractional Fourier transforms. Since the FRT
has a much broader set of properties mirroring those of the ordinary Fourier transform, and is geometrically and
numerically much better behaved, formulating the propagation of light through optical systems in terms of the
FRT has several advantages. As a special case, when c = fi = 'y = 1/AZ corresponding to ordinary free-space
propagation, we have

tan(air/2) =, (14)

M=V1+(AZ/82)2, (15)
1 1 AZ:i =

i + (AZ/s2)2 (16)

There is no doubt that digital processing of signals paved the way to otherwise impossible techniques in almost
every field. Audio and video technology, together with digital telecommunications methods affected all aspects
of daily life, including business styles, home living, and leisure. The close interaction of digital technologies with
optics has been rather late, at least at the visible consumer products level.

Coupling optical signals with computers, and thus, migrating the benefits of the digital technology to optics,
require the digitization of these signals. At the input, where the analog optical signal is captured and converted
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require the digitization of these signals. At the input, where the analog optical signal is captured and converted
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to a digital signal for subsequent digital processing, usually the light hits an array of sensors located at the
surface of a chip. The size and shape of the aperture, the size, shape and the number of sensing elements, their
noise characteristics, speed, etc., affect the quality of the captured signal. Currently the common technology is
to use CCD arrays. Such captured discrete signals are then digitized and stored in computer memory and can
be reconstructed for further digital processing, or are fed to a SLM for optical reconstruction.2831 Another area
of widespread insterest is the generation of various types of holograms and other diffractive optical elements by
digital means. Processing of captured optical signals by digital means, for purposes like digital reconstructions
from holograms, analysis of holographic signals, nondestructive testing, technical measurements, etc., are of
considerable interest. Creation of synthetic 3D data by computer graphics means, and then displaying these 3D
data using holographic technology also require digital processing. Finally, simulations of optical phenomena for
scientific purposes or for computer-aided design and perfection of optical components require handling of optical
and related signals by digital means.

All of the primary applications above, as well as other related tasks, require the sampling (discretization) and
quantization of associated signals: these signals could be the diffracted wave from an object, propagated light
from a scene to a sensor, a hologram, and mathematical functions describing these physical phenomena.

3. A REVIEW OF SAMPLING THEORY
Our review here, while including the fundamentals of general sampling theory, emphasizes those aspects that are
more relevant to optics and diffraction.

The classical formulation of sampling starts with the influential approach published by Shannon.3234 It is
well known that, a band-limited function can be fully recovered from its uniformly-positioned samples taken at
the Nyquist rate. The recovery of the original continuous function is accomplished by superposing weighted and
shifted sinc interpolators. It is known that the roots of sampling of band-limited functions are quite 3536

Unser provides an excellent survey on sampling.37

Actually, band-limitedness is just one constraint which then leads to representation of continuous functions
by their samples. Other constraints may lead to totally different discrete representations, based on the sam-
ples, together with corresponding recovery procedures of the originals. Indeed it seems that applying common
Shannon-type (band-limited original signal) sampling is neither appropriate, nor desirable in optics and diffrac-
tion.

For optical signals arising in difFraction and holography, the so called c-Fresnel limited functions are far
more convenient and appropriate than band-limited functions, at least as far as sampling and recoverability
is concerned.38 It is shown that functions which are not necessarily bandlimited can be fully recovered from
their finite rate samples, provided that they are c-Fresnel limited. A special case of the theorems proven in
the literature38 indicate that the Fresnel transform of a space-limited function can be fully recovered from its
samples. This was also proven later independently by Onural,39 where it is shown that a space-limited function
can be fully recovered from the samples of its Fresnel diffraction pattern. Since the space-limited function is
not band-limited, and since diffraction is essentially an all-pass linear operator, the diffraction pattern is not
band-limited either. Therefore, Shannon's theorem is not applicable but nevertheless full recovery is possible
from a rather sparse set of uniform samples. Another work on sampling appears in the recent literature: it is
shown by Stern and Javidi4° that neither band-, nor space-limited functions can be fully recovered from their
samples if the replicas of their Wigner distributions due to sampling do not overlap.

Another interesting approach to sampling may be realized through viewing diffraction phenomena as a contin-
uous wavelet transform.41 It is shown in that work that if the field is considered to be produced in accordance with
the Fresnel approximation, the light field at different distances (along propagation direction) may be regarded
as the result of an inner product of the light distribution at some initial plane (orthogonal to the propagation
direction) and a function (chirp) scaled by the square root of the distance. The difference from the conventional
wavelet analysis is that the scaling functions are not limited either in the spatial or the frequency domain. Thus
a question arises whether such a transform is actually legitimate (the answer to which is actually expected to be
positive due to the fact that the distribution at a plane determines the field in the whole space). The transform
is named as a "scaling chirp transform" and is shown to be legitimate in.42 A number of inversion formulas
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samples. This was also proven later independently by Onural,39 where it is shown that a space-limited function
can be fully recovered from the samples of its Fresnel diffraction pattern. Since the space-limited function is
not band-limited, and since diffraction is essentially an all-pass linear operator, the diffraction pattern is not
band-limited either. Therefore, Shannon's theorem is not applicable but nevertheless full recovery is possible
from a rather sparse set of uniform samples. Another work on sampling appears in the recent literature: it is
shown by Stern and Javidi4° that neither band-, nor space-limited functions can be fully recovered from their
samples if the replicas of their Wigner distributions due to sampling do not overlap.

Another interesting approach to sampling may be realized through viewing diffraction phenomena as a contin-
uous wavelet transform.41 It is shown in that work that ifthe field is considered to be produced in accordance with
the Fresnel approximation, the light field at different distances (along propagation direction) may be regarded
as the result of an inner product of the light distribution at some initial plane (orthogonal to the propagation
direction) and a function (chirp) scaled by the square root of the distance. The difference from the conventional
wavelet analysis is that the scaling functions are not limited either in the spatial or the frequency domain. Thus
a question arises whether such a transform is actually legitimate (the answer to which is actually expected to be
positive due to the fact that the distribution at a plane determines the field in the whole space). The transform
is named as a "scaling chirp transform" and is shown to be legitimate in.42 A number of inversion formulas
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are provided with a discussion of their redundancy (when a volume is considered for inversion where a plane is
sufficient) and ways to possibly exploit this redundancy. Despite its difference in the underlying wavelet function,
the scaling chirp transform seems to suggest a way to sample the light field. Interestingly, this sampling is to
be performed throughout the space at different distances (since the inner product following the scaling of the
chirp corresponds to obtaining the light field at a farther plane). Actually the need at this point is to discretize
the scaling chirp transform to avoid redundancies. Once this is done, the samples that one obtains would be the
samples of the light field throughout the space.

Digital reconstructions from captured difFraction patterns or holograms require the algorithmic digital imple-
mentations of the underlying continuous mathematical models representing diffraction. There are two common
implementations for the Fresnel case.43 One of the implementations is based on the implementation of the
convolution of the input with the Fresnel kernel which represents a linear shift-invariant system. The specific
form of the kernel (the two-dimensional chirp, which is also called the quadratic-phase function, or the zone-plate
term) makes it possible to convert the convolution to a single Fourier transform together with pre and post array
multiplications with the quadratic phase function. Inevitably, either the kernel which represent wave-propagation
(diffraction), or its analytically known Fourier transform (the transfer function) should be discretized for per-
forming digital reconstructions by converting the continuous convolutions to their discrete counterparts. Similar
discretization of the quadratic-phase function is an issue for the single Fourier transform model. Therefore,
understanding the properties of the discrete function obtained from the continuous Fresnel function is essential
for both successful simulations of diffraction, and for proper interpretations of computer generated results. Some
well known properties of the continuous Fresnel kernel, together with some rather overlooked properties are
presented in the literature.44 One such interesting property is the invariance of the sampling operation under
the Fourier transform for such a function: the continuous Fourier transform of the sampled chirp function, under
some conditions, is another sampled (conjugate) chirp function. This observation leads to desirable interpre-
tations of the outputs obtained from commonly used simulation a1gorithms based on the circular convolution
implementations: for example, it is possible to compute, very efficiantly, the exact Fresnel transform of some
periodic input (object) functions at a number of discrete distances. Another observation regards the perfectly
discrete and periodic nature of the continuous Fresnel transform, at some distances, of periodic and discrete
input functions.

The fractional Fourier transform formulation provides another approach to handle discretization and compu-
tation issues. Sampling issues related to the fractional Fourier transformation, in the sense of the conventional
Nyquist sampling results, have been di4546 and will not be reviewed here. Instead, referring to Eq. 8,
we observe that naive application of the Nyquist-Shannon approach may require very large sampling rates due
to the highly oscillatory nature of the kernel. However, by careful consideration of sampling issues, it is possible
to accurately and efficiently compute this integral with a number of samples close to the space-bandwidth prod-
uct of f(x).47 This leads to a fast (order of Nlog N) algorithm for computing the samples of the continuous
fractional Fourier transform of a function from the samples of that function. The continuous function obtained
by interpolating the computed output samples is an approximation of the actual continuous function in the
same sense and to the same degree of approximation as the discrete Fourier transform (DFT) approximates the
continuous Fourier transform. Here N is the space-bandwidth product of the signal whose transform is to be
computed. It is important to note that N is not allowed to be artificially large as a consequence of the wide
bandwidth of the chirp function constituting the kernel of the fractional Fourier transform. These issues are
related to the investigation of efficient sampling strategies in diffraction, and the effort to apply the results to
efficient computational algorithms.

4. CONCLUSION
The very nature of diffraction phenomena is conveniently suited for the immediate application of various signal
processing approaches and algorithms to optics. The coupling of optics and diffraction with digital environments
naturally leads to issues related to sampling and quantization. Both established results as well as novel interpre-
tations and improvements in sampling theory provide a rich potential for interesting solutions and applications
and efficient implementations in optics.
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sufficient) and ways to possibly exploit this redundancy. Despite its difference in the underlying wavelet function,
the scaling chirp transform seems to suggest a way to sample the light field. Interestingly, this sampling is to
be performed throughout the space at different distances (since the inner product following the scaling of the
chirp corresponds to obtaining the light field at a farther plane). Actually the need at this point is to discretize
the scaling chirp transform to avoid redundancies. Once this is done, the samples that one obtains would be the
samples of the light field throughout the space.

Digital reconstructions from captured diffraction patterns or holograms require the algorithmic digital imple-
mentations of the underlying continuous mathematical models representing diffraction. There are two common
implementations for the Fresnel case.43 One of the implementations is based on the implementation of the
convolution of the input with the Fresnel kernel which represents a linear shift-invariant system. The specific
form of the kernel (the two-dimensional chirp, which is also called the quadratic-phase function, or the zone-plate
term) makes it possible to convert the convolution to a single Fourier transform together with pre and post array
multiplications with the quadratic phase function. Inevitably, either the kernel which represent wave-propagation
(diffraction), or its analytically known Fourier transform (the transfer function) should be discretized for per-
forming digital reconstructions by converting the continuous convolutions to their discrete counterparts. Similar
discretization of the quadratic-phase function is an issue for the single Fourier transform model. Therefore,
understanding the properties of the discrete function obtained from the continuous Fresnel function is essential
for both successful simulations of diffraction, and for proper interpretations of computer generated results. Some
well known properties of the continuous Fresnel kernel, together with some rather overlooked properties are
presented in the literature.44 One such interesting property is the invariance of the sampling operation under
the Fourier transform for such a function: the continuous Fourier transform of the sampled chirp function, under
some conditions, is another sampled (conjugate) chirp function. This observation leads to desirable interpre-
tations of the outputs obtained from commonly used simulation algorithms based on the circular convolution
implementations: for example, it is possible to compute, very efficiantly, the exact Fresnel transform of some
periodic input (object) functions at a number of discrete distances. Another observation regards the perfectly
discrete and periodic nature of the continuous Fresnel transform, at some distances, of periodic and discrete
input functions.

The fractional Fourier transform formulation provides another approach to handle discretization and compu-
tation issues. Sampling issues related to the fractional Fourier transformation, in the sense of the conventional
Nyquist sampling results, have been di546 and will not be reviewed here. Instead, referring to Eq. 8,
we observe that naive application of the Nyquist-Shannon approach may require very large sampling rates due
to the highly oscillatory nature of the kernel. However, by careful consideration of sampling issues, it is possible
to accurately and efficiently compute this integral with a number of samples close to the space-bandwidth prod-
uct of f(x).47 This leads to a fast (order of Nlog N) algorithm for computing the samples of the continuous
fractional Fourier transform of a function from the samples of that function. The continuous function obtained
by interpolating the computed output samples is an approximation of the actual continuous function in the
same sense and to the same degree of approximation as the discrete Fourier transform (DFT) approximates the
continuous Fourier transform. Here N is the space-bandwidth product of the signal whose transform is to be
computed. It is important to note that N is not allowed to be artificially large as a consequence of the wide
bandwidth of the chirp function constituting the kernel of the fractional Fourier transform. These issues are
related to the investigation of efficient sampling strategies in diffraction, and the effort to apply the results to
efficient computational algorithms.

4. CONCLUSION
The very nature of diffraction phenomena is conveniently suited for the immediate application of various signal
processing approaches and algorithms to optics. The coupling of optics and diffraction with digital environments
naturally leads to issues related to sampling and quantization. Both established results as well as novel interpre-
tations and improvements in sampling theory provide a rich potential for interesting solutions and applications
and efficient implementations in optics.

Proc. of SPIE Vol. 6252  625219-6

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/28/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



This work is supported by EC within FP6 under Grant 511568 with the acronym 3DTV.

REFERENCES
1. A. Papoulis, Sytems and Transforms with Applications in Optics, McGraw-Hill, New York, 1968.
2. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, second ed., 1996.
3. G. C. Sherman, "Application of the convolution theorem to Rayleigh's integral formulas," Journal of Optical

Society of America 57', pp. 546—547, 1967.
4. G. B. Esmer and L. Onural, "Simulation of scalar optical diffraction between arbitrarily oriented planes,"

in Fir8t International Symposium on Control, Communications and Signal Processing, 2004.
5. N. Delen and B. Hooker, "Free-space beam propagation between arbitrarily oriented planes based on full

diffraction theory: a fast fourier transform approach," Journal of Optical Society of America A 15 (4),
pp. 857—867, 1998.

6. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics
and Signal Processing, Wiley, New York, 2001.

7. H. M. Ozaktas, M. A. Kutay, and D. Mendlovic, "Introduction to the fractional Fourier transform and its
applications," in Advances in Imaging and Electron Physics 106, W. Hawkes, ed., pp. 239—291, Academic
Press, San Diego, California, 1999.

8. K. B. Wolf, "Construction and properties of canonical transforms," in Integral Transforms in Science and
Engineering, p. chapter 9, Plenum Press, New York, 1979.

9. H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, "Convolution, filtering, and multiplexing in
fractional Fourier domains and their relation to chirp and wavelet transforms," J Opt Soc Am A 11,
pp. 547—559, 1994.

10. H. M. Ozaktas, B. Barshan, and D. Mendlovic, "Convolution and filtering in fractional Fourier domains,"
Optical Review 1, pp. 15—16, 1994.

11. L. B. Almeida, "The fractional Fourier transform and time-frequency representations," IEEE Trans Signal
Processing 42, pp. 3084—3091, 1994.

12. H. M. Ozaktas and 0. Aytur, "Fractional Fourier domains," Signal Processing 46, pp. 119—124, 1995.
13. H. M. Ozaktas and D. Mendlovic, "Fourier transforms of fractional order and their optical interpretation,"

Opt Commun 101, pp. 163—169, 1993.
14. D. Mendlovic and H. M. Ozaktas, "Fractional Fourier transforms and their optical implementation: I," J

Opt Soc Am A 10, pp. 1875—1881, 1993.
15. H. M. Ozaktas and D. Mendlovic, "Fractional Fourier transforms and their optical implementation: Ii," J

Opt Soc Am A 10, pp. 2522—2531, 1993.
16. A. W. Lohmann, "Image rotation, Wigner rotation, and the fractional order Fourier transform," J Opt Soc

Am A 10, pp. 2181—2186, 1993.
17. H. M. Ozaktas and D. Mendlovic, "Fractional Fourier transform as a tool for analyzing beam propagation

and spherical mirror resonators," Opt Lett 19, pp. 1678—1680, 1994.
18. H. M. Ozaktas and D. Mendlovic, "Fractional Fourier optics," J Opt Soc Am A 12, pp. 743—751, 1995.
19. H. M. Ozaktas and M. F. Erden, "Relationships among ray optical, gaussian beam, and fractional Fourier

transform descriptions of first-order optical systems," Opt Commun 143, pp. 75—86, 1997.
20. F. Gori, "Why is the Fresnel transform so little known?," in Current Trends in Optics, pp. 139—148 Aca-

demic Press, London, 1994.
21. P. Pellat-Finet, "Fresnel diffraction and the fractional-order Fourier transform," Opt Lett 19, pp. 1388—1390,

1994.
22. F. Gori, M. Santarsiero, and V. Bagini, "Fractional Fourier transform and Fresnel transform," Atti della

Fondazione Giorgio Ronchi IL, pp. 387—390, 1994.
23. X. Deng, Y. Li, Y. Qiu, and D. Fan, "Diffraction interpreted through fractional Fourier transforms," Opt

Commun 131, pp. 241—245, 1996.
24. J. Hua, L. Liu, and G. Li, "Observing the fractional Fourier transform by free-space Fresnel diffraction,"

Appl Opt 36, pp. 512—513, 1997.

This work is supported by EC within FP6 under Grant 511568 with the acronym 3DTV.

REFERENCES
1. A. Papoulis, Sytems and Transforms with Applications in Optics, McGraw-Hill, New York, 1968.
2. 3. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, second ed., 1996.
3. G. C. Sherman, "Application of the convolution theorem to Rayleigh's integral formulas," Jottrnal of Optical

Society of America 57', pp. 546—547, 1967.
4. G. B. Esmer and L. Onural, "Simulation of scalar optical diffraction between arbitrarily oriented planes,"

in First International Symposium on Control, Communications and Signal Processing, 2004.
5. N. Delen and B. Hooker, "Free-space beam propagation between arbitrarily oriented planes based on full

diffraction theory: a fast fourier transform approach," Journal of Optical Society of America A 15 (4),
pp. 857—867, 1998.

6. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics
and Signal Processing, Wiley, New York, 2001.

7. H. M. Ozaktas, M. A. Kutay, and D. Mendlovic, "Introduction to the fractional Fourier transform and its
applications," in Advances in Imaging and Electron Physics 106, W. Hawkes, ed., pp. 239—291, Academic
Press, San Diego, California, 1999.

8. K. B. Wolf, "Construction and properties of canonical transforms," in Integral Transforms in Science and
Engineering, p. chapter 9, Plenum Press, New York, 1979.

9. H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, "Convolution, filtering, and multiplexing in
fractional Fourier domains and their relation to chirp and wavelet transforms," J Opt Soc Am A 11,
pp. 547—559, 1994.

10. H. M. Ozaktas, B. Barshan, and D. Mendlovic, "Convolution and filtering in fractional Fourier domains,"
Optical Review 1, pp. 15—16, 1994.

11. L. B. Almeida, "The fractional Fourier transform and time-frequency representations," IEEE Trans Signal
Processing 42, pp. 3084—3091, 1994.

12. H. M. Ozaktas and 0. Aytur, "Fractional Fourier domains," Signal Processing 46, pp. 119—124, 1995.
13. H. M. Ozaktas and D. Mendlovic, "Fourier transforms of fractional order and their optical interpretation,"

Opt Commun 101, pp. 163—169, 1993.
14. D. Mendlovic and H. M. Ozaktas, "Fractional Fourier transforms and their optical implementation: I," J

Opt Soc Am A 10, pp. 1875—1881, 1993.
15. H. M. Ozaktas and D. Mendlovic, "Fractional Fourier transforms and their optical implementation: Ii," J

Opt Soc Am A 10, pp. 2522—2531, 1993.
16. A. W. Lohmann, "Image rotation, Wigner rotation, and the fractional order Fourier transform," J Opt Soc

Am A 10, pp. 2181—2186, 1993.
17. H. M. Ozaktas and D. Mendlovic, "Fractional Fourier transform as a tool for analyzing beam propagation

and spherical mirror resonators," Opt Lett 19, pp. 1678—1680, 1994.
18. H. M. Ozaktas and D. Mendlovic, "Fractional Fourier optics," J Opt Soc Am A 12, pp. 743—751, 1995.
19. H. M. Ozaktas and M. F. Erden, "Relationships among ray optical, gaussian beam, and fractional Fourier

transform descriptions of first-order optical systems," Opt Commun 143, pp. 75—86, 1997.
20. F. Gori, "Why is the Fresnel transform so little known?," in Current Trends in Optics, pp. 139—148 Aca-

demic Press, London, 1994.
21. P. Pellat-Finet, "Fresnel diffraction and the fractional-order Fourier transform," Opt Lett 19, pp. 1388—1390,

1994.
22. F. Gori, M. Santarsiero, and V. Bagini, "Fractional Fourier transform and Fresnel transform," Atti della

Fondazione Giorgio Ronchi IL, pp. 387—390, 1994.
23. X. Deng, Y. Li, Y. Qiu, and D. Fan, "Diffraction interpreted through fractional Fourier transforms," Opt

Commun 131, pp. 241—245, 1996.
24. J. Hua, L. Liu, and G. Li, "Observing the fractional Fourier transform by free-space Fresnel diffraction,"

Appl Opt 36, pp. 512—513, 1997.

Proc. of SPIE Vol. 6252  625219-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/28/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



9661 'OT—TT'T dd 'j 6usssoj iu6S suvJj 'uuojstrei 
1!1nod iuoweij jo uoTrndmoo 'pzo pm 'Anj y j,s 'uiy o 'io i'i H 

6661 'gT—6TT dd ' 6usszotj vu6' uwj 
'tuioeq uiIduIRs pU UI1OJSTr1 ieino euooij pjufl,, 'oioi pm 'SSflu1)j d 'eqesi j 9j 

6661 'T'TT—TTT dd ' fluws 
-041 lS 'UI1OJSU1 18I1flO UO!ZYL1J tj 1O flW1OJ U!IdUIeS ij+.j,, 'tx y pu pA v 

•J700g '9—L dd ' in'o 'suontus uopiijp I' U SflSS 
PWP0SS pu uotpunj eqd 3rprnb peIdtus Apniojrn qjo siedoid 'rmo i i'j' 

g6T 'VSfl 'AN 'OJJfl 'OfJJfl ANflS 'cr ad-J-lH fl-'I Jo 6u$poda iv6scr 'IO E T' 
g661 'LgT—9gT dd ' ssoj ius 

SuVJ1L 'Aqdooq pm 'uopijp 'suopunj d1qo ujos jo A!ure,, 'dooN i'i P einu [ 66T 'T—9T dd 'j O 'J1eTA Jo uiod IAJI mo1J uopuj[,, 'r1nuo E TT' 

•J700g '99—O9 dd ' y vzwy 
Jo 4dog in'o w Jo 7vu.rnof iup& jo u u!IdtrnS,, '!PPf a p ui v o 

•000g 'g6g—6g6g dd '6 O PflIV 'PIJ uopijp jo u!IdurS,, 'r'o •i 
T6T 'L6g—6g dd '6C SUOflVdZUflWWOQ flO 'meioeq u!Idures prn uuojsuu ieti,, 'io 

•000g 'Lg—69g dd ' Jo sfluipdoJJ 'uouuqs 1JR SXA O - u!IduxS,, '1SUfl JA 

6T ' (tmoysopij) vx)flt $ZZVfkt9 

.uIn •pt •pzI 'sUonoTunUuuo3I UI JJA jU JO A!d3 UoTss!msu1 Us,, 'AO)!UIeOX V A 9 
•000g 'uoso[ '1srntpI1T '—T dd 'spa 

d p!IR Ofl8p8U8 f 'fl.JOtjJ 6UflthLLV UJpOfr1J U 'UO3flpO1U,, '111 d P" Oj8U8[ f 
66T '9ff—T4' dd '9 Jo 96UipdOJJ 

'uouuqs • • cq oi o eousid eq u suoounmuioo :o uopnpoiuj,, 'urq s P' "M c[ V 
66T 'LT' 

—LT7T dd '9 Jo s6uzpdoJJ 'sToU JO ousid u suoounmmo :idd 'uouueq D 
6T'6T 'T—OT dd 'g 'nri Jo s6uipotj 'sou jo ousid eq u suoounmmo,, 'uouireq D 

.goog '6T—6gT dd 
'()1f7 6U O 'UOiflIOAUO cq uopnisuooi qi Aqdiooq jo ssAu Aounbeij,, 'si j .goog '—u dd '(j) 6u jep jo ssAu A3unbeij,, 'S1)j J O 

•ooog 'i—ii dd 'spe 'pnuj j U% iOS3j d lflO U 93tL4J U 3qd%uooq 'S1){ J 6 
ooog 'gg-Og dd 'spa '1e!ulnod -ç pu 

onb d 'rn6t i's us f wotfui u 'suo! !Idd oioim ioj Aqdiooq 'i L g 6L61 '91L1—OTLT dd 
'69 W dO iIO j 'so!do ipio-sij o uo!Idd s pu uo!punJ uoflnq1sp 1eUM,, ''H T 1'\T 2Z 

66T 'oig 
—L6og dd ' 'o popi 'uuojsui ipno euopij pu uo pqp ds-eij,, 'piddeq 3J D •9?; 

66T ''gTg—LTTg dd 
' 'o popij j 'uuojsui 11no juopij pu uopqp uiq uoqi 'UUIO1[ c[ 

966T 'O9Tg—UTg dd ' 6U$9Z1OJJ 7VU5 9UVJJ 'UJ1OJSU1 

la!iflOd fBUOfl1J aip JO uo!ndmoz 'pzo ptre 'inj y j,s 'uiy 0 'iO i'i H Lf' 

666T 'gf—6TM dd ' 6ussoj vu6sg uvJj 
'waioq uTJduis Tfl uiiojsmi einoj jeuopç pajjufl,, 'j f pu 'SSflUJ){ d J 9 

666T 'f'TT—TTT dd ' 5uws 
-041 7VUôi 'tU1oSuJ JUflO UOi1J Otj 1OJ flUUOJ u!IduIs 'px y ptre pA v 

•TOO ':9—L9 dd ' 6uuuz6uj jixI uoflJIJ!p jausai U! sn PWPOSS pTfl uoipUflj qd zrpnb padtus Ajmiojun otp jo se!1edo1d iwmetim auio,, 'r'o i n' 
g6T 'VSf1 'AN '°IJPH 'OfJJfl XJsJfl 'G W1ct9VJô0l0H UflU JO ouzpoza ivnflza 'I'O E 

66T 'gLT—9T dd ' 99OJd 7VUÔZa9 

9UV4L 3I 'cT1dRJ2o1ot1 pm 'Uop1JJp 'suopunj d1tp ujs jo AI!ured,, 'doN i'i P' J 
66T 'SI—9fS dd 'j 'hI!A JO U!Od eia moi uopuj,, 'inu 

•J700g '99—O9 dd 'j y vwy Jo fzog w Jo 7vu.rnof ioupt jo u '!PPf p 's v o 
•000?; '26—6g6g dd '6 uopnjp jo u!idurS,, 'I''O E 6 

T6T 'L6g—6g dd '6I uovaunwwo 9dO 'UI1Otj u!Iduis prn uuo;sui 'POD d S 
•000g '24g—69g dd ' JO 9OUZpdOJJ 'UOUURtS 1OJR SIA o - u!IdTuS,, 'JeSUfl JA 

6T ' (i-nosoytj) yijj zzvfktg 
•uI p pz UI 1IA pu jo 2!3%d%? UOSStUSU1 Tp Us,, 'A0flUI90X V A 9 

•ooog 'uoso[ 'S—T 
'1!911d d PU opu f 'PtJOtjJ ôUflthiiVg wiapoptj u '1a11o d p' oepua[ f 

66T '9ff—4 dd '9 TiI Jo 96U$pO4J 
GUOUqS •a Aq esou o aouasaid etj u suofle3unmmo :o uopnpoiuj,, 'urq s P' "M ci y 

66T 'LT' 
—LT717 dd '9 3jj Jo $6uzpoJJ 'asou jo ousid oq U! SUOfl!UflWWOD :iodd 'uouueq tE o 

6T'6T 'T—OT dd 'g Jo 95Up?d3OJd '8SOU JO ezuasid u suounmmo,, 'uoutretj o 
.goog '6ST—6gT dd 

'()1T7 •flU O 'UOtfljOAUO cq uopnisuoei qi Aqdiiooq jp jo ssu Aouanbaij,, 'sei){ .j 
•goo 'LL—TLL dd '() 6u O jo ssAu Auenbaij,, 'seiyj j o 

•ooog 'LgTTT dd 'spe 'pnuj a 
U% O3i d 'L a!'P9aPUON lO U 9pULJ Ut 3Ujd%UOOtj 'Se1){ J 6 

000g 'gg-Og dd 'spa '1u1noj -ç prn 
onb d 'tj6s7 ppIg uz fi u 'suo!W3Idd oojoim ioj Aqdeiooq 'si>J J g 6L6T '9TLT—OTLT dd 

'69 Wy ZO 1dO f 'sdo iapio-sij o uo! 3!Idd s pu uorpunj uonqpsp 1auM,, r i'\i L 
66T 'SOT? 

—L6O dd 'o poptj 'maosui 1e!lnod uopeij aq pu uoçpijp eds-aei,, 'pzddaqg 3 f D 

S66T 'fTg—LTTg dd 
' O pofrJ £ 'W1OJSU1 j%UOfl1J 8tfl jMI uOn1JJ!p U98M49 UOfl91 t[JJ,, 'UWO1[ c[ çg 

Proc. of SPIE Vol. 6252  625219-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/28/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx


