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Two-dimensional (2D) electron systems in the presence of disorder are of interest in 
connection with the observed metal-insulator transition in such systems. We use den­
sity functional theory in its local-spin density approximation (LSDA) to calculate the 
ground-state energy of a 2D electron system in the presence of remote charged impurities 
which up on averaging provides disorder. The inverse compressibility calculated from the 
ground-state energy exhibits a minimum at a critical density controlled by the disorder 
strength. Our findings are in agreement with experimental results. 
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1. Introduction 

There has been an immense amount of experimental and theoretical activity in 
recent years to understand the ground state properties of two-dimensional (2D) 
electron systems.1'2 Advances in fabrication techniques have made it possible to 
probe various quantities of interest in high quality and very low density samples. 
Most notably, the observation of a metal-insulator transition1'2 in these systems 
provides a major motivation to study the various physical properties. Most exper­
iments perform transport measurements obtaining resistivity or conductivity as a 
function of temperature at varying electron density to deduce the metallic or in­
sulating phases.3'4,5'6 In contrast, Hani et al.7 used the capacitance technique, a 
thermodynamic measurement, to measure the compressibility finding that it be­
comes spatially inhomogeneous as the density is lowered. Similar observations were 
also made by Dultz and Jiang8 on a 2D hole system who noted that the inverse 
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compressibility is minimum at the same density where the metal-insulator transi­
tion occurs. Recent compressibility and resistivity experiments by Allison et al.9 on 
the same samples indicate that inverse compressibility minimum is not related to 
metal-insulator transition. 

Most of our understanding of metal-insulator transition in 2D electron systems 
is based on various transport measurements. For instance, experiments at in-plane 
magnetic field concentrated on the spin susceptibility, Lande ^-factor, and effective 
mass of the 2D electron systems present in Si-MOSFETS and GaAs quantum-well 
structures3,4 '5,6 '10 '11. In particular, Shashkin et al.12'13 reported a sharp increase 
of the effective mass near the critical density at which the system starts to show 
deviations from the metallic behavior. On the other hand, Pudalov et al.s have found 
only moderate enhancement of the spin susceptibility and effective mass in their 
samples. Thermodynamic measurements of magnetization of a dilute 2D electron 
system were reported by Prus et al.10 and Shashkin et al.11 Both experiments found 
large enhancement of the spin susceptibility \ s over its Pauli value. Whereas the 
measurements of Prus et al.10 found no indication toward a ferromagnetic instability, 
Shashkin et al.11 observed diverging behavior in \ s at a critical density coinciding 
with the metal-insulator transition density obtained from transport measurements. 

As indicated above, there are very few thermodynamic measurements at densi­
ties around the metal-insulator transition. As recent theoretical work by Punnoose 
and Finkelstein14 shows the observed behavior in 2D systems suggests an interac­
tion driven mechanism with disorder playing an important role. On the theoretical 
side, calculations of compressibility for a 2D system of electrons in the presence of 
disorder predict the observed behavior of upturn and divergence15'16. Shi and Xie17 

performed density functional calculations based on the (unpolarized) local density 
approximation developed by Tanatar and Ceperley 18 within the Thomas-Fermi 
(TF) theory, and found similar results for the compressibility. They also identified 
the MIT point with the percolation transition point in this system. This was fur­
ther developed by Das Sarma et al.19 who measured the critical exponent for the 
conductivity and found it in agreement with that proposed by percolation theory. 
On the other hand, Fogler20 argued against percolation transition by calculating 
the critical density to be much smaller. 

In this work, we investigate the spatial distribution of carrier density and the 
compressibility of a 2D electron system using the local spin-density approximation 
(LSDA) both at the TF and Kohn-Sham (KS) levels. The correlation energy func­
tional we use is the one constructed by Attaccalite et al.21 from the very recent 
quantum Monte Carlo (QMC) calculations for correlation energy appropriate for 
uniform systems. An important feature of these simulations is that a transition to a 
ferromagnetic phase at low densities is built in the functional. A disorder potential 
due to remote impurities is included to make the calculation realistic. The density 
distribution of the system shows high and low density regions as reported earlier by 
Shi and Xie.17 Our density functional theory calculations clearly show that the ob­
served minimum behavior in inverse compressibility is the result of electron-impurity 
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interaction. The critical density at which the minimum occurs is controlled by the 
disorder strength. 

In the rest of this paper, we first outline the density functional theory as applied 
to 2D electron systems with impurity interaction, and introduce our computational 
method. We then present our results for the ground-state energy and compressibility 
for 2D electrons in the presence of disorder and discuss our findings in the light of 
recent experiments. 

2. Theory 

We consider a 2D electron system interacting via the long range Coulomb interaction 
whose Fourier transform is Vq = 2ixe2 /(eq) in which e is the background dielectric 
constant. The system is characterized by the dimensionless interaction strength 
rs = l/{ima*B

2)1/2, where n is the 2D electron density and aB = h2e/(m*e2) is 
the effective Bohr radius defined in terms of the band mass m* of electrons in the 
semiconductor structure and dielectric constant e of the material. 

Within the spin-density functional theory the total energy of an iV-electron 
interacting system in a local external potential Vext (

r) is a unique functional of spin 
densities n-[ (r) and n [ (r). The total energy functional can be expressed as 

-Erotai K . ni\ = ET [«T ,ni\+EH [nT, n j 

+Ex[nhni\ + Ec[nhni\+Eext[nhni\ (1) 

We approximate the kinetic energy functional by the Thomas-Fermi-Weizacker 
(TFW) form given by 

ET[nhni\ = ^2 dr \rnl(r)+A^n^ 
|2" 

(2) 
JV(r) 

with A = 1/822. The direct Coulomb energy is given by 

,-, r i e2 f ,9 ,9 / nM n(r') , . 

EH[nhni} = - J d2vd2v' r
; _ Y (3) 

where n(r) = n^(r) + n^(r) is the total density. 
The exchange and correlation energy functionals within the local spin-density 

approximation are written as 

Ex>c[nhni\ = Id reX ) C(nT(r),n i(r)) [nT(r) + nj,(r)]. (4) 

Here ex is the exchange energy of the 2D homogeneous electron electron gas. For 
the correlation energy ec we use the recent QMC result of Attaccalite et al.21 again 
for the 2D homogeneous electron gas which has been parametrized as a function of 
density and spin polarization. 
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Nt=4, d=l a.u. 
r=9.0 r=12.0 r=15.0 

Fig. 1. Density distributions of a 2D electron system in a model disorder potential for several 
values of average electron density characterized by r s . The numbers on the right scale are in units 
of 10~3 a.u. We choose the impurity parameters as upper panel: Ni = 4 and d = 1 a.u., lower panel: 
Ni = 8 and d = 3 a.u. Ten realizations of the impurity potential are averaged, (colour online) 

The disorder studied in this work comes from a random distribution of charged 
impurities (with charge Ze) at a setback distance d from the electron layer. The 
energy functional due to the external potential is 

£ext[n] = Jd2rVext(v){n(v)} (5) 

where the external potential, due to remote impurities, located at ri at a distance 
d from the plane of 2D electrons is given by 

Tr / N v ^ Ze2/e 
V « * « = - E [ ( r _ r i ) 2 + d 2 ] l / 2 - W 

3. Method 

The spin-densities n | ( r ) and n^(r) that extremize the total energy functional can 
be obtained by annealing from a Monte Carlo (MC) simulation. A sufficiently high 
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Fig. 2. The effective potential at different disorder strengths and average electron densities char­
acterized b y rs. We choose the impurity parameters as upper panel: Ni = 4 and d = 1 a.u., lower 
panel: Ni = 8 and d = 3 a.u. Ten realizations of the impurity potential are averaged. 

temperature is first chosen and a Metropolis Monte Carlo run is performed long 
enough to reach thermodynamic equilibrium. Then the temperature is reduced and 
the run is repeated. This is continued until the final temperature is sufficiently low 
so that very little energy fluctuations occur during the last run. This simulation is 
done in order to reach the global minimum of the energy landscape. Once one is near 
the bottom of the valley, eventually a steepest-descent algorithm is applied to reach 
the minimum energy structure faster. The areal integral of the energy functional is 
approximated by a discrete sum: basically the density and potentials are discretized 
on a 64 by 64 mesh whose size is one effective Bohr radius being equal to 100 A in 
GaAs samples. The long-range Coulomb potential is calculated using the Ewald sum 
method. In minimizing the total energy functional, if needed, we have considered 
several different realizations for the impurity atoms and have taken the statistical 
average. 

To make sure of the validity of our analysis, the results from the TFW kinetic 
energy functional were also compared to the solution of the Kohn-Sham equations 
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Fig. 3. Ground state energy (per particle) of a 2D electron system in the presence of charged 
impurities of concentration m = 0.97 x 1 0 - 3 a.u. Distance d of the impurities are given in the 
legend. Homogeneous system result (solid line) is the QMC calculation of Attaccalite et al. (Ref. 21) 

where the kinetic energy is calculated exactly. Densities in the high effective po­
tential regions were found to agree to within a few percent. Low potential regions 
showed good agreement between the densities as well as the effective exchange-
correlation potential. The Kohn-Sham equations follow from the minimization of 
the total energy functional under the constraint of fixed total number of electrons. 
The effective single-particle Schrodinger equation is 

[-V2 + Ves(n,r)}^iS(i) = eisi[)iS(r) 

where 

VeS{n,v)=Vd{v) + jdx'-
8n 

[ex(n)n + ec(n)n] 

(7) 

(8) 

is the effective potential self-consistently determined by the density distribution 
n ( r ) = *l2is l'!/,is(r)|2 by summing over the occupied energy levels and the spin 
index s. 
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Fig. 4. Ground state energy (per particle) of a 2D electron system in the presence of charged 
impurities at a setback distance d = 3 a.u. Number of impurities are given in the legend. Homoge­
neous system result (solid line) is the QMC calculation of Attaccalite et al. (Ref. 21) 

We also remark that a similar Hartree-Fock calculation was recently performed 
on a Mott insulator in the half-filled limit23 where the ground state is antiferro-
magnetic. We believe that the exchange-correlation potential we are using is more 
realistic, and contains the correct physics, namely that at very low densities, before 
the Wigner crystallization, the system becomes ferromagnetic. 

4. Results and Discussion 

We have calculated the ground-state energy and corresponding density distribution 
of a 2D electron system for various impurity potentials characterized by ra» and 
d. We use typically 10 different realizations for the impurity potential to calculate 
the average value of the physical quantities. Our calculations are carried out in a 
64 x 64 discrete space. The size of the system is set as L = 64a | j . The average 
electron density is adjusted by changing the electron number N. We use atomic 
units (a. u.) to measure energy and length, i.e. a*B = 1. 

Nt=4 
Nt=8 
Nt=16 
uniform 

\J d=3 a.u. 
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Fig. 5. Inverse compressibility scaled by its noninteracting value as a function of re for a 2D 
electron system in the presence of charged impurities of concentration n , = 0.97 x 1 0 - 3 a.u. 
Distance d of the impurities are given in the legend. Homogeneous system result (solid line) is the 
QMC calculation of Attaccalite et al. (Ref. 21) 

Illustrative examples of density distributions resulting from the minimization 
of total energy are shown in Fig. 1 for two sets of (rii,d) values at various average 
electron densities described by rs. We observe that electrons form high density 
and low density regions, an inhomogeneous distribution. Depending on the average 
density of the system, the high density regions may be connected to each other or 
form isolated patches. Approaching from the low average density side (large r s ) , at 
some critical density the high density regions start to percolate through the system 
and form a conducting channel. This may be thought of a demonstration of metal-
insulator transition in a 2D electron system as a percolation transition in electron 
density. Experiments on conductivity19 and resistance and 1 / / resistance noise24 

have been analyzed in terms of a percolation scenario. The calculations of Fogler20 

and analysis of Allison et al.9 data, on the other hand, suggest otherwise. We have 
not performed any systematical analysis of our calculated density distributions in 
view of percolation transition, thus we are not able to infer any conclusions. 

J 

0 

-5 

•10 

7 C 



2142 B. Tanatar et al. 

d=3 a.u. 
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Fig. 6. Inverse compressibility scaled by its noninteracting value as a function of rrs for a 2D 
electron system in the presence of charged impurities at a setback distance d = 3 a.u. Number of 
impurities are given in the legend. Homogeneous system result (solid line) is the QMC calculation 
of Attaccalite et al. (Ref. 21) 

In Fig. 2 we display the effective potential [c.f. Eq. (8)] including the Hartree, 
exchange-correlation, and disorder contributions. As is the density distributions we 
average over 10 realizations of the impurity potential for each rs value. It is seen 
that Vefj shows the largest fluctuations when the density distribution is highest. 

In Fig. 3 we show the ground state energy (per particle) as a function of rs 

for different disorder potentials. Here the impurity concentration is kept fixed at 
n, = 0.97 x 10~3/a*B and the setback distance d from the electron layer is varied. For 
large values of d the total energy approaches to that of the homogeneous system.21 

This demonstrates the reliability of our numerical approach. We also note that 
deviations from the clean system result manifest themselves at larger rs values 
indicating the importance of interplay between interaction and disorder effects. 
That is, for the same strength of impurity potential the ground-state energy is 
more affected at a larger rs value. In Fig. 4 the setback distance is fixed at d = 3 a.u. 
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and the number of charged impurities is varied. Similar qualitative effects are also 

observed on the ground-state energy as the disorder strength is increased. 

Having calculated the ground-state energy for a 2D electron system in the 

presence of disorder, we now turn our at tention to the isothermal compressibil­

ity 1 /K = (N2/A)d/j/dN where \x = dE/dN is the chemical potential. In terms of 

the noninteracting system compressibility KO we obtain 

^ = _rJldE__rs9^E] 
K 4 drs

 s dr2 

where the energy E is in a.u. Using the ground-state energy curves for a 2D dis­

ordered electron system displayed in Figs. 3 and 4, we calculate the inverse com­

pressibility. Figures 5 and 6 show the inverse compressibility as a function of rs for 

different disorder strengths. We observe tha t when impurity scattering is present in 

the system, KQ/K exhibits a minimum at some critical rs value, makes an upturn, 

becomes positive, and finally diverges at a larger rs. This qualitative behavior seems 

to be quite general, in the sense tha t even a very weak disorder leads to it. In a 

fully interacting system without disorder, on the other hand, KQ/K is a monotone 

decreasing function of rs. The minimum of KQ/K is controlled by the strength of 

electron-impurity interactions and through averaging by the disorder strength. 

Our results for the inverse compressibility of a 2D electron system in the pres­

ence of disorder are in agreement with experimental findings.7 '8 '9 In particular, the 

recent experiments of Allison et al.9 performed on a variety of electron and hole 

systems have shown the existence of a minimum in KQ/'K, occurring quite generally. 

These experiments have also measured resistivity on the same samples and showed 

tha t the metal-insulator transition (determined from dp/dT = 0) is not related to 

the minimum behavior of KQ/K. Within our ground-state energy based calculations 

we cannot locate the metal-insulator transit ion density (or corresponding rs). We 

expect the analysis of the solution of Kohn-Sham equations, for instance the statis­

tical properties of single-particle energy levels may shed some light on this problem 

which we hope to study in future. 
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