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Abstract— In this paper, based on a sequential Monte Carlo
method, a computationally efficient algorithm is presented for
blind data detection in the presence of residual phase noise gen-
erated at the output the phase tracking loop employed in a digital
receiver. The basic idea is to treat the transmitted symbols as “
missing data” and draw samples sequentially of them based on
the observed signal samples up to time t. This way, the Bayesian
estimates of the phase noise and the incoming data are obtained
through these samples, sequentially drawn,together with their im-
portance weights. The proposed receiver structure is seen to be
ideally suited for high-speed parallel implementation using VLSI
technology.

I. INTRODUCTION

Carrier phase synchronization is a critical issue in coherent
digital communication systems. A considerable amount of re-
search has been carried out for data detection in the presence
of the time-varying phase noise as well as the fixed phase offset
[1]. Estimating the phase offset and detecting the data jointly by
maximum likelihood (ML) technique does not seem to be ana-
lytically tractable. Even if the likelihood function can be eval-
uated offline, however, it is invariably a nonlinear function of
the parameter to be estimated, which makes the maximization
step (which must be performed in real-time) computationally
infeasible. A number of suboptimal algorithms have thus been
proposed, most of which employ a two-stage receiver structure
with a phase noise estimation stage followed by the data de-
tection [2]. Phase synchronization is typically implemented by
a decision directed(or data aided) or non-decision directed (or
non-data aided). Decision directed schemes depend on avail-
ability of reliably detected symbol for obtaining the phase esti-
mate, and therefore, they usually require transmission of pilot
or training data. However, in applications where bandwidth is
the most precious resource, training data can significantly re-
duce the overall system capacity. Thus blind or non-data aided
techniques become an attractive alternative [3], [4].

In order to provide an implementable solution to blind tech-
niques, recently there have been a substantial amount of work
on iterative formulation of the parameter estimation problem
based on the Expectation-Maximization (EM) technique [5].

This research has been conducted within the NEWCOM Network of Excel-
lence in Wireless Communications funded through the EC 6th Framework Pro-
gramme.

It is known that the EM algorithm derives iteratively and con-
verges to the true ML estimation of these unknown parameters.
The main drawbacks of this approach are that the algorithm is
sensitive to the initial starting values chosen for the parameters,
it does not necessarily converge to the global extremum and
the convergence can be slow. Furthermore, in situation where
the posterior distribution must be constantly updated with ar-
rival of the new data with missing parts, EM algorithm can
be highly inefficient, because the whole iteration process must
be redone with additional data. The sequential Monte Carlo
(SMC) methodology [6], [12] that has emerged in the field of
statistics and engineering has shown great promise to solve such
problems. This technique can approximate the optimal solu-
tion directly without compromising the system model. Addi-
tionally, the decision made at time t does not depend on any
decisions made previously, and thus, no error is propagated in
their implementation. More importantly, the SMC yields a fully
blind algorithm and allows for both Gaussian and non-Gaussian
ambient noise as well as high-speed parallel implementations.
Furthermore, the tracking the time-varying phase noise and the
data detection are naturally integrated. The algorithm is self-
adaptive and no training/pilot symbols or decision feedback are
needed [11], [7].

The main objective of this paper is to investigate the use of
the SMC method to the problem of jointly detecting the data
and estimating the residual phase noise, generated at the output
of the a phase-locked-loop (PLL) employed in the digital re-
ceivers. The paper is an extension of the work [7] which models
the phase noise as a Wiener process, a crude approximation of
the phase noise obtained at the output of a PLL. The algorithm
is based on a Bayesian formulation. The basic idea is to treat the
transmitted symbols as “missing data” and to sequentially draw
samples of them based on the current observation and comput-
ing appropriate importance sampling weights. The technique
does not require iterations and updating with new data can be
done cheaply.

II. SYSTEM DESCRIPTION

We consider a channel-coded communication system in the
presence of random phase noise and the additive Gaussian
noise. The input binary information bit dt are encoded using
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some channel code, resulting in a code bit stream bt. The
code bits are passed to a symbol mapper, yielding complex
data symbols st, which take values from a finite alphabet set
A = {a1, a2, · · · , a|A|}, where |A| represents the cardinality
of the set A. Each data symbol is then transmitted through a
channel whose input-output relationship is given by

yt = ste
jθt + nt, t = 0, 1, · · · (1)

where yt, st, θt, are the received signal, the transmitted symbols
and the phase noise, respectively, and nt the additive complex
Gaussian noise with mean zero and the variance σ2

n = E[|nt|2].
The residual phase noise process θt at tth sampling instant gen-
erated at the output of a digital phase-locked-loop can be mod-
elled by the output of of an ARMA system driven by white
Gaussian noise.

An ARMA system is defined as

H(z) =
Θ(z)
U(z)

=
∑q

n=0 βkz−n

1 +
∑p

m=1 αkz−m
(2)

whose input and output at time t are denoted by ut and θt, re-
spectively, where q ≤ p − 1. Defining D as the shift operator
Dkut = ut−k, we have the following relationship

{θt} = H(D){ut} (3)

where {ut} is a sequence of independent and identically dis-
tributed (i.i.d.) zero-mean random variables with variance equal
to σ2

u. It is assumed that ut and nt are independent. The coeffi-
cients {βk} and {αk} as well as the orders q and p are chosen so
that the transfer function of the system matches the closed-loop
transfer function of a digital PLL. A digital PLL is described by
its closed-loop transfer function, HCL(z) as

HCL(z) =
F (z)

z − 1 + F (z)

where F (z) represents the loop filter transfer function. The
transfer function of the ARMA system representing the digital
PLL can be determined by [1]

H(z) =
1 − HCL(z)

z − 1
. (4)

For example, for a first-order loop, F (z) = a (scalar 0 < a <
1) and from (4) it follows that

H(z) =
z−1

1 − (1 − a)z−1

We now express the general observation and phase noise gen-
eration equations (1) and (3) in a state-space model as follows:
Define {xt} = Θ−1(D){θt}. It then follows that

U(D){xt} = {ut}, Θ(D){xt} = {θt} (5)

Writing (5) explicitly we have

xt = −
p∑

k=1

αkxt−k + ut, θt =
q∑

k=0

βkxt−k (6)

Equations in (6) allows us to write the Kalman state equa-
tions as follows: Denoting xt = [xt, xt−1, · · · xt−p+1]T , (6)
can be expressed as xt = Axt−1 + but and θt = cT xt where

A=


−α1 − α2 · · · − αp−1 − αp

1 0 · · · 0 0
0 1 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 1 0

 , b=


1
0
.
.
.
0

 , c=



β0

β1

· · ·
βq

0
· · ·
0


p×1

.

Finally, we have the following non-linear state-space model
for the system

xt = Axt−1 + but

yt = ste
jcT xt + nt, t = 0, 1, · · · (7)

Our main objective is to solve the problem of online de-
tection of the symbols st and estimation of the phase noise
θt, completely blindly, based on the received signals up to
time t, {yi}t

i=0. Defining the vectors, St = [s0, s1, · · · , st]T ,
Y t = [y0, y1, · · · yt]T , θt = [θ0, θ1, · · · , θt]T , the problem may
be formulated by making Bayesian inference with respect to the
posterior distribution p(θt,St|Y t).

Although this joint distribution can be written out explic-
itly up to a normalizing constant, the computation of the cor-
responding marginal joint distributions p(st,xt|Y t), necessary
for online joint symbol detection and phase noise estimation in-
volve very high dimensional integration. Therefore, the task is
mathematically infeasible in practice. The Gibbs samples [8] is
a Monte Carlo method for overcoming this difficulty. However
it is not an adaptive procedure and has difficulty dealing with
sequentially observed data. With new data coming the whole
computation must be repeated to incorporate new information.
In the following section, we present an adaptive blind algorithm
for the joint symbol detection and the phase noise estimation
which is based on a Bayesian formulation of the problem called
SMC method first developed by [8].

III. SMC TECHNIQUE FOR BLIND DETECTION AND

ESTIMATION

We first consider the case of uncoded system, where the sym-
bols are assumed to independent and identically distributed. i.e.

P (st = ai|St−1) = P (st = ai), ai ∈ A (8)

For simplicity the symbols are chosen from a QPSK constella-
tion.When no prior information about the symbols is available,
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the symbols are assumed to take each possible value in A with
equal probability. i.e., P (st = ai) = 1/|A|. Since we are in-
terested in jointly estimating the symbol st and the phase noise
xt, at time t based on the observation Y t, the Bayes solution
requires the posterior distribution

p(st,xt|Y t) =
∫

p(xt|Y t,St)p(St|Y t)dSt−1. (9)

Note that with a given St, the nonlinear (Kalman filter) model
(7) can be converted into a linear model by linearizing the ob-
servation equation (1) as follows [9]:

xt = Axt−1 + but

yt = stPtc
T xt + stQt + nt (10)

where

Pt = jejcT x̂t|t−1 , Qt = (1− jcT x̂t|t−1)ejcT x̂t|t−1 . (11)

x̂t|t−1 denotes the estimator of xt based on the observations
Y t−1 = (y0, y1 · · · , yt−1). Then the state-space model (7) be-
comes a linear Gaussian system. Hence,

p(xt|St,Y t) ∼ N(µt(St),Σt(St)), (12)

where the mean vector µt(St) and the covariance matrix
Σt(St) can be obtained as follows. Denoting

µt(St)
�
= x̂t|t, Σt(St)

�
= M t|t (13)

x̂t|t and M t|t can be calculated recursively by using the Ex-
tended Kalman Technique [[9], page 449-452] with the given
St as:

x̂t|t = x̂t|t−1 + Kt(yt − ste
jcT x̂t|t−1) (14)

M t|t = (I − s∗t P
∗
t Ktc

T
t )M t|t−1

where

Kt =
stPtM t|t−1ct

cT M t|t−1c + σ2
n

,

x̂t|t−1 = Ax̂t−1|t−1,

M t|t−1 = AM t−1|t−1A
T + σ2

ubbT .

We can now make timely estimates of θt and detection of st

based on the currently available observation Y t, up to time t,
blindly, as follows. With the Bayes theorem, we realize that the
optimal solution to this problem is

θ̂t = E{θt|Y t} = cT x̂t

where

x̂t = E{xt|Y t} =
∫

xtp(xt|Y t)dxt (15)

=
∫
St

[∫
xt

xtp(xt|St,Y t)dxt

]
︸ ︷︷ ︸

µt(St)

p(St|Y t), dSt.

It then follows that

x̂t = E{xt|Y t} =
∫
St

µt(St)p(St|Y t)dSt (16)

Similarly, the data can be detected by the hard decisions on
the symbol st by

ŝt = arg max
ai∈A

P (st = ai|Y t) (17)

where
P (st = ai|Y t) = E{1(st = ai)|Y t.} (18)

1{.} in (18) is an indicator function defined as

1(st = ai)
{

1 if st = ai

0 otherwise.

In most cases, an exact evaluations of the expectations (16) and
(18) are analytically intractable. SMC technique can provide
us an alternative way for the required computation. Specifi-
cally, following the notation adopted in [10], if we can draw m

independent random samples {S(j)
t }m

j=1 from the distribution
p(St|Y t), then we can approximate the quantities of interest
E{xt|Y t} and E{1(st = ai)|Y t} in (16) and (18), respec-
tively, by

E{xt|Y t} ∼= 1
m

m∑
j=1

µt(S
(j)
t ) (19)

E{1(st = ai)|Y t} ∼= 1
m

m∑
j=1

1(s(j)
t = ai) (20)

But, usually drawing samples from p(St|Y t) directly is usually
difficult. Instead, sample generation from some trial distribu-
tion may be easier. In this case, the idea of importance sam-
pling can be used. Suppose a set of random samples {S(j)

t }m
j=1

is generated from a trial distribution q(St|Y t), which
• is strictly positive, q(.|.) > 0, and
• has the domain as p(.|.).

By associating the weight

w
(j)
t =

p(S(j)
t |Y t)

q(S(j)
t |Y t)

(21)

to the samples, the quantities of interest, E{1(st = ai)|Y t}
and E{xt|St} can be approximated as follows:

E{xt|yt}∼= 1
Wt

m∑
j=1

µt(S
(j)
t )w(j) (22)

E{1(st = ai)|Y t} ∼= 1
Wt

m∑
j=1

1(s(j)
t = ai)w

(j)
t , i = 1, 2, · · · , |A|

with Wt =
∑

w
(j)
t . The pair (S(j)

t , w
(j)
t ), j = 1, 2, · · · ,m is

called a properly weighted sample with respect to distribution
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p(St|Y t). Note that the samples S
(j)
t can be drawn from the

distribution q(St|Y t) sequentially as follows. We can choose
q(.) to satisfy

q(St−1|Y t) = q(St−1|Y t−1).

Then, it can be easily shown that

q(St|Y t) = q(st|Y t,St−1)q(St−1|Y t−1),

and one can draw samples s
(j)
t from a trial distribution

q(st|Y t,S
(j)
t−1) and let S

(j)
t = (s(j)

t ,S
(j)
t−1) for t = 0, 1, · · ·.

Specifically, it was shown in [11] that a suitable choice for
the trial distribution is of the form:

q(st|Y t,S
(j)
t−1) = p(st|Y t,S

(j)
t−1) (23)

For this trial distribution, it is shown in [10] that the impor-
tance weight is updated according to

w
(j)
t = w

(j)
t−1p(yt|Y t−1,S

(j)
t−1), t = 0, 1, · · · (24)

The predictive distribution in (24) is given by

p(yt|Y t−1,S
(j)
t−1) =

∑
ai∈A

p(yt|Y t−1,S
(j)
t−1, st = ai)

× P (st = ai|Y t−1,S
(j)
t−1) (25)

where (25) holds because st is independent of St−1 and Y t−1.
Furthermore, it can be shown from the state and observation
equations in (10) that

p(yt|Y t−1,S
(j)
t−1, st = ai) ∼ N(µ(j)

yt
(i), σ2(j)

yt
(i)) (26)

with mean and variance given by

µ(j)
yt

(i) = E{yt|Y t−1,S
(j)
t−1, st = ai}

= ai(Ptc
T µ

(j)
t−1 + Qt) (27)

σ2(j)
yt

(i) = Var{yt|Y t−1,S
(j)
t−1, st = ai}

= cT (AΣ(j)
t−1A

T + σ2
ubbH)c + σ2

n (28)

where the quantities µx(j)
t

and σx2(j)
t

in (27) can be computed
recursively for the Extended Kalman equations given in (14).
The trial distribution in (23) can be computed as follows:

p(st = ai|Y t,S
(j)
t−1) = p(yt|Y t−1,S

(j)
t−1, st = ai)

×P (st = ai|Y t−1,S
(j)
t−1)

�
= ξ

(j)
t,i (29)

where it follows from (25) and (26) that

ξ
(j)
t,i =

1

πσ
2(j)
yt (i)

exp

(
−||yt − µ

(j)
yt (i)||2

σ
2(j)
yt (i)

)
P (st = ai).

(30)

We now summarize the SMC blind data detection and phase
noise estimation algorithm as follows:
Step 1- Initialization:

• Initialize the extended Kalman filter: Choose the initial
mean and the covariance of the estimated xt as

µ
(j)
−1 = x̂

(j)
−1|−1 = 0, Σ(j)

−1 = 2Σ j = 1, 2, · · · ,m
where Σ is the stationary covariance of xt and can be com-
puted analytically from (7)

• Initialize the importance weights: All importance weights
are initialized as w

(j)
−1 = 1, j = 1, 2, · · · ,m. Since the

data symbols are are assumed to be independent, initial
symbols are not needed be generated.

Step 2- Compute ξ
(j)
t,i : For each ai ∈ A compute the µ

(j)
yt (i),

σ
2(j)
yt (i) and ξ

(j)
t,i from (21), (22),(6),(7) and (24), respectively.

Step 3- Draw samples sj
t , j = 1, 2, · · · ,m Draw s

(j)
t from the

set A with probabilities P (s(j)
t = ai) ∝ ξ

(j)
t,i , ai ∈ A. Append

s
(j)
t to S

(j)
t−1 to obtain S

(j)
t .

Step 4- Compute the importance weights:

w
(j)
t = w

(j)
t−1

∑
ai∈A

ξ
(j)
t,i .

Step 5-Detect the symbol st: Detect the symbol st from (17),
(18) and (22).
Step 6-Update the a posteriori mean and variance of the phase
noise: If the samples drawn up to time t is St in Step 3, set

µt(S
(j)
t ) ∆= µ

(j)
t = x̂

(j)
t|t

Σt(S
(j)
t ) ∆= Σ(j)

t = M
(j)
t|t j = 1, 2, · · · ,m.

and update according to the Kalman equations (14).
Step 7-Do the resampling as described in Section IV.

IV. RESAMPLING METHOD

A major problem in the practical implementation of the SMC
method described so far is that after a few iteration most of the
importance weights have negligible values that is w

(j)
t ≈ 0.

A relatively small weight implies that the sample is drawn
far from the main body of the posterior distribution and has
a small contribution in the final estimation. Such sample is
said to be ineffective. The SMC algorithm becomes ineffec-
tive if there are too many ineffective samples. The common
solution to this problem is resampling. Resampling is a an al-
gorithmic step that stochastically eliminates those samples with
small weights. Basically, the resampling method takes the sam-
ples, to be generated sequentially Ξt = {S(j)

t ,µ
(j)
t ,Σt}m

j=1

with corresponding weights {w(j)
t }m

j=1 as an input and gen-

erates a new set of samples Ξ̃t = {S̃(j)

t , µ̃
(j)
t , Σ̃t}m

j=1 with

equal weights, i.e {w(j)
t = 1/m}m

j=1, assuming they are nor-

malized to
∑m

j=1 w
(j)
t = 1. A simple procedure to achieve this
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goal is, for each j = 1, 2, · · · ,m, to choose (S̃
(j)

t , µ̃
(j)
t , Σ̃t) =

(S(j)
t ,µ

(i)
t ,Σt) with probability w

(i)
t .

In this paper, a resampling technique suggested by [11] is
employed. This technique forms a new set of weighted sam-

ples Ξ̃t = {S̃(j)

t , µ̃
(j)
t , Σ̃t}m

j=1 according to the following algo-

rithm. (assume that
∑m

j=1 wj
t = m)

1) For j = 1, 2, · · · ,m, retain �j = wj
t copies of the samples

(S(j)
t , µ

(i)
t , σt). Denote Lr = m −∑m

j=1 �j .
2) Obtain Lr i.i.d. draws from the original sample set

{(S(j)
t , µ

(i)
xt

, σxt)}m
j=1, with probabilities proportional to

(wj
t − �j), j = 1, 2, · · · ,m.

3) Assign equal weights, that is, set wj
t = 1, for each new

sample.
It is shown in [11] that the samples drawn by the above proce-

dure are properly weighted with respect to p(St|Y t), provided
that m is sufficiently large. Note that resampling at every time
step is not needed in general. In one way the resampling can
be done every k0 recursions where k0 is a prefixed resampling
interval. On the other hand, the resampling can be carried out
whenever the effective sample size, approximated as

N̂eff =
1∑m

j=1(w
j
t )2

≤ m (31)

goes below a certain threshold, typically a fraction of m.

V. SIMULATION RESULTS

In this section, we provide some computer simulation exam-
ples to demonstrate the performance of the proposed SMC re-
ceivers. The residual phase noise is modelled by the output of
a first-order digital PLL. Specifically as pointed out in Section-
2, the coefficients {θt} is modelled by the following ARMA
process

θt = (1 − a)θt−1 + ut

where 0 < a < 1 is a system parameter describing the loop
filter transfer function. a is chosen such that Var{θt} = 1. The
driver noise ut is assumed to be zero-mean and the variance
σ2

u = 0.1. It is assumed that BPSK modulation is employed. In
order to demonstrate the performance of the adaptive SMC ap-
proach, we first present the performance (in terms of bit-error-
rate (BER)) of the proposed SMC approach together with the-
oretical lower bound. The uncoded BER performance of this
adaptive approach is plotted in Fig. 1. The performance of the
Kalman filter part to track the phase process based on the sym-
bols provided by SMC is also shown in Fig. 2 for a 10dB and
20 dB SNRs. VI. CONCLUSIONS

We have developed a new adaptive Bayesian approach for
blind phase noise estimation and data detection based on SMC.
The optimal solutions to joint symbol detection and phase noise
estimation problem is computationally prohibitive to imple-
ment by conventional methods. Thus the proposed sequential
approach offers an novel and powerful approach to tackling this
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problem at a reasonable computational cost. It is shown through
simulations that the performance of the proposed blind SMC al-
gorithm can track the phase remarkably close to the true phase
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