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ABSTRACT
In this paper, we study the discrete time Lindley equation
governing an infinite size GI/GI/1 queue. In this queu-
ing system, the arrivals and services are independent and
identically distributed but they obey a discrete time matrix
geometric distribution not necessarily with finite support.
Our GI/GI/1 model allows geometric batch arrivals and also
treats late, early, and hybrid arrival models in a unified man-
ner. We reduce the problem of finding the steady state prob-
abilities for the Lindley equation to finding the generalized
ordered Schur form of a matrix pair (E, A) where the size
of these matrices are the sum, not the product, of the or-
ders of individual arrival and service distributions. The ap-
proach taken in this paper is purely matrix analytical and
we obtain a matrix geometric representation for the related
quantities (queue lengths or waiting times) for the discrete
time GI/GI/1 queue using this approach.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Markov processes, Queueing theory ; G.1.3 [Numerical
Analysis]: Numerical Linear Algebra; C.4 [Computer Sys-
tems Organization]: Performance of Systems—Modeling
Techniques,Performance attributes

General Terms
Algorithms, Performance

Keywords
Lindley equation, discrete-time queues, matrix geometric
distribution, generalized ordered Schur decomposition

1. INTRODUCTION
In this paper, we consider a discrete time queue with infi-

nite size. The time axis is divided into slots of equal length
which is taken as one unit with slot n denoting the time
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interval [n, n+1). We study the following GI/GI/1 discrete
time Lindley equation (recursion) [18]:

q(n + 1) = max(q(n) + a(n) − b(n), 0) + c(n), n ≥ 0, (1)

where a(n), b(n), and c(n) are independent and identically
distributed non-negative random sequences with probability
mass functions (PMF) pa(k), pb(k), and pc(k), respectively.
In most discrete time queueing systems including GI/GI/1
queues, queue lengths or waiting times satisfy a Lindley
equation (1) of some form; see [14] and [7] for a detailed
treatment of discrete time queueing models including late
and early arrival models. In this study, we are interested in
the probability mass function (PMF) of the limiting random
variable in the recursion (1):

pq(k) = Pr{q = k}, k ≥ 0, (2)

where q = limn→∞ q(n). We assume the limiting random
variable q exists throughout this paper which is true when
E[a(n)] + E[c(n)] < E[b(n)]. We note that the underlying
Markov chain has a probability transition matrix P = {Pij},
where

Pij = Pr{a(n) − b(n) ≤ −i}Pr{c(n) = j}

+

j−1

l=0

Pt{c(n) = l}Pr{a(n) − b(n) = j − i − l}(3)

In case the process b(n) is of finite support, then the Markov
chain above is an M/G/1 type chain with multiple bound-
aries and with scalar entries [11],[2]. When the processes
a(n) and b(n) are both of finite support then we have a
G/M/1 type Markov chain with multiple boundary levels
and scalar entries [11]. However, we do not impose finite
support constraints on the related distributions in the cur-
rent paper.

There is a vast amount of literature and a variety of ap-
proaches for discrete time queues which is generally known
to be difficult. Most of the existing results rely on Wiener
Hopf factorizations. The reference [12] gives a fast itera-
tive procedure for the Wiener Hopf factorization when the
involved distributions are of finite support and the compu-
tational complexity per iteration is relatively low. A similar
factorization approach is used in [13] to solve the more gen-
eral SMP/G/1 queue with semi-Markov arrivals. On the
other hand, the reference [29] uses a root finding method to
study the GI/G/1 system in discrete time. The GIX/G/1
queue with batch arrivals is studied in discrete time using a
similar method in [9].



The alternative approach to discrete time queues is the
matrix analytical approach that relies on matrix and vector
operations as opposed to polynomial operations and root
finding [23]. However, most matrix analytical methods are
well-suited more for the M/G/1 and G/M/1 type Markov
chains [23],[24] and also for those with multiple boundary
levels [11] and not for the Markov chains in the form (3). If
the problem faced is of M/G/1 or G/M/1 type, then one can
use numerically efficient algorithms like the cyclic reduction
algorithm [6], the invariant subspace approach [1], and the
technique proposed in [26]. When the arrival and service
processes possess finite support PMFs then the probability
transition matrix of interest turns out to be of Quasi Birth
and Death (QBD) type [3] for which quadratically conver-
gent matrix geometric methods exist like the logarithmic re-
duction algorithm for [17], the invariant subspace approach
[1] and the iterative scheme of [22]. Recently, a matrix an-
alytical algorithm is provided for solving general Markov
chains of G/G/1 type [27]. The G/G/1 type Markov chains
with block banded structures are studied using matrix geo-
metric methods in [28].

In this paper, we will assume that all the three processes
a(n), b(n), and c(n) in the Lindley equation (1) have matrix
geometric distributions. Such distributions are more general
than discrete phase type processes and finite support distri-
butions where the latter can also be viewed as a phase type
distribution.

Our main result is that the limiting random variable q in
this case also has a matrix geometric distribution and finding
the parameters of this distribution is shown to reduce to
solving a generalized spectral divide and conquer (GSDC)
problem applied on a square matrix pair of size being the
sum of the order of the individual processes. Given a real
matrix pair (E, A), the GSDC problem of interest in this
paper is finding orthogonal matrices Q and Z such that

QT EZ =
Eoo Eoi

0 Eii
, QT AZ =

Aoo Aoi

0 Aii
,

where the generalized eigenvalues of the pair (Eoo, Aoo) are
exactly the same as those of (E, A) that are outside the
unit disk. Similarly, the generalized eigenvalues of the pair
(Eii, Aii) are exactly the same as those of (E, A) that are in-
side the unit disk. The advantages of the proposed approach
are

• The generality of the model allows one to use a sin-
gle unifying algorithm for different well-known discrete
time GI/GI/1 queueing models including late and early
arrival models.

• We do not construct structured Markov chains to solve
for the limiting distribution. Studying the Lindley
equation directly without having to construct the struc-
tured Markov chain offers potential advantages since
our experience with the numerical analysis of queues
leads us to believe that one of the hard parts even for a
sophisticated user is to form or represent the blocks or
submatrices of the associated Markov chain. This fea-
ture of our proposed approach may allow researchers
and practitioners to use the proposed algorithms with
little additional effort if their queuing analysis prob-
lem fits in the framework defined through the Lindley
recursion (1).

• The approach does not use root finding and benefits
from being purely matrix analytical as explained in
[23] and [24].

• GSDC for GI/GI/1 queues applies on matrices of ad-
ditive size whereas a number of existing matrix analyt-
ical methods for GI/GI/1 queues operate on matrices
of multiplicative size [3].

• We propose the use the generalized ordered real Schur
decomposition as the numerical engine for solving the
GSDC which is known to be effectively used for solving
Riccati equations for decades [15].

• Our model allows probability masses at the origin for
all the involved processes and therefore it is also pos-
sible to address batch arrivals and services with geo-
metric batch sizes.

• In additon to the GSDC, the proposed algorithm is
based on only matrix-matrix and matrix-vector opera-
tions, and solution of linear equations and is therefore
quite easy to implement.

However, we note the real advantage of the proposed algo-
rithm of this paper is when the involved distributions have
infinite support or when they can be modeled or approx-
imated well by infinite support matrix geometric distribu-
tions with much smaller orders.

The remainder of the paper is organized as follows. Sec-
tion 2 provides preliminaries and notation used throughout
the paper. We provide the matrix analytical solution for the
Lindley equation in Section 3. Section 4 provides numeri-
cal examples to validate the effectiveness of the proposed
approach. We conclude in the final section.

2. PRELIMINARIES AND NOTATION
Let z be a complex number and C denote the complex

plane. The open unit disk in the complex plane, denoted
by ∆i, is defined as {z ∈ C : |z| < 1}. The unit circle is
represented by ∆1 = {z ∈ C : |z| = 1}. The complement
of these two sets is denoted by ∆o. Above, the symbols
i and o stand for “inside” and “outside” the unit circle,
respectively. We use uppercase (lowercase) letters to denote
matrices (vectors or scalars). I and e denote the identity
matrix and a column matrix of ones of appropriates sizes,
respectively. For a real matrix A, AT denotes A transposed
and A is orthogonal if AT A = I . For a given real, non-
symmetric matrix A and a region D of the complex plane
C, there is an orthogonal matrix Q such that

QT AQ =
ADD ADD̄

0 AD̄D̄
, (4)

where the eigenvalues of ADD are exactly the same as the
eigenvalues of A in D. Here D ∩ D̄ = ∅,D ∪ D̄ = C. This
problem is called the ordinary spectral divide and conquer
(SDC) problem [5]. Let A and E be two n × n matrices. A
complex scalar λ and a nonzero row vector x satisfying

xA = λxE, x �= 0,

are called a generalized eigenvalue and the generalized left
eigenvector for the matrix pair (E, A) associated with λ,
respectively. When E = I , we have the definition of an
ordinary eigenvalue of the matrix A. λ(E, A) denotes the



set of all generalized eigenvalues of (E, A). For a given pair
of real matrices E and A, one can find orthogonal matrices
Q and Z such that

QT EZ =
EDD EDD̄

0 ED̄D̄
, QT AZ =

ADD ADD̄
0 AD̄D̄

,

(5)
where λ(EDD, ADD) is exactly the same as λ(E, A) restricted
to the region D [5]. A real square matrix pair (E, A) of
size n can be transformed using orthogonal matrices Q1 and
Z1 into the so-called generalized real Schur form by writing
QT

1 EZ1 = E1, Q
T
1 AZ1 = A1 where A1 is quasi-upper trian-

gular, which means that the matrix A1 has either 1-by-1 or
2-by-2 diagonal blocks on the diagonal and E1 is diagonal.
By reordering the blocks by orthogonal transformations, the
generalized eigenvalues are made to appear in any order and
one can obtain orthogonal matrices Q and Z such that the
identity (5) is satisfied and the matrices ADD and AD̄D̄ are
quasi-upper triangular, EDD snd ED̄D̄ are diagonal, and the
generalized eigenvalues of (EDD, ADD) are the same as those
of (E, A) in D [4],[10]. This form is called the generalized or-
dered real Schur form and the operation to obtain this form
is called the generalized ordered real Schur decomposition
(GORSD). The ordered generalized real Schur form imple-
mentations are available in various platforms in LAPACK
[4], OCTAVE, and MATLAB 7.0 [21]. Of particular interest
to the current paper is when D = ∆o ∪ ∆1.

Let x(k) be a vector function of the discrete variable k ∈
Z. The two sided z-transform of x(k) is given by

x∗(z) =

+∞

−∞
zkx(k). (6)

We use the ∗ notation for z-transforms throughout this pa-
per. The unit impulse function δ(k) is defined as δ(0) =
1, δ(k) = 0, k �= 0. We note that existence of unit impulse
term in the PMF is indicative of a probability mass at the
origin. The degree of a polynomial n∗(z) in the indetermi-
nate z is denoted by deg(n∗). A transform is said to be
rational if

x∗(z) =
n∗(z)

d∗(z)
,

for some polynomials n∗(z) and d∗(z). The rational trans-
form x∗(z) is strictly proper if deg(n∗) < deg(d∗) and is
proper if deg(n∗) = deg(d∗). The poles of the rational
function x∗(z) are the roots of the denominator polynomial
d∗(z). Any strictly proper rational function x∗(z) can addi-
tively be decomposed as

x∗(z) = x∗
i,1(z) + x∗

o(z),

where the poles of x∗
i,1(z) and x∗

o(z) reside in ∆i ∪ ∆1 and
∆o, respectively. Moreover, this decomposition is unique. If
x∗

i,1(z) = 0 then x∗(z) is called stable. If x∗
o(z) = 0, then

x∗(z) is called anti-stable.
A linear time-invariant discrete time dynamical system is

represented by the following set of difference equations [16]:

x(k + 1) = x(k)T + u(k)v, k ≥ 0, (7)

y(k) = x(k)h + u(k)d, (8)

where u(k) and y(k) denote the input and output, respec-
tively, x(k) = (x1(k), . . . , xm(k)) is called the state vector
and its components are called the state variables, or sim-
ply the states. In this representation, v is a row vector of

size m, T is m × m, h is a column vector of size m, and
d is a scalar. Considering zero initial state, i.e., x(0) = 0,
the transfer function g∗(z) between the input and output is
written as [16]:

y∗(z) = u∗(z)g∗(z) = u∗(z) v(z−1I − T )−1h + d , (9)

where u∗(z) and y∗(z) are the z-transforms of the input
and output, respectively. The equations of the form (7)
and (8) are said to constitute a state space representation
or realization of the given linear time-invariant system with
transfer function g∗(z) if (9) holds [16]. The number of
states (i.e., m) is referred to as the order of of the state space
representation. This representation is said to be minimal or
irreducible if one cannot satisfy the identity (9) with a lesser
order.

A discrete phase type (DPH) distribution is the distribu-
tion of the time until absorption in a discrete state discrete
time Markov chain (DTMC) with m transient states and
one absorbing state. Let the transient states be numbered
as 1, 2, . . . , m and the absorbing state as m + 1. The one
step probability transition matrix of this DTMC can then
suitably be partitioned as

P =
T h
0 1

, (10)

with an m×m matrix T and an m× 1 vector h. The initial
probability vector can also be partitioned as (v, d) for a 1×m
row vector v and a scalar d. It is easy to show that the DPH-
distributed random variable x has a PMF px(k), k ≥ 0 which
is of the form

px(k) = P (x = k) =
vT k−1h k ≥ 1
d k = 0

(11)

and a probability generating function (PGF) p∗
x(z) of the

form

p∗
x(z) = v(z−1I − T )−1h + d, (12)

= vz(I − zT )−1h + d. (13)

Note that p∗
x(z) is rational and can be written as

p∗
x(z) =

n∗
x(z)

d∗
x(z)

,

for a numerator polynomial n∗
x(z) and a denominator poly-

nomial d∗
x(z) with deg(n∗

x) ≥ deg(d∗
x). Sometimes, it is de-

sirable to write

p∗
x(z−1) =

n̄∗
x(z)

d̄∗
x(z)

,

for a numerator polynomial n̄∗
x(z) and a denominator poly-

nomial d̄∗
x(z) with deg(n̄x) ≤ deg(d̄x) = deg(n∗

x). Note that
d̄∗

x(z) = det(zI − T ). A random variable is said to pos-
sess a matrix geometric (MG) distribution if the PMF is of
the same form (11) but its parameters v, T , and h do not
necessarily carry the same probabilistic interpretation. The
size of the matrix T is called the order of the MG distri-
bution. Moreover, an MG distribution is characterized by
the ordered quadruple (v, T, h, d) and this representation is
irreducible if one cannot find a representation with a smaller
order. We note that matrix geometric distributions general-
ize DPH distributions in the same way as matrix exponential
distributions generalize continuous phase type distributions
[19]. It is also clear that MG distributions possess rational



z-transforms. The case of d �= 0 can also be visualized by
allowing batch arrivals at arrival epochs with a geometric
batch size distribution of di−1(1 − d), i ≥ 1 and interarrival
times thus modeled as an MG distribution (v/(1−d), T, t, 0).
The factorial moments of matrix geometric distributions can
be found by differentiating (13) successively with respect to
z and setting z = 1. For example the first two factorial mo-
ments of an MG-distributed random variable x can be found
through the following expressions:

E[x] = v(I − T )−2h

E[x2 − x] = 2v(I − T )−3Th (14)

Let x1 and y1 be two independent random variables with
MG-distributions characterized with the quadruples

(v1, T1, h1, d1) and (v2, T2, h2, d2),

respectively. The random variable x = x1 + x2 is then also
MG-distributed with the characterizing quadruple

[v1, d1v2],
T1 h1v2

0 T1
, [h1d2, h2]

T , d1d2 (15)

3. DISCRETE TIME LINDLEY EQUATION
Let us visit back the Lindley equation (1). We assume

that the processes a(n), b(n), and c(n) are MG-distributed
and they are characterized by the irreducible quadruples
(va, Ta, ha, da), (vb, Tb, hb, db), and (vc, Tc, hc, dc), with or-
ders ma, mb, and mc, and PGFs p∗

a(z), p∗
b(z), and p∗

c(z),
respectively. In particular, we write

p∗
b(z) =

n∗
b(z)

d∗
b(z)

, p∗
b(z

−1) =
n̄∗

b(z)

d̄∗
b(z)

.

For the development of this paper, we first need the following
theorem whose proof is provided in the appendix.

Theorem 1. Let x and y be two independent non-negative
random variables with matrix geometric PMFs or equiva-
lently with rational PGFs:

p∗
x(z) =

n∗
x(z)

d∗
x(z)

, deg(n∗
x) ≥ deg(d∗

x), (16)

and

p∗
y(z) =

n∗
y(z)

d∗
y(z)

, deg(n∗
y) ≥ deg(d∗

y),

p∗
y(z−1) =

n̄∗
y(z)

d̄∗
y(z)

deg(n̄∗
y),≤ deg(d̄∗

y),

respectively. Then there exists a unique polynomial u∗(z) of
degree deg(n∗

y) with u∗(1) = 0 such that the random vari-
able defined by t = max(x − y, 0) has a rational PGF p∗

t (z)
expressed by

p∗
t (z) = p∗

x(z)p∗
y(z−1) − u∗(z)

d̄∗
y(z)

. (17)

Conversely, if one can find a polynomial u∗(z) with degree
deg(n∗

y) satisfying u∗(1) = 0 and the right hand side of (17)
having all its poles in C

o then identity (17) gives the expres-
sion for the PGF of the random variable t.

Applying the result of Theorem 1 to the Lindley equation
(1), we immediately obtain the existence of a polynomial

u∗(z) with degree mb and with u∗(1) = 0 such that

p∗
q(z) = p∗

q(z)p∗
a(z)p∗

b(z
−1) − u∗(z)

d̄∗
b(z)

p∗
c(z). (18)

Conversely, if one can find u∗(z) with degree mb and with
u∗(1) = 0 satisfying (18) for a stable p∗

q(z) then (18) gives
the solution for the PGF of the limiting distribution q. The-
orem 1 can directly be used to find p∗

q(z) by root finding and
polynomial factorization. However, in this paper we seek a
matrix analytical solution that only uses the matrix geo-
metric representations of the individual processes driving
the Lindley equation as opposed to an approach that uses
transforms. Therefore, we will use Theorem 1 to validate
the matrix analytical approach but not for numerical calcu-
lations. Towards this goal, we first define the following linear
time-invariant discrete time dynamical system, say system
A, for k ≥ 0 associated with the individual discrete time
process a(n):

xa(k + 1) = xa(k)Ta + ua(k)va, xa(0) = 0, (19)

ya(k) = xa(k)ha + ua(k)da (20)

Here xa, ua, and ya is the state, input, and output of system
A, respectively. We then define another dynamical system
denoted by B for k ≥ 0 associated with the discrete time
process b(n):

xb(k + 1)Tb = xb(k) + ub(k + 1)vb, xb(0) = x0, (21)

yb(k) = −xb(k)hb + ub(k)db + δ(k)d0 (22)

Since Tb can be singular, system B is not an ordinary system
but is rather called a discrete time descriptor system and xb,
ub, and yb is the descriptor, input, and output of descriptor
system B, respectively [20]. The system parameters x0 and
d0 are not known yet but they are to be determined. Fi-
nally, we define a dynamical system denoted by C for k ≥ 0
associated with the individual discrete time process c(n):

xc(k + 1) = xc(k)Tc + uc(k)vc, xc(0) = 0, (23)

yc(k) = xc(k)hc + uc(k)dc (24)

Above, xc, uc, and yc is the state, input, and output of sys-
tem C, respectively. We then interconnect the three systems
in the following feedback configuration:

ua(k) = yc(k), (25)

ub(k) = ya(k), (26)

uc(k) = yb(k). (27)

We will now show that y∗
c (z) in this feedback configuration

satisfies the expression (18) for p∗
q(z). In order to show this,

we first note from (19) and (20) that

y∗
a(z) = u∗

a(z)p∗
a(z), (28)

and from (22)

y∗
b (z) = −x∗

b(z)hb + u∗
b(z)db + d0. (29)

Furthermore, using (21) and the basic properties of z-transforms
we show that

z−1(x∗
b(z) − x0)Tb = x∗

b(z) + z−1(u∗
b(z) − ub(0))vb. (30)

Using (29) and (30), it is not difficult to show

y∗
b (z) = u∗

b(z)(vb(Iz − Tb)
−1hb + db),

−(ub(0)vb − x0Tb)(Iz − Tb)
−1hb + d0

= u∗
b(z)p∗

b(z
−1) − x̄0(Iz − Tb)

−1hb + d0, (31)



where x̄0 = ub(0)vb −x0Tb. In the final step, we write y∗
c (z):

y∗
c (z) = y∗

b (z)p∗
c(z),

= u∗
b(z)p∗

b(z
−1) − x̄0(Iz − Tb)

−1hb + d0 p∗
c(z),

= (y∗
c (z)p∗

a(z)p∗
b(z

−1)

−x̄0(Iz − Tb)
−1hb + d0)p

∗
c(z). (32)

The above identity is the same as (18) with the choice of
u∗(z) = x̄0 adj(Iz−Tb)hb − d0 det(Iz−Tb). In other words,
if the system B can be forced to have an initial condition
x0 and if a unit impulse term d0δ(k) is added to the same
system’s output in such a manner that the feedback system
and in particular y∗

c (z) stays stable, then it is true that

y∗
c (z) = p∗

q(z). (33)

From now on, we will use pq(k) instead of yc(k). The next
step is to find x0 and d0. For this purpose, we first need to
write the inputs to each system as a function of individual
system states. As a first step, let us begin with the input
ua(k), k ≥ 0 to the system A:

ua(k) = xc(k)hc + uc(k)dc,

= xc(k)hc + (−xb(k)hb + ub(k)db + δ(k)d0)dc,

= xc(k)hc − xb(k)hbdc

+(xa(k)ha + ua(k)da)dbdc + δ(k)d0dc,

= xa(k)hadbdcdabc − xb(k)hbdcdabc

+xc(k)hcdabc + δ(k)d0dcdabc, (34)

where

dabc = (1 − dadbdc)
−1. (35)

One can similarly use the same arithmetic for ub(k) and
uc(k) to be able to write the following expressions:

ub(k) = xa(k)hadabc − xb(k)hbdcdadabc

+xc(k)hcdadabc + δ(k)d0dcdadabc, k ≥ 0,

uc(k) = xa(k)hadbdabc − xb(k)hbdabc

+xc(k)hcdadbdabc + δ(k)d0dabc, k ≥ 0. (36)

We are now ready to write the state evolution equations (19),
(21), and (23), in terms of only the system states. Defining
the extended state for the feedback configuration

xf (k) = xa(k) xb(k) xc(k) , (37)

it is not difficult to show for k ≥ 0 that

xf (k + 1)Ef = xf (k)Tf + δ(k)d0vf , (38)

pq(k) = xf (k)hf + δ(k)d0df , (39)

where

Ef =
I −hadabcvb 0
0 Tb + hbdcdadabcvb 0
0 −hcdadabcvb I

, (40)

Tf =
Ta + hadbdcdabcva 0 hadbdabcvc

−hbdcdabcva I −hbdabcvc

hcdabcva 0 Tc + hcdadbdabcvc

,

(41)

vf = dcdabcva 0 dabcvc , (42)

hf =
hadbdcdabc

−hbdcdabc

hcdabc

, (43)

df = dcdabc, (44)

and

xf (0) = 0 x0 0 .

We also define

Tf,b = −hbdcdabcva I −hbdabcvc , (45)

and

hf,b = −hbdcdabc. (46)

Now let

zf (k) = xf (k + 1), k ≥ 0, (47)

then we have the following autonomous system for k ≥ 0

zf (k + 1)Ef = zf (k)Tf , (48)

pq(k + 1) = zf (k)hf . (49)

Recalling zf (0) = xf (1) and using (38) we first have

zf (0)Ef = x0Tf,b + d0vf . (50)

We also note that the matrix pair (E, A) has ma + mc gen-
eralized eigenvalues in ∆i, one eigenvalue at λ = 1, and the
remaining mb − 1 in ∆o including the ones at infinity. Then
let Qf and Zf be orthogonal matrices such that we obtain
a suitable ordered generalized real Schur form of the matrix
pair (Ef , Af ):

QT
f EfZf =

Ef,oo Ef,oi

0 Ef,ii
, QT

f AfZf =
Af,oo Af,oi

0 Af,ii
,

(51)
where the ordering is done such that the generalized eigen-
values of the matrix pair (Ef,oo, Af,oo) are exactly the same
as those of the matrix pair (E,A) outside the unit disk and
also including the one at λ = 1. Therefore the matrices
Ef,oo and Af,oo are of size mb. Applying the transformation

z̃f (k) = zf (k)Qf ,

and partitioning z̃f (k) suitably as

z̃f (k) = z̃f,o(k) z̃f,i(k) ,

we conclude that for k ≥ 0

z̃f,o(k + 1)Ef,oo = z̃f,o(k)Af,oo. (52)

However, in order for z̃f,o(k) to be summable, the only pos-
sibility is that

z̃f,o(0) = 0, (53)

since otherwise ∞
k=0 pq(k) can never be one. Partitioning

Qf = Qf,o Qf,i , (54)

the identity (53) reduces to

zf (0)Qf,o = 0 (55)

Finally by (51), we show that

z̃f,i(k + 1)Ef,ii = z̃f,i(k)Af,ii. (56)

Since the generalized eigenvalues of the pair (Ef,ii, Af,ii) lie
inside the unit disk ∆i, Ef,ii is nonsingular. Therefore we
can rewrite (56)

z̃f,i(k) = z̃f,i(0)T
k,

= zf (0)Qf,iT
k, (57)



where

T = Af,iiE
−1
f,ii. (58)

Moreover, for k ≥ 0

pq(k + 1) = zf (k)hf ,

= z̃f,i(k)QT
f,ihf ,

= zf (0)Qf,iT
kQT

f,ihf . (59)

Finally, the limiting probabilities should add up to 1 which
gives us the final normalization equation:

1 = pq(0) +

∞

k=0

pq(k + 1),

= x0hf,b + d0df + zf (0)Qf,i(I − T )−1QT
f,ihf . (60)

Combining the equations (50),(55), and (60), we obtain a
matrix equation of size ma + 2mb + mc + 1 in the extended
unknown vector

y = zf (0) x0 d0 (61)

as

y
Ef Qf,o Qf,i(I − T )−1QT

f,ihf

−Tf,b 0 hf,b

−vf 0 df

=
0
0
1

T

.

(62)
Solving the linear matrix equation (62) for the unknowns
zf (0), x0, and d0, we obtain the parameters of the matrix
geometric distribution of the limiting distribution q:

pq(k) = P (q = k) =
vT k−1h, k ≥ 1
d, k = 0

(63)

where v = zf (0)Qf,i, h = hf , and d = x0hf,b + d0df .
Although the development of the overall algorithm might
be elaborate, the algorithm itself is relatively simple and is
given in Table 1 for the sake of reference.

Table 1: Algorithm to find pq(k), k ≥ 0 given the
triple of quadruples (va, Ta, ha, da), (vb, Tb, hb, db), and
(vc, Tc, hc, dc) characterizing the MG-distributed pro-
cesses a(n), b(n), and c(n), respectively, in the Lindley
equation (1)
1. Define dabc via (35).
2. Define Ef , Tf , vf , hf , and df , as in (40),(41),(42),

(43), and (44), respectively.
3. Define Tf,b and hf,b as in (45) and (46), respectively.
4. Obtain the matrices Qf and Zf that put the matrix

pair (Ef , Af ) into the generalized ordered real Schur
form with ordering described as in (51).

5. Partition Qf as in (54).
6. Define T through (58).
7. Solve the linear matrix equation (62) for the unknown

vector y.
8. Obtain the parameters of the matrix geometric dis-

tribution for the random variable q via (63).

4. NUMERICAL EXAMPLES
We first take a classical GI/GI/1 discrete time queueing

example from [12]. The interarrival times are denoted by
b(n) and its distribution is uniform in the interval [1, Bmax].

The service times are denoted by a(n) and this distribu-
tion is also uniform in the interval [1, Amax]. Such finite
support distributions are actually discrete phase-type and
phase-type representations for finite support distributions
can easily be found as in [3]. The waiting time in the
queue denoted by q(n) satisfies the Lindley equation (1)
with c(n) = 0 and we are interested in finding the equi-
librium distribution. The proposed algorithm in Table 1
can now be used by taking (vc, Tc, hc, dc) = (∅, ∅, ∅, 1)
where ∅ denotes the empty set. We compare the findings
of this paper with those presented in [12] using the iterative
algorithm for Wiener Hopf factorization. We write E[q],
V ar[q], and pq(·) evaluated at various points for the case of
Amax = 50 and Bmax = 25 which corresponds to a utiliza-
tion ρ = E[a(n)]/E[b(n)] = 0.5098 in Table 2. The proposed
algorithm is named as GORSD due to its numerical engine
based on the generalized ordered real Schur decomposition.
We use MATLAB 7.0 and its functions qz.m for the gener-
alized real Schur form and ordqz.m for its suitable ordering.
The results agree up to three digits. table

Table 2: The numerical results obtained with two
algorithms proposed for a discrete time queueing ex-
ample with Amax = 50 and Bmax = 25.

Performance Measure [12] GORSD
E[q] 3.720 3.7199

V ar[q] 58.57 58.5738
pq(0) 0.687 0.6871
pq(1) 0.019 0.0193
pq(2) 0.019 0.0187
pq(3) 0.018 0.0182
pq(4) 0.017 0.0176
pq(5) 0.017 0.0170
pq(6) 0.016 0.0164
pq(10) 0.014 0.0138
pq(20) 0.007 0.0066
pq(30) 0.002 0.0018

We also vary the values of Amax and Bmax to see if we
can obtain a solution for large problems and with close to
unity utilizations. Table 3 presents our numerical results.
Although the results agree, the computational complexity
of the GORSD algorithm is much higher than that of [12]
for finite support large GI/G/1 queues. The reason is that
GORSD applies on matrix pairs of size m = ma +mb (since
mc = 0 in this example) and the computational complex-
ity of the generalized ordered real Schur decomposition is
O(m3). On the other hand, the algorithm provided in refer-
ence [12] requires 4mamb operations in each iteration and is
therefore computationally more efficient for the finite sup-
port case.

The real advantage of using GORSD remains to be seen
when infinite support matrix geometric distributions are to
be used when such distributions are either available or used
as a means of approximating empirical data. For this pur-
pose, we use a negative binomial distribution x with pa-
rameters r and p whose PMF is then of the following form
[8]:

px(k) =
r + k − 1

k
pr(1 − p)k, k ≥ 0.



Table 3: The numerical results using two algorithms
for a discrete time queueing example with varying
Amax and Bmax.

Amax Bmax ρ E[q] ([12]) E[q] (GORSD)
50 25 0.5098 3.720 3.7199
50 40 0.8039 24.9 24.8725
49 48 0.980 381.0 380.9885
66 65 0.9851 700.1 700.1239
99 98 0.99 1596.6 1594.6
200 180 0.9005 260.4 260.4388
500 450 0.9002 651.1 651.1151
1000 900 0.9001 1302.2 1302.2

The PGF of the distribution x is then easy to write

p∗
x(z) =

pz

z − (1 − p)

r

with E[x] = r(1−p)
p

and V ar[x] = r(1−p)

p2 . The parame-

ter r gives the order of the distribution and given r and
E[x], one can fit a negative binomial distribution by setting
p = r/(r + E[x]). In this numerical example, we assume
that both processes a(n) and b(n) possess negative bino-
mial distributions with the same but varying r parameter.
Moreover, E[b] = 10 and E[a] = ρE[b] for a load param-
eter ρ < 1. Obviously, negative binomial distributions are
infinite support and the iterative techique of [13] cannot be
directly used. However, one can find a straightforward fi-
nite support distribution approximation pε

x(·) for a desired
accuracy ε to an infinite support distribution px(·) by

pε
x(k) =

px(k)
∞
k=Kε

x+1 px(k)
k ≤ Kε

x,

0 k > Kε
x,

where Kε
x is the smallest integer such that K

k=0 px(k) >
1 − ε. Once the finite support approximation is obtained,
one can use the iterations in [13] for finding an approxima-
tion to the limiting distribution q in the Lindley equation
(1). Given a desired accuracy ε, the computational cost
for the algorithm of [13] for the Lindley equation in (1) is
O(Kε

aKε
b ) per iteration. Let ITER denote the number of

iterations required for a desired accuracy of 10−9. On the
other hand, our proposed algorithm uses the matrix geomet-
ric representation for the negative binomial distribution that
corresponds to the sum of r geometric random variables each
with PMF of the form p(1 − p)k, k ≥ 0. Such a representa-
tion is easily obtainable using the method described in (15).
It is also clear that the computational complexity of the pro-
posed GORSD method in this case is O(r3) and we expect
to achieve relatively efficient solutions with GORSD when
the parameter r is small. We present our results in terms of
pq(0), E[q], and the CPU time in seconds in Table 4 for two
different values of r and for two different values of ρ. The
results are obtained using MATLAB 7.0 running on a Linux
Redhat Intel XEON-based workstation. When the approxi-
mation accuracy parameter ε → 0 then the results using the
algorithm in [13] exactly match with those obtained from
GOSRD up to 4 digits. We did not encounter any stability
problems in using the two algorithms for any parameter set.
We also observed that increasing the load to 0.99 did not
have any adverse effect on both algorithms. When the dis-
tribution parameter r is 4, then r3 << Kε

aKε
b and we obtain

relatively efficient results wih GOSRD. On the other hand,
when r = 64 then r3 >> Kε

aKε
b and the algorithm in [13] is

more efficient in terms of CPU time. Therefore, we are led to
believe that GORSD is a viable alternative for discrete time
queues especially driven by MG-distributed infinite support
distributions with moderate order.

5. CONCLUSIONS
In this paper, we introduce a new algorithmic method

for solving the limiting distribution of discrete time Lind-
ley’s equation which is driven by processes which are not
auto-correlated and which are modeled by general matrix
geometric distributions. We use state space methods of sys-
tem theory which are purely matrix analytical. We avoid
transform domain calculations such as root finding or inverse
z-transformation. The numerical engine of the proposed al-
gorithm is the generalized ordered real Schur decomposition
which is available in various platforms for public use and
which has been effectively used to solve Riccati equations
for decades. This decomposition is to apply on a matrix
pair with size being the sum of the order of the individual
matrix geometric-distributed processes as opposed to their
product, which is a clear advantage over some of the matrix
analytical methods proposed for discrete time queues. How-
ever, we note the real advantage of the proposed algorithm
of this paper is when the involved matrix geometric distri-
butions have infinite support or they can be approximated
well by infinite support matrix geometric distributions with
much smaller orders. Another advantage of the proposed al-
gorithm is the matrix geometric representation of the limit-
ing distribution via which moments or any related quantity
can easily be found. We plan on extending our results to
semi-Markov arrivals and services and also studying matrix
geometric modeling using empirical data.
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APPENDIX
We’ll provide a proof for Theorem 1 here. Consider double-
sided z-transforms [25] and recall that right-sided PMFs
p(k), i.e., p(k) = 0, k < 0 possess stable z-transforms, i.e.,
their poles are in ∆o. On the other hand, left-sided PMFs
p(k), i.e., p(k) = 0, k > 0, have anti-stable z-transforms, i.e.,
their poles are in ∆i. The max(·, 0) operator in the space do-
main then corresponds to taking the anti-stable part out in
the transform domain and adding all the probability mass of
the anti-stable part to the origin. Note that the PMF of the
random variable s = x− y denoted by pz(k) is double-sided
and its PGF is expressed as

p∗
s(z) = p∗

x(z)p∗
y(z−1). (64)

We know that

p∗
x(z) = q∗x(z) +

l∗x(z)

d∗
x(z)

, deg(l∗x) < deg(d∗
x), (65)

for a polynomial q∗x(z) simply by Euclidean division. Rewrit-
ing p∗

s(z), we have

p∗
s(z) = q∗x(z)

n̄∗
y(z)

d̄∗
y(z)

+
l∗x(z)

d∗
x(z)

n̄∗
y(z)

d̄∗
y(z)

. (66)

Using Euclidean division for the first term and unique
spectral decomposition for the strictly proper second term,
we find out that the anti-stable part of p∗

s(z) is a strictly

proper rational function of the form
u∗
1(z)

d̄∗
y(z)

. Therefore by tak-

ing out the anti-stable part and by adding the corresponding
probability mass to the origin, we obtain

p∗
t (z) = p∗

s(z) − u∗
1(z)

d̄∗
y(z)

+
u∗

1(1)

d̄∗
y(1)

,

= p∗
x(z)p∗

y(z−1) − u∗(z)

d̄∗
y(z)

, (67)

where

u∗(z) = u∗
1(z) − u∗

1(1)

d̄∗
y(1)

d̄∗
y(z).

Note that u∗(1) = 0 and deg(u∗) = deg(d̄∗
y) = deg(n∗

y),
which completes the if part of the proof. The only if part can
be proved by observing the unique spectral decomposition
of a strictly proper rational function into its stable and anti-
stable parts and tracing back the proof of the if part.


