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Abstract— Fast Fourier Transformation (FFT) and it’s inverse
(IFFT) are used in Orthogonal Frequency Division Multiplexing
(OFDM) systems for data (de)modulation. The transformations
are the kernel tasks in an OFDM implementation, and are the
most processing-intensive ones. Recent trends in the electronic
consumer market require OFDM implementations to be flexible,
making a trade-off between area, energy-efficiency, flexibility
and timing a necessity. This has spurred the development of
Application-Specific Instruction-Set Processors (ASIPs) for FFT
processing. Parallelization is an architectural parameter that
significantly influence design goals. This paper presents an
analysis of the efficiency of parallelization techniques for an FFT-
ASIP. It is shown that existing techniques are inefficient for high
throughput applications such as Ultra Wideband (UWB), because
of memory bottlenecks. Therefore, an interleaved execution
technique which exploits temporal parallelism is proposed. With
this technique, it is possible to meet the throughput requirement
of UWB (409.6 Msamples/s) with only 4 non-trivial butterfly units
for an ASIP that runs at 400MHz.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
a multi-carrier modulation technique that has been adopted
in various wireless communication standards such as Wire-
less Local Area Networks (WLAN), Digital Video Broad-
casting (DVB) and OFDM-based Ultra Wideband (UWB).
The (de)modulation process uses Fast Fourier Transformation
(FFT) and it’s inverse (IFFT). These transformations are the
most computationally intensive tasks in an OFDM system [1].

Flexibility is a key requirement in wireless systems beyond
3G (B3G) [2], where modems can be reprogrammed or
reconfigured to support different radio standards and operating
modes. Consequently, Application Specific Instruction Set
Processors (ASIPs) and Digital Signal Processor (DSPs) with
special support for FFT processing have been developed to
meet both flexibility and processing time constraints [3], [4].

In ASIPs, parallelization can be used to meet timing re-
quirements (throughput). However, the type and degree of
parallelization influence the efficiency of the implementation;
both with respect to energy dissipation and area utilization.
Therefore, we analyzed the efficiency of parallelization tech-
niques under high throughput requirements, when applied
to FFT-ASIPs. Area and energy consumption were taken as
a measure of efficiency. The intention was to single out a
parallelization technique with an outstanding efficiency for
exploitation in FFT-ASIPs.

There is a substantial amount of publications on FFT par-
allelization, however, the focus has been on general purpose,
parallel and distributed computing domains. The recent emer-
gence of methodology and tools for architecture exploration
and automatic implementation such as LISA-based tools [5]
enables this kind of analysis to be conducted for FFT-ASIPs
as well.

The analysis reveals that existing parallelization techniques
at the instruction and data level cannot efficiently meet high-
throughput requirements such as 409.6 Msamples/s for UWB.
This is caused by memory bottlenecks. Therefore, we propose
the use of an interleaved execution technique which is capable
of hiding some of the stage execution cycles by exploiting
temporal parallelism. In this analysis, UWB was selected to
demonstrate that it is feasible to implement instruction-set
processors which can efficiently support, among other things,
the computation of high-rate FFTs.

The rest of the paper is organized as follows: the imple-
mented FFT algorithm and the FFT-ASIP architecture for
analysis are presented in section II. The analysis for instruction
and data level parallelization techniques are presented in
sections III, followed by the proposed interleaved technique
in sections IV and V. Concluding remarks are provided in
section VI.

II. THE FFT ALGORITHM AND THE FFT-ASIP

The Cooley-Tukey (CT) [6] algorithm has been widely
adopted for FFT computation because of it’s regularity. A
cached FFT (CFFT) algorithm which enables the exploita-
tion of data locality for energy-efficient implementations was
proposed in [7]. Figure 1 shows a comparison of energy
consumption of two ASIPs for the two FFT algorithms. The
ASIPs are described in detail in [8] and [9] respectively.
Because of higher energy-efficiency, the CFFT-ASIP was
selected for analysis. This ASIP is similar to the CT-ASIP:
it has the same pipeline length, the same data-path width,
the same memory configuration, and a butterfly instruction.
This instruction calculates the addresses of the coefficients and
data samples, fetches the operands, and computes the complete
butterfly with a latency of 6 clock cycles. The maximum clock
frequency of the ASIP is 250MHz. In the ASIP, a 32x32
register file is used as a cache. Both ASIPs were designed and
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Fig. 1. Energy dissipation of CT and CFFT ASIPs

implemented by using the same design flow and technology
[8], [9].

In the cached algorithm, the FFT computation is divided
into Epochs (E), Groups (G) and Passes (P) [7]. The following
pseudo-code shows how the algorithm is implemented.

FOR e = 0 to E-1
FOR g = 0 to G-1

Load_Cache(e,g);
FOR p = 0 to P-1

FOR b = 0 to NumBFLY-1
Butterfly(e,g,p,b);

END
END
Dump_Cache(e,g);

END
END

In this analysis, a modified version of the algorithm with a
better cache utilization is used [9]. A better cache utilization
is achieved through an uneven distribution of passes between
the epochs. Figure 2 shows the flow graph for N=64 (cache
size=16).

III. ANALYSIS OF EXISTING PARALLELIZATION

TECHNIQUES

On the architectural level, existing techniques can be
grouped into Instruction, Data and Thread-Level Paralleliza-
tion (ILP,DLP and TLP). Basically, the latter technique is use-
ful for time-multiplexing the processor usage. Consequently,
TLP cannot be used to increase the throughput of FFT
computation on a dedicated ASIP.

Besides pipelining, ILP can be categorized according to
instruction issue size: single and multiple issue. The latter
can be further categorized into explicit (e.g. complex or fused
instructions), static (e.g. VLIW) and dynamic issue (e.g. super
scalar). However, since power consumption is a limiting factor,
particularly for battery-powered modems, a dynamic issuing
scheme is not considered.

Generally, longer pipelines increase the throughput of a pro-
cessor. However, the analysis of power/performance metrics

Fig. 2. Data flow graph of the CFFT algorithm for N=64

with pipeline length shows that as the power consumption
becomes more important in the metric, shorter pipelines tend
to yield optimum results [10]. Since in this case power
consumption is a concern, short pipelines are preferred. Nev-
ertheless, by using more complex instructions (higher explicit-
ness), a high throughput can be obtained with short pipelines.
For a radix-2 FFT implementation, a butterfly instruction as
described in section II offers the highest degree of explicit
parallelization. However, this is not sufficient for meeting the
throughput requirement as shown below.

In the CFFT-ASIP, the 4ns long critical path goes through
the butterfly unit. The unit is distributed over three pipeline
stages. By adding two additional stages, the critical path can be
shortened to 2.5ns. In figure 3, the throughput of the ASIP is
depicted for several FFT lengths. Clearly, the timing constraint
for UWB cannot be met, even when a non-favorable 1ns clock
is assumed to be possible.

For the last ILP alternative, the architecture was extended
by three slots, so that four butterflies could be computed in
parallel. Because of data dependencies between the passes [9],
only a speed-up factor of 1.73 was achieved for N=128, which
was far less than the required 11.41. This speed-up factor
cannot be achieved by increasing the number of slots further
due to a limited memory bandwidth, even with a 400MHz
clock, since only 312.5ns/2.5ns=125 cycles are available for
FFT processing (312.5ns is the OFDM symbol length in
UWB). This is because cache loading and dumping alone
already consume 256 cycles. The reason for this is the order
of computation.

The FFT computation proceeds as shown in figure 4. In
this case, there are 2 epochs, 4 groups and 7 passes. The
groups are computed consecutively (0-3). In each group, the
passes are computed in the order 0-4 for epoch 0, and 5-
6 for epoch 1. Epoch 0 is computed first. Cache loading
is done in passes 0 and 5, and the dumping in passes 4



 0.1

 1

 10

 100

 0  100  200  300  400  500  600  700  800  900  1000  1100

m
ic

ro
 s

ec

N

FFT Computation Time for the CFFT-ASIP

UWB

WLAN

DAB

WiMAX
4ns Clock Period

2.5ns Clock Period (projected)

 0.1

 1

 10

 100

 0  100  200  300  400  500  600  700  800  900  1000  1100

m
ic

ro
 s

ec

N

FFT Computation Time for the CFFT-ASIP

UWB

WLAN

DAB

WiMAX
4ns Clock Period

2.5ns Clock Period (projected)

 0.1

 1

 10

 100

 0  100  200  300  400  500  600  700  800  900  1000  1100

m
ic

ro
 s

ec

N

FFT Computation Time for the CFFT-ASIP

UWB

WLAN

DAB

WiMAX
4ns Clock Period

2.5ns Clock Period (projected)

Fig. 3. FFT computation time for CFFT-ASIP

and 6. Cache dumping is done concurrently with Non-Trivial
Butterfly (NBF) computation. In epoch 0, cache loading is also
concurrently done, however, the butterflies are trivial since in
all cases the coefficient is 1+0i, where i =

√−1. In epoch 1,
the cache is separately loaded. Since a dual port data memory
was used, 256 cycles were needed loading and dumping.

The memory bandwidth can be increased by partitioning the
memory with a similar scheme as in [11]. If, for instance, 32
data samples (cache size) can be accessed concurrently, then
at least

448 butterfly cycles − 64 trivial butterfly cycles
125 cycles − 56 control cycles − 8 load/dump cycles

= 7

NBF units would be required to achieve the throughput at
400MHz, with a correspondingly very high area and energy
consumption. This is the minimum number of NBF units. A
mixed-radix approach such as [12] would lead to a low area
cost because of higher-radix. However, a similar approach is
not applicable in this case for flexibility reasons.

For DLP, the analysis and the results are similar to the
preceding ones. The difference is that in DLP techniques such
as vector instructions, only one instruction would be decoded,
rather than 7 as in the above 7-slot VLIW.

A careful analysis of computation order reveals that it is
possible to interleave the execution, so that the throughput
is achieved with only 4 NBF units, and with no memory
partitioning. This technique is described in the following
section.

IV. INTERLEAVED EXECUTION

The idea behind interleaved execution is to hide some of the
execution cycles through instruction scheduling. This means,
as opposed to ILP techniques, temporal parallelism between
the passes is exploited, rather than spatial parallelism in the
groups. In subsequent discussion, a latency of 3 cycles for the
actual execution of a butterfly is assumed.

With the preceding ILP technique in section III, the order of
computation (figure 4) is G0 : P0−P4, G1 : P0−P4, · · · , G3 :
P0 − P4, G0 : P5 − P6, · · · , G3 : P5 − P6 [7], [9]. Table
I shows the cache addressing for N=128 [7], [9]. The star

Fig. 4. CFFT computation order for N=128
TABLE I

CACHE ADDRESSING FOR N=128

Epoch Pass Cache Address
0 0 B3 B2 B1 B0 *

1 B3 B2 B1 * B0

2 B3 B2 * B1 B0

3 B3 * B2 B1 B0

4 * B3 B2 B1 B0

1 3 B3 * B2 B1 B0

4 * B3 B2 B1 B0

in the table has the values 0 and 1 for the two data of the
butterfly respectively. The pass number determines the position
of the star. With this table, and with the pipeline model, it
follows that the first 2 operands for computation of G0 : P1

are available 3 cycles after G0 : P0 has started. The next 2 after
4 cycles, etc. Similarly, for G0 : P2, the operands are available
6, 7, 8, · · · cycles after G0 : P1 has started, etc. Therefore, the
execution can be interleaved as shown in figure 5. The next
group (G1 : P0) cannot start until the first 2 cache elements
has been dumped in G0 : P4. However, because of a latency
of 3 cycles, the next loading can start 2 cycles prior to the
dumping as shown in the figure. In this way, epoch 0 can be
processed in 105 cycles. Similarly, epoch 1 can be finished
in 48 cycles, making a total of 153 cycles for N=128, so that
the cycle constraint from section II is violated by 153-125=28
cycles. This is largely attributed to 13 cycles between each
cache loading between the groups (greyed area in figure 5). If
these 13 cycles are removed, then the total number of cycles
can be reduced by 13x3=39.

Since in each cycle Bload loads 2 cache registers, addi-
tional 26 cache registers are required. This would only add
approximately 30KGates to the CFFT-ASIP, which has, in
the current version, 430KGates (of which 63% are occupied
by memories). To simplify cache addressing in presence of
additional buffering registers, a modulo addressing scheme can
be used.

The execution of control and initialization instructions can
also be interleaved, so that the associated cycles are completely
hidden. This technique requires a different instructions execu-
tion sequencing. A corresponding execution model is proposed
in the following section.



Fig. 5. Interleaving scheme

V. EXECUTION MODEL

In mainstream processor architectures, each execution is
immediately preceded by instruction fetching and decoding in
absence of hazards. Therefore, with such an execution model,
it is not possible to interleave instructions without having to
unroll all iterations. A data-triggered execution model can
solve this problem. A Transport Triggered Architecture (TTA)
which is data-triggered is proposed in [13]. However, TTA
targets at reducing bypass complexity, rather than exploiting
temporal parallelism.

Therefore, the following execution model is proposed: After
fetching and decoding, an execution unit is conditionally
scheduled for execution. The condition is specified by the
programmer. If scheduled for execution, the corresponding
operation remains pending until another condition is fulfilled.
The latter is internally generated in the processor by other
instructions, similarly to flags setting. Such a condition could
for instance be the availability of operands (data-triggering).
The pending operation does not block the further sequencing
of instructions, rather, it enters a pending slot, while the
processor continues to fetch and decode other instructions. The
execution condition is polled in each cycle until it becomes
true. Thereafter, the operation is executed concurrently to
any other activated operation. After execution, the condition
is automatically toggled back to false, and the operation is
emptied from the pending slot.

In this execution model, Zero Overhead Loops (ZOLs)
are non-blocking, i.e. when the initialization of a ZOL is
encountered, the ZOL is started, and the following instruction
is fetched. If the following instruction has to wait, then the
sequencing of instruction has to be explicitly suspended, until
a required condition is fulfilled.

VI. SUMMARY AND CONCLUSION

In this paper, it has been shown that existing parallelization
techniques cannot be efficiently utilized in FFT-ASIPs for
high throughput applications such as UWB. An interleaved
execution technique which can meet the throughput require-
ment is therefore proposed, together with the corresponding
execution model. With this technique, only 4 NBF units
are required. Currently, we are extending the CFFT-ASIP to
support interleaved execution. Based on the results of the 4-slot

VLIW extension, the area is expected to increase by 28% to
550.4KGates (7% due to additional cache registers, 21% due
to additional NBF units). UWB was selected to demonstrate
that it is feasible to implement instruction-set processors which
can efficiently support, among other things, the computation
of high-rate FFTs.
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