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1. INTRODUCTION

PID controllers are still very popular in many
control applications thanks to their simple struc-
ture, (Astrom and Hagglund, 1995; Goodwin et
al., 2001). Design of PID controllers for delay
systems is still an active research area, see for
example the recent book (Silva et al., 2005), and
its references. In this paper we consider unsta-
ble MIMO plants with time delays. It is clear
that, even for delay-free systems, not all unsta-
ble plants are stabilizable by a PID controller
(strong stabilizability is a necessary condition for
stabilization by a PID controller, and there are
bounds on the order of strongly stabilizing con-
trollers, (Gündeş et al., 2006; Smith and Son-
dergeld, 1986; Vidyasagar, 1985)). Moreover, right
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half plane poles and zeros in the plant transfer
matrix, as well as time delays in the input and/or
output channels (I/O delays) of the plant, im-
pose additional restrictions on the feedback con-
trollers, see e.g. (Gu et al., 2003; Gümüşsoy and
Özbay, 2005; Niculescu, 2001; Stein, 1989; Zeren
and Özbay, 2000).

Recently, PID controllers are designed in (Yaniv
and Nagurka, 2004) under specified gain mar-
gin and sensitivity constraints, and in (Saeki,
2006) under an H∞ performance condition. PID
controller tuning rules are also discussed in
(Kristiansson and Lennartson, 2002; Skogestad,
2003) under different optimality conditions. For
SISO unstable systems with delays PID controller
tuning has been studied in (Lee et al., 2000; Poulin
and Pomerleau, 1999). An extension of predictive
control is used in (Fliess et al., 2002) to derive PID
controllers for a class of MIMO unstable plants
with delays.



In a recent work (Gündeş et al., 2006) obtained
PID controllers from a small gain argument for
a class of MIMO unstable plants with delays
in the input and output channels (I/O delays).
In this paper we use the results of (Gündeş et
al., 2006) for plants with one unstable pole, and
investigate stabilizing PI and PD controllers with
the largest allowable interval for the controller
gain. This is an important problem to study,
because sensitivity of the closed loop stability to
perturbations in the controller coefficients can be
minimized this way, and hence resilient PI and
PD controllers (see e.g. (Silva et al., 2005) and
its references for a discussion of this issue) can
be obtained. There are many important practical
examples of plants with single unstable pole and
time delays, see e.g. (Enns et al., 1992; Lee et
al., 2000; Poulin and Pomerleau, 1999; Silva et
al., 2005; Stein, 1989) and their references.

Remaining parts of the paper are organized as
follows. Preliminary results from (Gündeş et al.,
2006) are summarized in Section 2. Main results
on PD controller design are given in Section 3, and
the results on PI controller are given in Section 4;
concluding remarks are made in Section 5.

2. PROBLEM DEFINITION AND
PRELIMINARY RESULTS

Consider the linear time invariant (LTI) feedback
system shown in Figure 1, where C is the con-
troller to be designed and GΛ := ΛoGΛi is the
plant with r inputs and r outputs. Here G is
the delay free part of the system which is as-
sumed to be finite dimensional. Time delays in
the input and output channels of the plant are
represented by their transfer matrices as Λ• =
diag

[
e−sh•

1 , . . . , e−sh•
r

]
, where, h•

j is the jth chan-
nel input (when • = i) or output (when • = o)
delay, for 1 ≤ j ≤ r.

� � � C � �� � �ΛoGΛi
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Fig. 1. Unity-Feedback System Sys(GΛ, C) with
I/O delays in the plant.

The closed-loop transfer matrix Hcl from (yref , v)
to (u, y) is

Hcl =

[
C(I + GΛC)−1 −C(I + GΛC)−1GΛ

GΛC(I + GΛC)−1 (I + GΛC)−1GΛ

]
. (1)

In this paper we consider the proper form of PID
controllers, (Goodwin et al., 2001),

C(s) = Cpid(s) = Kp +
Ki

s
+

Kd s

τds + 1
, (2)

where Kp, Ki, Kd are real matrices and τd > 0.
But we restrict ourselves to PI and PD controllers:
Cpi = Kp+Ki

s and Cpd = Kp+ Kd s
τds+1 respectively.

Definition. The feedback system Sys(GΛ, C) is
stable if all entries of Hcl are in H∞. We define
Spid,Spi,Spd to be the sets of all PID, PI and PD
(respectively) controllers stabilizing the feedback
system Sys(GΛ, C).

Assumptions.

A1) Finite dimensional part of the plant, G, ad-
mits a coprime factorization in the form
G(s) = Y (s)−1X(s) = X(s)Y (s)−1 where
X ∈ Hr×r∞ , and Y (s) = (s−p)

(as+1)I. Here p ≥ 0
is the only unstable pole of the plant, and
a > 0 is arbitrary.

A2) X(0) = (s − p)G(s)|s=0 is nonsingular.

Proposition 1. (Gündeş et al., 2006) Consider the
plant GΛ satisfying A1) and A2).
i) PD-design: Choose any K̂d ∈ Rr×r, τd > 0.

Define Ĉpd := X(0)−1 + K̂ds
τds+1 and

ΦΛ := s−1
(
(s − p)GΛ(s)Ĉpd(s) − I

)
Φ̃Λ := s−1

(
Ĉpd(s)(s − p)GΛ(s) − I

)
.

If 0 ≤ p < max{‖ΦΛ‖−1
∞ , ‖Φ̃Λ‖−1

∞ }, then for any
positive α ∈ R satisfying

0 < α < max{‖ΦΛ‖−1
∞ − p , ‖Φ̃Λ‖−1

∞ − p } , (3)

Cpd(s) = (α + p)Ĉpd(s) is in Spd.

ii) PID-design: Let Cpd be as above, and define

Hpd := GΛ(I +Cpd GΛ)−1, Υ := Hpd(s)Hpd(0)−1−I
s ,

Υ̃ := Hpd(0)−1Hpd(s)−I
s . Then, for any γ ∈ R

satisfying

0 < γ < max{‖Υ‖−1
∞ , ‖Υ̃‖−1

∞ }, (4)

the PID-controller (5) is in Spid,

Cpid(s) = Cpd(s) +
γαX(0)−1

s
. (5)

If (3) and (4) are satisfied for K̂d = 0 then (5)
with K̂d = 0 is a PI controller in Spi. �

This result appears in (Gündeş et al., 2006) for
systems with possibly uncertain time delays, but
for our purposes fixed time delays version stated
above is sufficient. Now consider the input delays
and output delays separately, with a structural
assumption.

Assumption A3.i). GΛ(s) = G(s)Λi(s), with
G(s) = 1

s−pG0ΛG(s) where G0 is a non-singular
constant matrix and ΛG(s) is a stable diag-
onal matrix with ΛG(0) = I, i.e., ΛG(s) =
diag[g1(s), . . . , gr(s)], where g1(s), . . . , gr(s) are



stable proper transfer functions with gj(0) = 1,
for all j = 1, . . . , r. �

Assumption A3.o). GΛ(s) = Λo(s)G(s) with
G(s) = 1

s−pΛG(s)G0 where G0 and ΛG(s) are as
in A3.i. �

Note that with A3.i and A3.o we have X(0) =
G0 and earlier assumptions A1 and A2 are sat-
isfied. Moreover, these assumptions result in a
diagonal structure in the sensitivity matrices, as
demonstrated below. An example for A3.i is the
transfer matrix of a distillation column with in-
put channel delays, (Friedland, 1986), GΛ(s) =
1
s G0 ΛG(s)Λi(s), where G0 =

[
3.04 −278.2/180
0.052 206.6/180

]
,

ΛG(s) =

[
1 0
0 180

(s+6)(s+30)

]
.

2.1 PD Control of Systems With Input Delays

Let us now assume that A3.i holds, and de-
fine K̂d = K̃i

dX(0)−1 = K̃i
dG

−1
0 . Then, the

PD controller of Proposition 1 can be re-written
as Cpd(s) = (α + p)

(
I + K̃i

d
s

τds+1

)
G−1

0 . Then

choosing K̃i
d diagonal we have a diagonal input

sensitivity matrix Si(s) = (I + Li(s))−1, where
Li(s) = (α+p)

(s−p)

(
I + K̃i

d
s

τds+1

)
ΛG(s)Λi(s).

Proposition 1 gives a lower bound on the largest
controller gain interval: p < (α + p) < ‖Φ̃Λ‖−1∞ .
For the purpose of designing a resilient controller,
we would like to maximize the size of the gain
interval. This is equivalent to minimizing

µi := ‖Φ̃Λ‖∞ = ‖ΛFi(s) − I

s
+ K̃i

d

ΛFi(s)
τds + 1

‖∞ (6)

where ΛFi := ΛGΛi. Therefore in the rest of the
paper we will study the problem of minimizing µi

over the free parameter K̃i
d. Note that with A3.i,

Φ̃Λ is diagonal whenever K̃i
d := diag[qi

1, . . . , q
i
r].

Now let f i
j(s) := gj(s)e−hi

js. Then, maximizing
the allowable interval for the controller gain (α+p)
reduces to the problem of minimizing µi over the
free parameters qi

1, . . . , q
i
r, where

µi = max
j

‖f i
j(s) − 1

s
+ qi

j

f i
j(s)

τds + 1
‖∞. (7)

2.2 PD Control of Systems With Output Delays

In this section we assume that A3.o holds, and
define K̂d = X(0)−1K̃o

d = G−1
0 K̃o

d . In this case
the PD controller of Proposition 1 is Cpd(s) =

(α + p)G−1
0

(
I + K̃o

d
s

τds+1

)
. As before, choosing

K̃o
d diagonal we have diagonal output sensitivity

matrix So(s) = (I + Lo(s))−1, where Lo(s) =
(α+p)
(s−p) Λo(s)ΛG(s)

(
I + K̃o

d
s

τds+1

)
.

Proposition 1 gives a lower bound on the largest
controller gain interval: p < (α + p) < ‖ΦΛ‖−1

∞ . In
this case we would like to minimize

µo := ‖ΦΛ‖∞ = ‖ΛFo(s) − I

s
+

ΛFo(s)K̃o
ds

τds + 1
‖∞(8)

where ΛFo = ΛoΛG. As before, we consider K̃o
d =

diag[qo
1 , . . . , qo

r ]. Let fo
j (s) := gj(s)e−ho

j s. Then
the dual problem in the output delay case is to
minimize µo over the free parameters qo

1 , . . . , qo
r

µo = max
j

‖fo
j (s) − 1

s
+ qo

j

fo
j (s)

τds + 1
‖∞. (9)

2.3 PD Control of Systems With I/O Delays

When we combine input and output delays, the
problem at hand cannot be reduced to a set
of decoupled scalar optimization problems, un-
less we introduce “equalizing time delays” in the
controller itself. In order to illustrate this point
let us examine ‖Φ̃Λ‖∞ = ‖F (s)−I

s + K̃i
d F (s)

τds+1 ‖∞,
where F (s) = GX(0)−1GX(s), and GX(s) :=
(s − p)GΛ(s). Even under a structural assump-
tion of the form GX = ΛoG0ΛGΛi, clearly,
the function Φ̃Λ is not necessarily diagonal, un-
less Λo = I, or controller has input delays
equalizing the time delays in every channel of
Λo, as illustrated below. Similarly, ΦΛ is not
necessarily diagonal unless Λi = I, or con-
troller has output delays equalizing all the de-
lays in Λi. Define ho := max{ho

1, . . . , h
o
r}, and

hi := max{hi
1, . . . , h

i
r}. Now consider the plant

GΛ(s) = 1
s−pΛo(s)G0ΛG(s)Λi(s) with the con-

troller Cpd−eo(s) = (α+p)
(
I + K̃i

ds
τds+1

)
G−1

0 Λeo(s)

where Λeo(s) := e−hosΛ−1
o (s). Input channel delay

matrix for the controller, Λeo, is equalizing output
delays of the plant. In this case input sensitivity
matrix is diagonal as in Section 2.1, and maximiz-
ing allowable (α + p) is equivalent to the problem
(7) with f i

j(s) = gj(s)e−(hi
j+ho)s.

Similarly, for a plant whose structure is G(s) =
1

s−pΛo(s)ΛG(s)G0Λi(s) we can delay the out-
puts of the controller to equalize the delays in
the input channel of the plant: Cpd−ei(s) =

(α + p)Λei(s)G−1
0

(
I + K̃o

ds
τds+1

)
where Λei(s) :=

e−hisΛ−1
i (s). In this case ΦΛ is diagonal and

maximizing allowable (α + p) is equivalent to the
problem (9) with fo

j (s) = gj(s)e−(ho
j+hi)s.

2.4 PI Control of Systems With Input or Output
Delays

Now consider PI controllers with the proportional
part Cp = (α + p)X(0)−1, where α satisfies (3).
The PI controller is then in the form

Cpi(s) = (α + p)X(0)−1 +
γα

s
X(0)−1 (10)



where γ satisfies (4). Recall that, under the struc-
tural assumption A3.i, or A3.o, we have X(0) =
G0. An interesting problem in this case is to find
the largest allowable interval for γ, for a fixed α
satisfying (3).

Note that in this case Hpd(s) = Hp(s) = GΛ(I +
CpGΛ)−1 = (I + GΛCp)−1GΛ. As in the above
discussion on PD controller design we will assume
that A3.i holds and α is in the interval 0 < α <
‖Φ̃Λ‖−1∞ −p. In this case, since the derivative term
is absent, we have Φ̃Λ = Λ(s)−I

s , where Λ = ΛGΛi.
Then a lower bound for the maximum interval for
the allowable “integral action gain” γ is found
from (4) where Υ̃ = αΛ(s)((s−p)I+(α+p)Λ(s))−1−I

s .
It is easy to see that in the dual case, under A3.o
and the added restriction 0 < α < ‖ΦΛ‖−1∞ − p,
we have Υ = αΛ(s)((s−p)I+(α+p)Λ(s))−1−I

s , where
Λ = ΛoΛG. Thus, it is interesting to study the
upper bound γmax for γ where

γmax := ‖
α

s−pΛ(s)(I + α+p
s−p Λ(s))−1 − I

s
‖−1
∞ (11)

as a function of α satisfying

0 < α < ‖Λ(s) − I

s
‖−1
∞ − p (12)

where Λ(s) = ΛG(s)Λi(s) for the input delays case
and Λ(s) = Λo(s)ΛG(s) for the output delays case.

3. OPTIMAL DERIVATIVE ACTION GAIN
FOR RESILIENT PD CONTROL

Recall from Sections 2.1, 2.2, 2.3 that the optimal
designs of the derivative gains (for maximizing
a lower bound of the allowable controller gain
interval) are determined from a problem which is
in the following general form. Given h > 0 and
a stable transfer function g(s) with g(0) = 1, let
f(s) = g(s)e−hs, and find q ∈ R such that µ is
minimized, where

µ = ‖f(s) − 1
s

+ q
f(s)

τds + 1
‖∞ , τd → 0. (13)

We shall denote the optimal solution by qopt. This
is a single parameter scalar function H∞ norm
minimization problem and it can be solved nu-
merically using brute force search. More precisely,
such an algorithm would perform the following
steps:

0. Choose the candidate values of q = q1, . . . , qN ,
over which the optimization is to be done,
and the frequency values ω = ω1, . . . , ωM

over which the norm (cost function) is to be
computed.

1. For k = 1, . . . , N and � = 1, . . . , M compute

Ψ(qk, ω�) := |f(jω�) − 1
jω�

+ qk
f(jω�)

jτdω� + 1
| .

2. Define µ(qk) := maxω�
Ψ(qk, ω�).

3. Optimal q is qopt = arg minqk
µ(qk).

As an example, consider the distillation column
transfer matrix given in Section 2, where g1(s) =
1 and g2(s) = 180

(s+6)(s+30) . Optimal derivative
gains are computed in (Gündeş et al., 2006) (see
Figure 4 of (Gündeş et al., 2006)) using the
numerical procedure given above. However, this
procedure is sensitive to the number of grid points
chosen for q and ω. So, it would be useful if
one could derive a closed form expression for the
solution, at least for the simplest case g(s) = 1. It
turns out that this is possible, and we claim that
for f(s) = e−hs

qopt =
sin(2.33)

2.33
h = 0.31 h . (14)

In the rest of this section we discuss how the
optimal solution can be computed directly.

Note that (13) is a min-max problem

µ = min
q∈R

max
ω∈R

Ψ(q, ω) (15)

where Ψ(q, ω) = | f(jω)−1
jω + q f(jω)

jτdω+1 | , τd → 0.
Let us now consider the max-min problem where
minimization over q is done for each fixed ω. In
this case, it is easy to show that optimal q is

qopt(ω) = − 1
ω

sin(φ(ω))
ρ(ω)

(16)

where ρ(ω) = |f(jω)| is the magnitude and
φ(ω) = ∠f(jω) is the phase of f(jω). Inserting
(16) into Ψ(q, ω) we obtain

Ψ(qopt(ω), ω) =
∣∣∣∣ρ(ω) − cos(φ(ω))

ω

∣∣∣∣ =: η(ω). (17)

Therefore, solution of the max-min problem is

qo = − 1
ωo

sin(φ(ωo))
ρ(ωo)

(18)

where ωo is maximizing η(ω). Note that it is
very easy to find qo, we only need to find ωo

numerically. Whereas the algorithm for the min-
max problem requires two dimensional search.

Example. Consider f(s) = e−hs, h > 0. Then
ρ(ω) = 1 and φ(ω) = −hω. Hence η(ω) =∣∣∣ 1−cos(hω))

ω

∣∣∣. It is easy to show that the ω value
maximizing this function is the solution of

cos(hω) + (hω) sin(hω) = 1 .

That gives hωo = 2.33 rad., qo = 0.31 h, and it
matches Figure 4 of (Gündeş et al., 2006). �

Now it remains to be shown that qo given in
(18) is equal to the solution qopt of the original
problem defined by (15), at least for a large class
of functions f(s), including the distillation column



example. For this purpose, we need to show that
the pair (ωo, qo) is a saddle point for the min-max
problem (15), i.e. the following inequalities hold

Ψ(qo, ω) ≤ Ψ(qo, ωo) ≤ Ψ(q, ωo) ∀ q, ω ∈ R .(19)

First note that by the definition of qopt(ω) we have
Ψ(qopt(ω), ω) ≤ Ψ(q, ω) for all q ∈ R and ω ∈ R.
In particular, setting ω = ωo in this inequality we
obtain the second part of (19), namely

Ψ(qo, ωo) ≤ Ψ(q, ωo) ∀ q ∈ R . (20)

For the first inequality of (19) note that, under
the assumption τd = 0, we have

Ψ(qo, ω) = |Ψ(qopt(ω), ω) + ∆q(ω) f(jω)|
where ∆q(ω) = qo − qopt(ω).

Claim. The following equality holds:

|Ψ(qo, ω)|2 = |η(ω)|2 + |∆q(ω)|2|ρ(ω)|2. (21)

Proof. Let us define R(ω) + jI(ω) := f(jω)−1
jω +

qopt(ω) f(jω) to be the real and imaginary parts.
Similarly, let Rf (ω)+ jIf (ω) := f(jω) be the real
and imaginary parts of f . With these definitions
we have RfR + IfI = 0, which implies (21).

Assumption A4. The function f(s) is such that

Γ(ω) := η2
o − η2(ω) − |∆q(ω)|2ρ2(ω) ≥ 0 ∀ ω

where η(ω) is defined by (17), ηo = maxω η(ω),
and (16) and (18) define ∆q(ω) = qo − qopt(ω). �

Now with A4, (21) and ηo = Ψ(qo, ωo), we have

Ψ(qo, ω) ≤ Ψ(qo, ωo) ∀ ω ∈ R

which is the first part of (19). In summary we have
the following result.

Proposition 2. Let f(s) = g(s)e−hs, with g ∈
H∞, g(0) = 1 and h > 0, satisfy A4. Then,
optimal solution of

qopt := arg min
q∈R

‖f(s) − 1
s

+ q
f(s)

τds + 1
‖∞ τd → 0

is given by qopt = qo = − 1
ωo

sin(φ(ωo))
ρ(ωo) where ωo is

maximizing η(ω) :=
∣∣∣ ρ(ω)−cos(φ(ω))

ω

∣∣∣. �

Example. Consider the first channel in the dis-
tillation column example, where f(s) = e−hs,
h > 0. Figure 2 shows Γ/h versus ω. Since
Γ(ω) ≥ 0 for all ω, A4 is satisfied, hence the
formula qopt = 0.31 h is valid. Now for the sec-
ond channel in the distillation column example,
f(s) = 180

(s+6)(s+30)e
−hs, Figure 3 illustrates that

A4 is satisfied. Figure 4 shows qopt and µ versus h
for this example. We observe that, as h increases µ
increases, which means the allowable interval for

the control gain shrinks with increasing h. Note
that qopt in Figure 4 is in perfect agreement with
Figure 4 of (Gündeş et al., 2006). �
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An interesting problem arising in this context
is to characterize the class of functions f(s) =
g(s)e−hs, g ∈ H∞, g(0) = 1, h > 0, satisfying A4.
At the moment we do not have a definite answer
to this question. But as shown for the distillation
column example, A4 holds for many interesting
classes of f . In particular, it holds for all f in
the form f(s) = e−hs

1+τs , and f(s) = e−hs 1−τs
1+τs , for

all τ ≥ 0 and h > 0. Unfortunately, there are
also many important functions for which it does
not hold. For example, f(s) = e−s 1−s

1+τs satisfies
A4 when τ ≥ 0.25; but A4 is violated when
τ ≤ 0.2. Similarly, A4 holds for f(s) = e−s 1+s

1+τs
when τ ≤ 1.02, but it is violated when τ ≥ 1.05.

4. BOUNDS ON THE INTEGRAL ACTION
GAIN IN PI CONTROLLER DESIGN

We now study the bound γmax on the integral
action gain γ defined by (11), where Λ(s) is a given
diagonal matrix in the form diag[f1(s), . . . , fr(s)]
with fk(s) = gk(s)e−hks, gk ∈ H∞, gk(0) = 1,
hk > 0, and α satisfies (12) which is equivalent



to p < α + p < mink ‖ fk(s)−1
s ‖−1

∞ . With the above
definitions we have

γ−1
max = max

k
‖

α
s−pfk(1 + α+p

s−p fk)−1 − 1

s
‖∞. (22)

Let us define
θ := max

k
θk where θk := ‖fk(s) − 1

s
‖∞ . (23)

Then, a necessary condition for the results stated
in Proposition 1 is 0 < αθ < 1−pθ. After a simple
algebra, it can be shown that (22) implies

γ� := α
1 − (α + p) θ

1 + p θ
≤ γmax . (24)

The lower bound found in (24) for γmax, i.e. γ�, is
between 0 and α, and it decreases with increasing
θ. Note that θ−1 is also an upper bound for the
proportional gain (α + p). Therefore, the level of
difficulty in controlling the system increases with
increasing θ. The other difficulty comes from the
C+ pole of the plant: as p increases γ� decreases.

Example. Let fk(s) = e−hks. Then, θk = hk, and
θ is the largest time delay in the system. Now con-
sider f1(s) = e−h1s, and f2(s) = 180

(s+6)(s+30)e
−h2s.

In this case we have θ1 = h1, and θ2 = 0.2 + h2.
Note that the norm in (23) is attained at ω = 0
for both f1 and f2 and the phase of f2(jω) near
ω ≈ 0 is −0.2 ω. So, we can see θ2 as the “ef-
fective time delay” in the second channel. Then,
θ = max{h1, 0.2+h2} is the largest effective time
delay. �

In the light of (24) an interesting problem to study
is to find the optimal α maximizing γ�, subject to
0 < αθ < 1−pθ. It is easy to see that in this sense
the optimal α is

α� =
1 − pθ

2θ
(25)

and the corresponding maximal γ� is

γ�,max =
α�

2
(1 − pθ)
(1 + pθ)

. (26)

Equations (25) and (26) show once again that the
difficulty level increases with increasing pθ, where
p is the right half plane pole and θ can be seen as
the maximal “effective time delay” in the system.

5. CONCLUSIONS

PI and PD controller design problems are studied
for unstable MIMO systems with delays in the
input or output channels. The results of (Gündeş
et al., 2006) are used for plants with single right
half plane pole. For PD controller design, optimal
derivative action gain is determined for maximiz-
ing the interval for the overall controller gain. For
PI controller design, optimal proportional gain
is calculated for maximizing the interval for the
integral action gain. With these results resilient PI
and PD controllers can be designed for the class of

plants considered. Examples illustrated difficulty
of controller design for plants whose products of
unstable pole with effective time delay are large.
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thank Prof. A. B. Özgüler for fruitful discussions
on the subject.

REFERENCES

Aström, K. J., and T. Hagglund, PID Controllers: The-
ory, Design, and Tuning, Second Edition, Research
Triangle Park, NC: Instrument Society of America,
1995.
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