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ABSTRACT
The problem of computing bounds on the conditional steady-
state probability vector of a subset of states in finite, ergodic
discrete-time Markov chains (DTMCs) is considered. An im-
proved algorithm utilizing the strong stochastic (st-)order
is given. On standard benchmarks from the literature and
other examples, it is shown that the proposed algorithm per-
forms better than the existing one in the strong stochastic
sense. Furthermore, in certain cases the conditional steady-
state probability vector of the subset under consideration
can be obtained exactly.
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C.4 [Performance of Systems]: Modeling techniques; G.3
[Probability and Statistics]: Markov processes; G.1.3
[Numerical Analysis]: Numerical Linear Algebra—Sparse,
structured, and very large systems (direct and iterative meth-
ods)
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1. INTRODUCTION
Let P denote the transition probability matrix of an ir-

reducible discrete-time Markov chain (DTMC) [14] defined
on the finite state space S with n states and the block par-
titioning

P =

»
PA,A PA,B
PB,A PB,B

–
nA
nB

, (1)

where A∪B = S, A∩B = ∅, and nA and nB are respectively
the number of states in subsets A and B, implying n =
nA + nB. Note that for given A ⊂ S, P can always be
symmetrically permuted to the block form in (1). Here PA,A
is the square submatrix of order nA obtained from P by
deleting the rows and columns associated with states in B.
Being an irreducible DTMC, P satisfies P ≥ 0 and Pe = e,
where e is column vector of ones with appropriate length.
Furtermore, PA,A is substochastic, meaning PA,A ≥ 0 and
PA,Ae ≤ e, but PA,Ae �= e.

The stochastic complement of PA,A, denoted by SA, is the
irreducible DTMC given by [8]

SA = PA,A + PA,B(I − PB,B)−1PB,A| {z }
HA,A

= PA,A + HA,A. (2)

It is well known that (I−PB,B) is a nonsingular M-matrix [2],
implying (I − PB,B)−1 ≥ 0. This, combined with PA,A ≥ 0
and PB,A ≥ 0, suggests HA,A ≥ 0. Observe that HA,Ae =
e−PA,Ae since SA is an irreducible DTMC. In particular, SA
is the sum of two terms, the first of which represents tran-
sitions within A, and the second of which represents tran-
sitions from A to B, spending some nonnegative time in B,
and then returning to A (see equation (2)). The probability
of moving directly from ai ∈ A to aj ∈ A is PA,A[ai, aj ] and
the probability of moving from ai ∈ A to aj ∈ A through
states in B is HA,A[ai, aj ]. We remark that similar state-
ments can be made regarding the stochastic complement of
PB,B. In summary, the stochastic complement associated
with a subset of states in an irreducible DTMC is an ir-
reducible DTMC representing the evolution of the original
process restricted to the subset of states. For this reason,
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some texts refer to the stochastic complement as the cen-
sored MC (see, for instance, [3]).

Now, let us further assume that P is aperiodic (meaning it
is ergodic since we already assumed it to be irreducible), im-
plying the existence of a unique, positive steady-state prob-
ability distribution (row) vector π = [πA πB] conformally
partitioned with P such that

πP = [πA πB]

»
PA,A PA,B
PB,A PB,B

–

= [πA πB] = π with πe = 1. (3)

Throughout the text we assume all probability vectors to be
row vectors. Now, if πSA denotes the steady-state probabil-
ity distribution vector of SA (that is, πSASA = πSA with
πSAe = 1), then [8]

πSA = πA/(πAe). (4)

In fact, the steady-state vector of the stochastic complement
SA represents the conditional steady-state probability of its
states given that the DTMC is in subset A.

In practical problems P is large, and therefore it is expen-
sive to form SA unless nB 
 n (see equations (1) and (2)).
This simply follows from the fact that the computation of SA
requires factorizing the matrix (I − PB,B) of order nB and
performing nA forward and backward substitutions, each
using a different column of PB,A as the right-hand side, to
obtain (I −PB,B)−1PB,A. Since it is mostly πSA in equation
(3) rather than SA in equation (2) that is sought, an alterna-
tive approach would be to compute bounds on πSA without
forming SA. It is this kind of approach that we consider in
this paper. Such an approach is taken, for instance, at the
second level of the two-level bounded aggregation method
[5], which is based on polyhedra theory and geared towards
nearly completely decomposable (NCD) MCs [14]. The the-
ory essentially says that one can compute bounds on πSA
by factorizing the matrix (I − PA,A)T of order nA and per-
forming nA forward and backward substitutions, each using
a different column of I as the right-hand side, under a nor-
malization condition. The bounds obtained in this manner
are known to provide the best bounds that can be attained
by solely using the information available in PA,A and are
especially tight for NCD MCs.

Here, we take a different view and consider the stochas-
tic comparison approach to bound πSA in equation (4) as it
is introduced in [15] and later implemented in [10, 11] for
sparse NCD MCs. In particular, we show that one can do
better than the method discussed in [15] by intelligently dis-
tributing the slack probability mass, (e−PA,Ae), among the
rows of PA,A using the information available in PB,A. This
improved method can be used not only by itself to com-
pute bounds on πSA , but also in two-level bounding meth-
ods based on decomposition and aggregation to compute
bounds on π. The results in this paper can be combined
with reordering of states [7, 10] or polynomial transforma-
tions [6] to further improve the bounds, and can be extended
to continuous-time MCs through uniformization [14].

The next section provides background information on
stochastic comparison and the existing method to compute
bounds on πSA . In section 3, we develop the improved
method and prove that it provides better bounds than the
existing method in the strong stochastic sense. Further-
more, we show that there are certain cases in which the

bounds are exact. Section 4 includes the results of numeri-
cal experiments and in section 5 we conclude.

2. BACKGROUND ON STOCHASTIC
COMPARISON AND THE CURRENT
METHOD

In this section, we present some preliminaries on the
stochastic comparison method; the books [9, 13] can be con-
sulted for theoretical issues and different applications of the
method. Then we introduce the existing method used to
obtain strong stochastic bounds on the conditional steady-
state vector of a subset of states in finite, ergodic DTMCs.

2.1 Strong stochastic order
We first provide the definition of strong stochastic (st-)

comparison over a finite state space. Let X and Y be ran-
dom variables taking values on the state space
S = {1, 2, . . . , n}. Let p and q be probability distribution
vectors such that

p[j] = Prob(X = j) and q[j] = Prob(Y = j) ∀j ∈ S.

Then X is said to be less than Y in the strong stochastic
sense, that is X ≤st Y , if and only if

nX
j=k

p[j] ≤
nX

j=k

q[j] ∀k ∈ S. (5)

Hence, equation (5) defines a partial order on probability
distributions, and this order is called the st-order.

Now, we recall the fundamental result which states for
two MCs that the st-comparability of their initial probabil-
ity distributions, the st-monotonicity of one of them, and
their st-comparability yield sufficient conditions for their st-
ordering. Let P and Q be DTMCs of order n respectively
characterizing the stochastic processes X(t) and Y (t) for
t ∈ IN on S. Then {X(t)}t∈IN ≤st {Y (t)}t∈IN (meaning,
X(t) ≤st Y (t) for ∀t ∈ IN) if

(i) X(0) ≤st Y (0),

(ii) st-monotonicity of at least one of the matrices holds;
that is, either

P [i, ∗] ≤st P [j, ∗] ∀i, j ∈ S such that i ≤ j,

or

Q[i, ∗] ≤st Q[j, ∗] ∀i, j ∈ S such that i ≤ j,

(iii) st-comparability of the matrices holds; that is,

P [i, ∗] ≤st Q[i, ∗] ∀i ∈ S,

where P [i, ∗] refers to row i of P .
This result has the following implication. If

{X(t)}t∈IN ≤st {Y (t)}t∈IN, limt→+∞ X(t) and limt→+∞ Y (t)
exist, and πP and πQ are respectively the steady-state prob-
ability distribution vectors of P and Q, then πP ≤st πQ (see
equation (5)). In other words, πQ (πP ) provides an st upper
(lower)-bound on πP (πQ).



2.2 Strong stochastic steady-state bounds for
a stochastic complement

As shown in [15], in order to obtain st upper- and lower-
bounds on πSA , we must first form the DTMCs SA and SA
of order nA such that

SA ≤st SA ≤st SA.

To this end, in Algorithms 1 and 2 we present concise ver-
sions of those introduced in [15]. Algorithm 1 places the
slack probability mass

∆A = e − PA,Ae (6)

in the last column of PA,A to yield SA, whereas Algorithm
2 places it in the first column to yield SA. We remark that
SA and SA are minimum and maximum elements of a set of
DTMCs bounding SA respectively from below and above in
the strong stochastic sense. However, SA and SA need not
be st-monotone. The time complexity of Algorithms 1 and
2 in the worst-case when PA,A is full can be O(n2

A) floating-
point arithmetic operations. In their description, ej denotes
column j ∈ A of I.

Algorithm 1: Construct DTMC SA of order nA corre-
sponding to PA,A.

Input : PA,A
Output: SA
∆A = e − PA,Ae;
SA = PA,A + ∆AeT

nA ;

Algorithm 2: Construct DTMC SA of order nA corre-
sponding to PA,A.

Input : PA,A
Output: SA
∆A = e − PA,Ae;
SA = PA,A + ∆AeT

1 ;

Following Algorithms 1 and 2, the st-monotone upper-
bounding matrix QA of order nA corresponding to SA can
be computed by Algorithm 3 and the st-monotone lower-
bounding matrix QA of order nA corresponding to SA can
be computed by Algorithm 4. Algorithm 3 is given for the
first time in [1], whereas Algorithm 4 is the dual of Algo-
rithm 3 for the lower-bounding case and is presented in [10].
The time complexity of their careful implementation in the
worst-case when SA and SA are full can be O(n2

A) floating-
point arithmetic operations. It is shown in [10, 15] that QA
and QA are st-monotone and

QA ≤st SA ≤st QA,

implying

πQA ≤st πSA ≤st πQA .

In the next section, we propose a new method which is
based on distributing ∆A in equation (6) more intelligently
among the columns of PA,A and indicate cases in which the
bounds may be obtained exactly.

Algorithm 3: Construct st-monotone upper-bounding
DTMC QA of order nA corresponding to SA.

Input : SA
Output: QA
QA[1, nA] = SA[1, nA];
for i = 2, 3, . . . , nA do

QA[i, nA] = max(QA[i − 1, nA], SA[i, nA]);
end
for l = nA − 1, nA − 2, . . . , 1 do

QA[1, l] = SA[1, l];
for i = 2, 3, . . . , nA do

QA[i, l] =
max(

PnA
j=l QA[i − 1, j],

PnA
j=l SA[i, j])

− PnA
j=l+1 QA[i, j];

end
end

Algorithm 4: Construct st-monotone lower-bounding
DTMC QA of order nA corresponding to SA.

Input : SA
Output: QA
for l = 1, 2, . . . , nA − 1 do

QA[nA, l] = SA[nA, l];
for i = nA − 1, nA − 2, . . . , 1 do

QA[i, l] =

max(
Pl

j=1 QA[i + 1, j],
Pl

j=1 SA[i, j])

− Pl−1
j=1 QA[i, j];

end
end
QA[nA, nA] = SA[nA, nA];
for i = nA − 1, nA − 2, . . . , 1 do

QA[i, nA] = 1 − PnA−1
j=1 QA[i, j];

end

3. IMPROVING THE STEADY-STATE
BOUNDS OF A STOCHASTIC
COMPLEMENT

Our derivation requires us to be able to identify the states
within the subsets A and B individually and also distin-
guish between the states of the two subsets symbolically.
Hence, in this section we let A = {a1, a2, . . . , anA} and
B = {b1, b2, . . . , bnB}.

Now, observe that ∆A[ai] in equation (6) is the total prob-
ability of leaving state ai ∈ A to go to any state in B, that
is,

∆A[ai] = 1 −
X

bk∈B
PA,B[ai, bk]

=
X

aj∈A
HA,A[ai, aj ]

= eT
ai

HA,Ae ∀ai ∈ A.

Furthermore, recall from equation (2) that in order to de-
termine the stochastic complement SA, the substochastic
matrix HA,A must be computed. Indeed, the computation
of HA,A signifies that we must somehow find a proper way
to distribute the slack probability mass ∆A[ai] among the
columns aj ∈ A by adding to the matrix PA,A for all ai ∈ A.



Let Bbk [ai] be the probability of leaving B from state
bk ∈ B after having entered B, spent some nonnegative time
there, left B, and entered A by state ai ∈ A. Then the prob-
ability of leaving A by ai ∈ A must be equal to the sum of
Bbk [ai] for all bk ∈ B, that is,X

bk∈B
Bbk [ai] = ∆A[ai]. (7)

Let us denote by Vbk [aj ] the probability of entering A from
B by state aj ∈ A given that B is left from state bk ∈ B.
Then

Vbk [aj ] =
PB,A[bk, aj ]P

al∈A PB,A[bk, al]
. (8)

As HA,A[ai, aj ] represents the probability of leaving A
from state ai ∈ A to go to B and returning to A by state
aj ∈ A after having spent some nonnegative time in B, from
equation (7) we can write

HA,A[ai, aj ] =
X

bk∈B
Bbk [ai]Vbk [aj ]. (9)

The fact that ∆A[ai] represents the slack probability mass
for state ai ∈ A to be stochastic and is equal toP

aj∈A HA,A[ai, aj ] can be confirmed through equation (9)
as X

aj∈A
HA,A[ai, aj ] =

X
aj∈A

X
bk∈B

Bbk [ai]Vbk [aj ]

=
X

bk∈B
Bbk [ai]

X
aj∈A

Vbk [aj ]

=
X

bk∈B
Bbk [ai]

(since
X

aj∈A
Vbk [aj ] = 1)

= ∆A[ai].

3.1 The case of st upper-bound
Knowing that HA,A is substochastic, for the st upper-

bounding case, we may try to construct a substochastic ma-
trix FA,A so that S

new
A = PA,A + FA,A is a DTMC and

anAX
aj=al

HA,A[ai, aj ] ≤
anAX

aj=al

FA,A[ai, aj ] ∀al ∈ A (10)

is satisfied for all ai ∈ A. If this can be done, then the next
result holds.

Theorem 1. If FA,A is defined so that

S
new
A = PA,A + FA,A

is a DTMC and equation (10) is satisfied for all ai ∈ A,
then

SA ≤st S
new
A .

Proof. The result follows from the definition of SA in
equation (2) and the definition of st-comparability in sub-
section 2.1 of the matrices SA and S

new
A under the given

assumptions.

If FA,A = ∆AeT
nA (i.e., the slack probability mass is placed

in the last column as in Algorithm 1), then it is shown in
[10, 15] that Theorem 1 holds.

The next theorem paves the way to the construction of a
substochastic matrix FA,A providing more accurate results
in the st upper-bounding case.

Theorem 2. If FA,A is defined so that

S
new
A = PA,A + FA,A

is a DTMC and for all ai ∈ A

FA,A[ai, aj ] =

j
cA[anA ]∆A[ai] aj = anA
(cA[aj ] − cA[aj+1])∆A[ai] else

,

where

cA[aj ] = max
bk∈B

0
@ anAX

al=aj

Vbk [al]

1
A ∀aj ∈ A,

then

SA ≤st S
new
A .

Proof. The st-comparison constraints in equation (10)
imply that

anAX
aj=al

HA,A[ai, aj ] ≤
anAX

aj=al

FA,A[ai, aj ] ∀al ∈ A

must be satisfied for all ai ∈ A. To this end, using equation
(9) and then equation (7) we first obtain

anAX
aj=al

HA,A[ai, aj ] =

anAX
aj=al

X
bk∈B

Bbk [ai]Vbk [aj ]

=
X

bk∈B
Bbk [ai]

anAX
aj=al

Vbk [aj ]

≤
X

bk∈B
Bbk [ai] max

bk∈B

0
@ anAX

aj=al

Vbk [aj ]

1
A

≤ ∆A[ai] max
bk∈B

0
@ anAX

aj=al

Vbk [aj ]

1
A

for all ai, al ∈ A. Next, using the definitions of FA,A[ai, aj ]
and cA[aj ] in the statement of the theorem, we obtain

anAX
aj=al

FA,A[ai, aj ] = ∆A[ai]cA[anA ]

+∆A[ai]

anA−1X
aj=al

cA[aj ]

−∆A[ai]

anA−1X
aj=al

cA[aj+1]

= ∆A[ai]cA[al]

= ∆A[ai] max
bk∈B

0
@ anAX

aj=al

Vbk [aj ]

1
A



for all ai, al ∈ A, to conclude

anAX
aj=al

HA,A[ai, aj ] ≤
anAX

aj=al

FA,A[ai, aj ].

Hence, the result is proved.

Using the definition of Vbk [aj ] in equation (8), Algorithm
5 constructs the substochastic matrix FA,A in Theorem 2.
The time complexity of its careful implementation in the
worst-case when PA,A and PB,A are full can be
O(nA(nA + nB)) floating-point arithmetic operations. In
its description, (x)+ = max(0, x).

Algorithm 5: Construct improved DTMC S
new
A of or-

der nA corresponding to PA,A.

Input : PA,A
Output: S

new
A

∆A = e − PA,Ae;
for aj = anA , anA−1, . . . , a1 do

cA[aj ] = maxbk∈B

„ PanA
al=aj

PB,A[bk,al]P
am∈A PB,A[bk,am]

«
;

for ai = a1, a2, . . . , anA do
FA,A[ai, aj ] =
(∆A[ai]cA[aj ]−PanA

al=aj+1
FA,A[ai, al])

+;

end
end
S

new
A = PA,A + FA,A;

The next lemma shows that the proposed approach is bet-
ter in the strong stochastic sense than the existing one.

Lemma 1. If

SA = PA,A + ∆AeT
nA and S

new
A = PA,A + FA,A,

then

S
new
A ≤st SA.

Proof. Observe that complementing PA,A by including
the slack probability mass in the last column as in Algorithm
1 corresponds to taking cA[anA ] = 1 and cA[aj ] = 0 for
aj ∈ A− {anA} in Theorem 2.

3.2 The case of st lower-bound
In a similar way to that of the st upper-bounding case,

for the st lower-bounding case, we may try to construct a
substochastic matrix GA,A so that Snew

A = PA,A + GA,A is
a DTMC and

anAX
aj=al

GA,A[ai, aj ] ≤
anAX

aj=al

HA,A[ai, aj ] ∀al ∈ A (11)

is satisfied for all ai ∈ A. For this dual case, we have two the-
orems and a corresponding lemma, which we present without
proofs.

Theorem 3. If GA,A is defined so that

Snew
A = PA,A + GA,A

is a DTMC and equation (11) is satisfied for all ai ∈ A,
then

Snew
A ≤st SA.

If GA,A = ∆AeT
1 (i.e., the slack probability mass is placed

in the first column as in Algorithm 2), then it is shown in
[10, 15] that Theorem 3 holds.

Theorem 4. If GA,A is defined so that

Snew
A = PA,A + GA,A

is a DTMC and for all ai ∈ A

GA,A[ai, aj ] =

j
dA[a1]∆A[ai] aj = a1

(dA[aj+1] − dA[aj ])∆A[ai] else
,

where

dA[aj ] = max
bk∈B

0
@ ajX

al=a1

Vbk [al]

1
A ∀aj ∈ A,

then

Snew
A ≤st SA.

Using the definition of Vbk [aj ] in equation (8), Algorithm
6 constructs the substochastic matrix GA,A in Theorem 4,
whose worst-case time complexity is the same as that of
Algorithm 5.

Algorithm 6: Construct improved DTMC Snew
A of or-

der nA corresponding to PA,A.

Input : PA,A
Output: Snew

A
∆A = e − PA,Ae;
for aj = a1, a2, . . . , anA do

dA[aj ] = maxbk∈B

„ Paj
al=a1 PB,A[bk,al]P

am∈A PB,A[bk,am]

«
;

for ai = a1, a2, . . . , anA do
GA,A[ai, aj ] =
(∆A[ai]dA[aj ]−Paj−1

al=a1
GA,A[ai, al])

+;

end
end
Snew

A = PA,A + GA,A;

Lemma 2. If

SA = PA,A + ∆AeT
1 and Snew

A = PA,A + GA,A,

then

SA ≤st Snew
A .

3.3 The cases of exact bounds
We first state a lemma showing that HA,A can be obtained

exactly when PB,A is a rank-1 matrix.

Lemma 3. If PB,A = uBvT
A, meaning PB,A is rank-1, with

vT
Ae = 1, then SA = PA,A + ∆AvT

A.

Proof. Recall equation (2) and write HA,A as in

HA,A = PA,B(I − PB,B)−1PB,A

=
`
PA,B(I − PB,B)−1uB

´
vT
A

= wBvT
A,

where

wB = PA,B(I − PB,B)−1uB.



Now, since HA,Ae = e − PA,Ae = ∆A from equations (2)
and (6), we must have

HA,Ae = wB(vT
Ae) = wB = ∆A.

Hence,

HA,A = ∆AvT
A

and the result is proved.

The next result is based on Lemma 3 and says that the
st upper- and lower-bounding DTMCs computed by Algo-
rithms 5 and 6 are equal to the stochastic complement when
PB,A is a rank-1 matrix.

Lemma 4. If PB,A = uBvT
A with vT

Ae = 1, then SA =
S

new
A = Snew

A .

Proof. The result follows from Theorems 2 and 4 by
observing under the given assumptions that

cA[aj ] =

anAX
al=aj

vA[al]

and

dA[aj ] =

ajX
al=a1

vA[al].

Corollary 1. When there is a single transition to the
subset of interest, Algorithms 5 and 6 yield the stochastic
complement.

Proof. If A is the subset of interest and PB,A has a single
nonzero, PB,A is still a rank-1 matrix.

In the next section, we provide results of numerical exper-
iments on two benchmark problems from the literature and
two versions of a small problem.

4. NUMERICAL EXPERIMENTS
For brevity, we only present results using Algorithms 1

and 5, and remark that results are reported in four deci-
mal digits after the decimal point; similar results hold for
Algorithms 2 and 6.

4.1 The Courtois problem
Consider the (8 × 8) Courtois matrix [4] given by

P =

2
6666666664

0.85 0 0.149 0.0009 0 0.00005 0 0.00005
0.1 0.65 0.249 0 0.0009 0.00005 0 0.00005
0.1 0.8 0.0996 0.0003 0 0 0.0001 0
0 0.0004 0 0.7 0.2995 0 0.0001 0
0.0005 0 0.0004 0.399 0.6 0.0001 0 0
0 0.00005 0 0 0.00005 0.6 0.2499 0.15
0.00003 0 0.00003 0.00004 0 0.1 0.8 0.0999
0 0.00005 0 0 0.00005 0.1999 0.25 0.55

3
7777777775

with A = {1, 2, 3}, B = {4, 5, 6, 7, 8}, and

π = [0.0893, 0.0928, 0.0405,

0.1585, 0.1189, 0.1204, 0.2778, 0.1018].

This is an NCD MC with degree of coupling 0.001 for the
chosen partitioning.

The stochastic complement of PA,A is given by

SA =

2
4 0.8503 0.0004 0.1493

0.1003 0.6504 0.2493
0.1001 0.8002 0.0997

3
5

with

πSA = [0.4012, 0.4168, 0.1819].

The DTMCs computed by Algorithms 1 and 5 are respec-
tively given by

SA =

2
4 0.8500 0.0000 0.1500

0.1000 0.6500 0.2500
0.1000 0.8000 0.1000

3
5

and

S
new
A =

2
4 0.8500 0.0005 0.1495

0.1000 0.6505 0.2495
0.1000 0.8002 0.0998

3
5 .

Observe from Algorithm 3 that SA yields the inferior st-
monotone upper-bounding DTMC

QA =

2
4 0.8500 0.0000 0.1500

0.1000 0.6500 0.2500
0.1000 0.6500 0.2500

3
5

with

πQA = [0.4000, 0.3900, 0.2100]

compared to

Q
new

A =

2
4 0.8500 0.0005 0.1495

0.1000 0.6505 0.2495
0.1000 0.6505 0.2495

3
5

with

πQ
new
A

= [0.4000, 0.3905, 0.2095]

given by S
new
A .

4.2 The PSW problem
The second problem that we consider and name PSW(β)

comes from the class of 10 × 10 matrices used in [12]:

Z =

2
66666666666664

0.1 0.3 0.1 0.2 0.3 β 0 0 0 0
0.2 0.1 0.1 0.2 0.4 0 0 0 0 0
0.1 0.2 0.2 0.4 0.1 0 0 0 0 0
0.4 0.2 0.1 0.2 0.1 0 0 0 0 0
0.6 0.3 0 0 0.1 0 0 0 0 0
β 0 0 0 0 0.1 0.2 0.2 0.4 0.1
0 0 0 0 0 0.2 0.2 0.1 0.3 0.2
0 0 0 0 0 0.1 0.3 0.2 0.2 0.2
0 0 0 0 0 0.2 0.2 0.1 0.3 0.2
0 0 0 0 0 0.1 0.7 0 0 0.2

3
77777777777775

.

If D = diag(1/(1 + β), 1, 1, 1, 1, 1/(1 + β), 1, 1, 1, 1), then
P = DZ is an NCD MC with degree of coupling β/(1+β) for
the partitioning A = {1, 2, 3, 4, 5} and B = {6, 7, 8, 9, 10}.
This problem is interesting also for another reason. The
chosen partitioning of states yields one nonzero transition
in each of PB,A and PA,B. Here, we consider PSW(10−3)
with the steady-state vector

π = [0.1009, 0.0801, 0.0301, 0.0603, 0.0792,

0.1009, 0.1967, 0.0700, 0.1619, 0.1198].

The stochastic complement of PA,A is given by

SA =

2
6664

0.1009 0.2997 0.0999 0.1998 0.2997
0.2000 0.1000 0.1000 0.2000 0.4000
0.1000 0.2000 0.2000 0.4000 0.1000
0.4000 0.2000 0.1000 0.2000 0.1000
0.6000 0.3000 0.0000 0.0000 0.1000

3
7775



with

πSA = [0.2877, 0.2284, 0.0860, 0.1719, 0.2260].

The DTMCs computed by Algorithms 1 and 5 are respec-
tively given by

SA =

2
6664

0.0999 0.2997 0.0999 0.1998 0.3007
0.2000 0.1000 0.1000 0.2000 0.4000
0.1000 0.2000 0.2000 0.4000 0.1000
0.4000 0.2000 0.1000 0.2000 0.1000
0.6000 0.3000 0.0000 0.0000 0.1000

3
7775

and

S
new
A =

2
6664

0.1009 0.2997 0.0999 0.1998 0.2997
0.2000 0.1000 0.1000 0.2000 0.4000
0.1000 0.2000 0.2000 0.4000 0.1000
0.4000 0.2000 0.1000 0.2000 0.1000
0.6000 0.3000 0.0000 0.0000 0.1000

3
7775 .

Observe that S
new
A is equal to the stochastic complement.

This is not surprising since PB,A is of rank-1 with a single
nonzero and can be written as PB,A = uBvT

A with vT
Ae = 1,

where

uT
B = [0.0010, 0, 0, 0, 0] and vT

A = [1, 0, 0, 0, 0] = eT
1 ,

Hence, Corollary 1 applies, yielding

SA = PA,A + ∆AvT
A.

Now, observe from Algorithm 3 that SA yields the inferior
st-monotone upper-bounding DTMC

QA =

2
6664

0.0999 0.2997 0.0999 0.1998 0.3007
0.0999 0.2001 0.1000 0.2000 0.4000
0.0999 0.2001 0.1000 0.2000 0.4000
0.0999 0.2001 0.1000 0.2000 0.4000
0.0999 0.2001 0.1000 0.2000 0.4000

3
7775

with

πQA = [0.0999, 0.2101, 0.1000, 0.2000, 0.3901],

which is way off from πS
new
A

= πSA in the strong stochastic
sense.

In passing, we remark that in this problem PA,B is also of
rank-1. We return to this property in the last problem.

4.3 Two 5 × 5 problems
In this subsection, we consider two MCs which normally

would not be classified as NCD.

4.3.1 First version
Consider

P =

2
6664

0.1 0.2 0.4 0.2 0.1
0.3 0.2 0 0.3 0.2
0.1 0.3 0.2 0.1 0.3
0.1 0.2 0.1 0.3 0.3
0.2 0.4 0.2 0.1 0.1

3
7775

with A = {1, 2, 3}, B = {4, 5}, and

π = [0.1713, 0.2562, 0.1620,

0.2105, 0.2001].

The stochastic complement of PA,A is given by

SA =

2
4 0.1750 0.3500 0.4750

0.4250 0.4500 0.1250
0.2000 0.5000 0.3000

3
5

with

πSA = [0.2905, 0.4347, 0.2748].

The DTMCs computed by Algorithms 1 and 5 are respec-
tively given by

SA =

2
4 0.1000 0.2000 0.7000

0.3000 0.2000 0.5000
0.1000 0.3000 0.6000

3
5

and

S
new
A = SA.

Observe that S
new
A is equal to the stochastic complement.

This is not surprising since PB,A is of rank-1 and can be
written as PB,A = uBvT

A with vT
Ae = 1, where

uT
B = [0.4, 0.8] and vT

A = [0.25, 0.5, 0.25].

Hence, Lemma 4 applies, yielding

SA = PA,A + ∆AvT
A.

Now, observe from Algorithm 3 that SA yields the inferior
st-monotone upper-bounding DTMC

QA =

2
4 0.1000 0.2000 0.7000

0.1000 0.2000 0.7000
0.1000 0.2000 0.7000

3
5

with

πQA = [0.1000, 0.2000, 0.7000],

which is way off from πS
new
A

= πSA in the strong stochastic
sense.

4.3.2 Second version
Consider

P =

2
6664

0.1 0.2 0.4 0.2 0.1
0.3 0.1 0 0.4 0.2
0.1 0 0 0.6 0.3
0.1 0.2 0 0.3 0.4
0.2 0.4 0.2 0.1 0.1

3
7775

with A = {1, 2, 3}, B = {4, 5}, and

π = [0.1637, 0.2034, 0.1115,

0.2914, 0.2301].

The stochastic complement of PA,A is given by

SA =

2
4 0.1831 0.3661 0.4508

0.4661 0.4322 0.1017
0.3492 0.4983 0.1525

3
5

with

πSA = [0.3420, 0.4250, 0.2330].

The DTMCs computed by Algorithms 1 and 5 are respec-
tively given by

SA =

2
4 0.1000 0.2000 0.7000

0.3000 0.1000 0.6000
0.1000 0.0000 0.9000

3
5



and

S
new
A =

2
4 0.1750 0.3500 0.4750

0.4500 0.4000 0.1500
0.3250 0.4500 0.2250

3
5 .

Observe from Algorithm 3 that SA yields the inferior st-
monotone upper-bounding DTMC

QA =

2
4 0.1000 0.2000 0.7000

0.1000 0.2000 0.7000
0.1000 0.0000 0.9000

3
5

with

πQA = [0.1000, 0.0250, 0.8750]

compared to

Q
new

A =

2
4 0.1750 0.3500 0.4750

0.1750 0.3500 0.4750
0.1750 0.3500 0.4750

3
5

with

πQ
new
A

= [0.1750, 0.3500, 0.4750]

given by S
new
A .

We remark that although PA,B is a rank-1 matrix, S
new
A �=

SA. Hence, a result similar to Lemma 4 does not hold for
the case of a rank-1 PA,B, and this problem serves as the
counter-example.

5. CONCLUSION
In this contribution, we have given algorithms that con-

struct st upper- and lower-bounding DTMCs on a subma-
trix associated with a subset of states in a finite, irreducible,
and aperiodic DTMC. These DTMCs have been shown to
provide better bounds in the strong stochastic sense than
DTMCs constructed with the existing approach, and are
therefore recommended in bounding the conditional steady-
state probability distribution vector of the subset of states.
In particular, the results with the proposed approach are
shown to be exact when the submatrix representing the tran-
sitions from states outside the subset of interest to the states
in the subset of interest is of rank-1.

Although we have concentrated on bounding the condi-
tional steady-state vector of a subset of states in finite, er-
godic DTMCs, the results in this paper can be extended to
bounding the conditional transient probability distribution
of the subset of interest.
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