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Abstract. We investigate theoretically in a tight-binding model the transport properties of the Aharonov-Bohm interferometer
(ABI) with one dot embedded in each of its arms. For weak interdot coupling the model Hamiltonian describes the system
considered in the experiments of Holleitner et al. [Phys. Rev. Lett. 87, 256802 (2001)]. The electronic transmittance of the
interferometer is computed within the Landauer-Büttiker formalism while the coexistence of resonant and coherent transport
is explicitly emphasized by using the Feschbach formula. The latter produces effective Hamiltonians whose spectral properties
describe the tunneling processes through each dot. We reproduce numerically the stability charging diagrams reported in the
experiments of Holleitner et al. When the magnetic flux is fixed and one dot is set to resonance the interferometer transmittance
shows Fano lineshapes as a function of the gate voltage applied to the other dot. Our model includes the effect of the magnetic
field on the dot levels and explains the change of the asymmetric tail as the magnetic flux is varied. The transmittance assigned
to the Fano dips located in the almost crossing point of the charging diagrams shows Aharonov-Bohm oscillations.

Keywords: Quantum dots, Aharonov-Bohm interferometer, Fano effect
PACS: 73.23.Hk, 85.35.Ds, 85.35.Be, 73.21.La

GENERAL FRAMEWORK are weakly coupled the transport through the sample is
easily studied by looking at the complex poles of G I

eff
The Aharonov-Bohm interferometers are hybrid systems [1, 2]. This situation is different in the experiments with
composed of one or several quantum dots embedded ABI because the weak-coupling is set between the ring
in the arms of a mesoscopic ring. The interferometer and the dot cluster while the electrons from leads reach
Hamiltonian HI acts on I R C C� �� �� , where � freely the interferometer. Moreover, the complexity of
and R� are the Hilbert spaces of the quantum dot cluster the system yields complicated contributions to transport
and the truncated ring. The latter is coupled to several which have to be discerned at the level of the effective
semi-infinite noninteracting leads labelled α�β ���. H I is Green function. The remedy is to use the Feschbach for-
conveniently written as: mula (see [2] for details) to express the effective resol-

vent in the following form:
HI � HC R�H �HCR�HRC (1)
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CR RC The new effective Green functions GC and GR describe
The off-diagonal parts H �H connect the two sub-

individually the dot and the truncated ring:
sytems, τ being the ring-dot coupling constant. m is the
site of the cluster that is the closest one to the site 0m of GR�z� : HR 1� � �ΣL�z�� z�� (5)
the truncated ring. HC contains a sum of single-dot terms GC D� �H C 1�z� : � �z�� z�� � (6)

D
Σ

H k and their couplings:
ΣL�z� is the lead’s self-energy and the cluser self-energy

D 2 ik π ϕH ��eV ∑ �i��i�� t ∑ e ii�
� C CR I �1 RC

k D �i��i � (3) Σ �z� � H �QHeffQ � z� H where Q projects on
i�QD �i�i�k � the Hilbert space of the truncated ring. The conductance

across the interferometer is given by
The on-site term Vk simulates the gate potential applied

2
to the dot k � i i�� � denotes the nearest neighbor summa-

g E 4τ4 sin2 i
and e �ϕ

t
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tion � F� � k α 0n � (7)
D is the hopping integral on dots. The magnetic αβ

�
∑ � �β

�

flux φ is described through Peierls phases and will be

��
m�n

��

expressed in units of quantum flux Φ0. The conductance This formula captures

� ��
all the resonant processes

�
in-

matrix G can be computed from the Landauer-Büttiker side the interferometer. Our method involves only Green
formula provided one knows an effective Green function functions is an alternative to the scattering theoretical ap-
GI

eff of the sample in the presence of the leads. If the leads proach [3].
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FANO EFFECT IN DOUBLE-DOT
INTERFEROMETER

In this section we concentrate on Eq. (7) in which a
double-dot interferometer is characterized. Thus H C �
HQD1 �HQD2 �H tun, the last term describing the inter-
dot tunnel coupling. Clearly, the condition for quantum
interference is that both dots transmit. This means that
the electron tunnels simultaneuosly through two levels of
the isolated double dot system Ei�V1�V2� and E j�V1�V2�.
Here V1�V2 are the gate potentials applied on each dot.
Following Holleitner et al. [4] we plot in Fig. 1 the cal-
culated charging diagram of an interferometer with 4�5
sites noninteracting quantum dots in the weak coupling
regime. For each fixed value of V2, we varied V1 in the
interval shown in the figures and we selected only con-
ductances g12 that are larger than 0.65, which means that
what we obtain is roughly a map for the peak positions
in the plane �V1�V2�. Each horizontal (vertical) trace rep-
resents the trajectory of a conductance peak associated
with a resonant tunneling process through QD2 (QD1).

FIGURE 1. Charging diagram of the double dot interferom-
eter with ring-dot coupling constant τ � 0�3 and φ � 3Φ0.

The idea is then to isolate the resonant contribution
of a pair of eigenvalues in the effective resolvent. To
this end one has first to use again the Feschbach for-
mula in order to single out an effective resolvent acting
in the two-dimensional spectral subspace of the two cho-
sen eigenvalues. As a consequence, GC is approximated
by a 2� 2 matrix G̃D

eff. Secondly, a Dyson equation for
G̃C

eff is written down, with respect to its off-diagonal part.
The unperturbed resolvent involved in the Dyson expan-
sion is the sum of two Breit-Wigner-like terms associated
with the resonances located near Ei and E j. By plug-

ging the Dyson expansion for G̃D
eff in (7) one recovers

all the electronic paths within the interferometer. More
technical details were given in [2]. In Fig. 2 we show a
detail from the charging diagram in Fig. 1, taken in the
neighborhood of an almost crossing point. We observe
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FIGURE 2. Fano effect in the double-dot interferometer.

an asymmetric large tail of the peaks, showing clearly
that in this regime the interferometer acts as a Fano sys-
tem. This happens because one dot (QD2) is always set
to a resonance thus the corresponding arm of the ring is
’free’, providing the continuum component for the inter-
ference. As V2 is slightly modified the orientation of the
Fano tail changes. This is the so-called electrostatic con-
trol of the Fano interference [5]. Moreover, the transmit-
tance assigned to the Fano dips shows Aharonov-Bohm
oscillations, in full agreement with the observations of
Holleitner et al. These results were thoroughly discussed
in [2].
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