
Using Constrained Intuitionistic Linear Logic for Hybrid Robotic
Planning Problems

Uluc. Saranlı and Frank Pfenning

Abstract— Synthesis of robot behaviors towards nontrivial
goals often requires reasoning about both discrete and contin-
uous aspects of the underlying domain. Existing approaches in
building automated tools for such synthesis problems attempt to
augment methods from either discrete planning or continuous
control with hybrid elements, but largely fail to ensure a
uniform treatment of both aspects of the domain. In this
paper, we present a new formalism, Constrained Intuitionistic
Linear Logic (CILL), merging continuous constraint solvers
with linear logic to yield a single language in which hybrid
properties of robotic behaviors can be expressed and reasoned
with. Following a gentle introduction to linear logic, we describe
the two new connectives of CILL, introduced to interface the
constraint domain with the logical fragment of the language.
We then illustrate the application of CILL for robotic planning
problems within the Balanced Blocks World, a “physically
realistic” extension of the Blocks World domain. Even though
some of the formal proofs for the semantic foundations of the
language as well as an efficient implementation of a theorem
prover are yet to be completed, CILL promises to be a powerful
formalism in reasoning within hybrid domains.

I. INTRODUCTION

One of the central goals of research in robotics and arti-
ficial intelligence has been to build systems that are capable
of autonomous operation towards higher level goal specifica-
tions. In this context, a number of different approaches have
been considered, adopting methods from either a discrete
planning perspective based on action sequences [9, 20, 22],
or from control theory and continuous mathematics [19].
Beyond these two extremes, hybrid approaches have also
been tried to reach the scalability and generality required
for successful robot operation in unstructured environments
[3, 8, 13], but a uniform framework for the representation and
solution of such problems still remains elusive. Most often,
attempts to combine discrete reasoning with continuous
control have been through the discretization of underlying
continuous spaces and the application of purely discrete
methods such as combinatorial search, model checking [6]
and logical reasoning [7] to the resulting approximation
[1]. These approaches often run into either computational
complexity problems due to the size of the resulting discrete
state space, or performance problems due to approximations
introduced during the discretization of continuous properties.

In this paper, we describe a new representational frame-
work based on intuitionistic linear logic [4, 11, 18], extended
with two new logical connectives to incorporate continuous

U. Saranlı is with the Dept. of Computer Engineering, Bilkent University,
Bilkent, 06800 Ankara, Turkey saranli@cs.bilkent.edu.tr

F. Pfenning is with the Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA fp@cs.cmu.edu

constraints directly into the language. Traditional linear logic
provides a tractable way of representing and reasoning with
properties of changing state, effectively overcoming the
frame problem [15], which has been one of the central
issues in the use of logical formalisms for robotic planning
problems. Linear logic treats hypotheses as consumable re-
sources, providing a natural way of representing the effects of
actions on the state of a robot and its environment. Classical
features of the environment are then recovered by the use of
so-called “unrestricted” hypotheses, encoding invariant facts
about the environment and the robot’s behaviors.

Unfortunately, in its original form, linear logic cannot
reason effectively about continuous aspects of a robot’s
behavior. Even though certain domains such as real in-
equalities can be encoded within purely logical theories, the
resulting complexity is large enough to significantly limit
their practical applicability. This is the primary motivation
behind our extensions, combining the efficiency of domain
specific constraint solvers with the expressive power of linear
logic within a computationally tractable proof theory.

Existing work on combining intuitionistic linear logic with
a classical constraint domain includes ILC [12], which is
closely related to our system. In ILC, classical formulas are
isolated by a modal operator rather than binary connectives
as we do here. Furthermore, Jia and Walker provide a specific
semantics of their logic to describe the structure of heaps
in an imperative programming language, which is quite
different from the mix of discrete and continuous reasoning
we aim at here. Going back further, the first proposal to add
constraint domains to linear logic that we are aware of is by
Bozzano [2], who uses them to describe and reason about
distributed computing systems and protocols. His setting is
significantly more restrictive than ours.

In the rest of the paper, we first briefly present the
theoretical foundations of Constrained Intuitionistic Linear
Logic (CILL) and the associated proof theory, only covering
details necessary to understand the underlying ideas and their
applications to robotic planning problems. We then introduce
the Balanced Blocks World (BBW), a physically realistic
extension of the popular blocks world domain. Finally, we
present how problems in BBW can be represented within
CILL and how logical proofs can be transformed into plans
with formal physical and logical validity properties.

II. CONSTRAINED INTUITIONISTIC LINEAR LOGIC

Formal specification of deductive systems can be accom-
plished in a number of different ways. In formalizing CILL,
we will find it useful to adopt a Gentzen style formulation,

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrB6.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3705

based exclusively on inference rules. This approach yields
a formalism which not only highlights the very useful
isomorphism between proofs and programs for intuitionistic
settings but is also very suitable for efficient proof search.

In order to formulate CILL using sequent calculus [10],
we first introduce a CILL sequent as Ψ |Γ; ∆ =⇒ A.
The intended meaning of this judgement [14] is that if the
constraints in Ψ are satisfiable, then we can achieve the
goal A using the unrestricted hypotheses Γ and the linear
resources in ∆. Even though this kind of definition is fairly
standard in theoretical computer science, we will find it
useful to explain some of the key concepts in this definition
for the benefit of the robotics community.

First and foremost, we assume that a first order, possibly
classical constraint domain from which the constraint expres-
sions in Ψ are drawn is specified. This domain is expected
to possess both formal properties such as a consistent and
complete notion of entailment as well as a decision procedure
capable of solving sets of constraint expressions in an
efficient manner.

A very important detail in the definition of this sequent
is the distinction between unrestricted hypotheses and linear
resources, which is particular to and characteristic of linear
logic. The former includes hypotheses which can be used
as many times as necessary (or not at all), while the latter
includes resources that must be used exactly once. Even
though these two sets of formulae have the same syntax, they
are distinguished in the sequent so that the formulation of
the proof theory can give them the desired meaning through
an appropriate choice of inference rules.

The last key property of our formulation is that it is
intuitionistic (or constructive) in nature. As such, the mean-
ing of a judgement is defined by the evidence given in its
support, i.e. its proof. In contrast to classical logic which
relies on an external notion of truth to define the meaning
of judgements, intuitionistic formulations admit much more
immediate interpretations of proofs as plans, nicely serving
our ultimate goal of constructing executable plans for robot
systems.

This choice, however, also introduces important issues.
Most importantly, since our primary goal is to ensure that
certain physical properties hold for constructed plans, there is
inherent, inevitable external semantics that must be admitted
by the logic. However, it is often quite difficult to establish a
formal correspondence between the so-called proof-theoretic
semantics and externally imposed denotational semantics for
intuitionistic constructions, especially in the case of linear
logic. Even though we do not explicitly address this issue
in the present paper, this connection is one of the important
elements in ensuring the correctness of CILL based plans
with respect to the physical meaning of the stated goals.

A. The Unconstrained Fragment

CILL inherits all the connectives from intuitionistic linear
logic, summarized in the first part of Table I. In this section,
we summarize the meanings of these connectives by giving
the associated sequent calculus rules of inference.

existing connectives
⊗ simultaneous conjunction
−◦ linear implication
1 unit
& alternative conjunction (internal choice)
� top
⊕ disjunction (external choice)
0 impossibility
⊃ unrestricted implication
! of course

new connectives
⊃c constrained implication
∧c constrained conjunction

TABLE I

SUMMARY OF CILL CONNECTIVES

In contrast to the single conjunctive connective ∧ of
classical logic, linear logic features two different connec-
tives: The simultaneous conjunction ⊗ and the alternative
conjunction &. The former represents cases where two goals
are simultaneously realizable in the same state, requiring
available resources to be properly split into two. In contrast,
the latter captures the idea that currently available resources
are sufficient to individually achieve either goal, but not both
of them at the same time. The following inference rules,
(intended to be read from the bottom to the top), illustrate
the distinction between these two types of conjunction.

Ψ |Γ; ∆1 =⇒ A Ψ |Γ; ∆2 =⇒ B

Ψ |Γ; ∆1,∆2 =⇒ A ⊗ B
⊗R

Ψ |Γ; ∆ =⇒ A Ψ |Γ; ∆ =⇒ B

Ψ |Γ; ∆ =⇒ A & B
&R

The key distinction is that in the ⊗R rule, the resources in
the goal sequent are divided among the two subgoals (as ∆1

and ∆2), whereas in the &R rule, the goal resources are
duplicated into both subgoals.

In logical systems, causality is usually captured through
implication. However, since classical implication allows un-
limited use of the premise1, linear logic needs a revised
connective. Linear implication, −◦ ensures that available
resources are used exactly once, both for the premise and for
the conclusion. Associated sequent calculus rules are given
as

Ψ |Γ; ∆, A =⇒ B

Ψ |Γ; ∆ =⇒ A −◦ B
−◦R

Ψ |Γ; ∆1 =⇒ A Ψ |Γ; ∆2, B =⇒ C

Ψ |Γ; ∆1,∆2, A −◦ B =⇒ C
−◦L

.

Consider the rule −◦ R. In order to prove that an
implication holds, it is necessary and sufficient to prove
the conclusion B by adding the premise A to the list of
available resources. The left rule, on the other hand, captures
how one would go about using an implication as one of the
available resources. This rule is particularly important for our
domain since we use linear implication to capture actions,
with preconditions in the premise and postconditions in the
conclusion. In using −◦ L, we have to first prove the subgoal

1For example, the formula A → A ∧ A is valid in classical logic

FrB6.5

3706

that we can achieve A using part of the resources in the
overall goal, and then we will be allowed to use B as one
of our resources in proving C in the second subgoal. This
ensures that the preconditions are met before we can proceed
by assuming the postconditions of an action.

Another important component is Top, �, which is analo-
gous to “truth” in intuitionistic logic. As a goal, it consumes
all available resources, illustrated by the rule

Ψ |Γ; ∆ =⇒ � �R
.

The presence of � on the left side gives no additional
information. Consequently, having � as a hypothesis has no
utility and hence it has no left rule.

Finally, in order to obtain linearity and ensure that unre-
stricted hypotheses are properly incorporated into the system,
two “hypothesis” rules are needed:

Ψ |Γ; A =⇒ A
init

Ψ | (Γ, A); (∆, A) =⇒ A

Ψ | (Γ, A); ∆ =⇒ A
copy

The first rule guarantees that all linear resources are used,
while allowing leftovers in the set of unrestricted hypotheses.
In conjunction with the rules for individual connectives, this
properly implements linearity as defined before. The copy
rule, on the other hand, allows shifting formulae from the
set of unrestricted hypotheses to the set of linear resources,
establishing a connection between the two while allowing
multiple uses of the same unrestricted hypothesis.

For the sake of brevity, we will omit the rules for the
remaining connectives, but the interested reader can refer
to various resources in the literature for further details. Our
formulation is closest in spirit to the approach taken in [4].

B. New CILL Connectives

All inference rules associated with traditional connectives
directly copy the constraint context Ψ from the goal to the
subgoals. Consequently, they do not offer any way to couple
constraint expressions with specific parts of the reasoning
process. Constraints on the final goal are the same as the
constraints for all subgoals, eliminating any possibility of
capturing different physical constraints on individual actions
(i.e. hypotheses).

The primary contribution of our work is a general frame-
work in which such constraint expressions can be injected
into linear logical formulae by the use of two new connec-
tives in addition to those described in Section II-A. Syn-
tactically, both of these newly introduced binary connectives
merge a constraint expression with a linear formula. The first
one, the constraint implication ⊃c, introduces a constraint
precondition to a linear expression. In order to achieve
D ⊃c A, we need to show that the goal A can be achieved
under the conjunction of existing constraints Ψ and the guard
D.

(Ψ,D) |Γ; ∆ =⇒ A

Ψ |Γ; ∆ =⇒ D ⊃c A
⊃cR

The left rule for the guard connective is very similar to
typical left rules for implication, except that the proof for

the guard constraint D is now handled by a separate proof
procedure that is specific to the constraint domain.

Ψ |= D Ψ |Γ; ∆, A =⇒ C

Ψ |Γ; ∆,D ⊃c A =⇒ C
⊃cL

The second operator we introduce is the constraint con-
junction ∧c, which asserts the validity of a constraint in
conjunction with a linear logic expression. The right rule in
this case is very similar to a typical intuitionistic conjunction
except that the validity of the constraint D is pushed to a
branch that is handled by a domain specific constraint solver.

Ψ |= D Ψ |Γ; ∆ =⇒ A

Ψ |Γ; ∆ =⇒ D ∧c A
∧cR

For the constraint conjunction left rule, we use an approach
reminiscent of ⊗L, wherein the goal C needs to be achieved
with augmented constraints and linear hypotheses.

(Ψ,D) |Γ; (∆, A) =⇒ C

Ψ |Γ; ∆,D ∧c A =⇒ C
∧cL

As it can easily be seen from these inference rules, we now
have a way in which we can interleave constraint expres-
sions with linear formulae, together with a proof system
that is capable of separating reasoning in the constraint
domain from reasoning within the linear fragment of the
language. By using quantifiers whose elements are drawn
from the constraint domain, communication between the two
fragments becomes possible. The logical behavior of such
quantifiers and variables are in concordance with their usual
rules, although their presence (and, in particular, sequences
of alternating quantifiers) can have a dramatic impact on the
tractability of the constraint solving problem associated with
proof search.

In our examples, variables shared between the constraint
and logical fragments allow using constraint implication
as a “guard” for action preconditions and the constraint
conjunction as an assertion of continuous properties of action
postconditions.

C. Formal Properties of CILL

An important property to be established for deductive
systems formalized through sequent calculus is the ability
to eliminate explicit uses of the cut rule, which make it very
difficult to construct efficient proof search mechanisms. For
CILL, there are two such rules,

1) If Ψ |Γ; ∆ =⇒ A and Ψ |Γ; (∆′, A) =⇒ C, then
Ψ |Γ; (∆,∆′) =⇒ C,

2) If Ψ |Γ; · =⇒ A and Ψ | (Γ, A); (∆) =⇒ C, then
Ψ |Γ; (∆) =⇒ C,

both of which turn out to be admissible in the presence of the
newly added connectives and their associated rules of infer-
ence. Under suitable assumptions about logical entailment
for the constraint domain, the admissibility proof is fairly
straightforward and follows the methods detailed in [17].

The second, perhaps more fundamental issue is the con-
nection of the proof theory outlined in preceding sections

FrB6.5

3707

to the desired external semantics for CILL formulae. Even
though we have not yet proven that the system is complete
with respect to physically meaningful, externally imposed
semantics, it is clear that most of the problems in establishing
such a property arise within constraint domains that are not
convex2. In those cases, we are faced with the problem of
case splitting, which requires details of the constraint domain
to affect proof search [16]. We believe that the inclusion of
an additional inference rule in the form
Ψ |= A ∨ B Ψ, A |Γ; ∆ =⇒ C Ψ, B |Γ; ∆ =⇒ C

Ψ |Γ; ∆ =⇒ C

will be necessary to ensure completeness of the overall
system. However, we leave a more detailed treatment of this
and other associated issues outside the scope of this paper.

III. THE BALANCED BLOCKS WORLD

A. Motivation and the Domain

Since the very early days of AI, the Blocks World domain
served as a simple but reasonably rich testbed for planning
algorithms and methods [21]. Unfortunately, as it has often
been the case within the discrete planning community, the
physical relevance of the abstractions on which various
planning formalisms are built received little attention. Con-
sequently, even though significant progress has been made in
advancing the state of the art with respect to the efficiency
and optimality of constructed plans, the wide gap between
purely discrete toy problems and complex hybrid systems is
yet to be tackled in a uniform and principled way.

In order to illustrate the application of CILL to robotic
planning problems, we introduce the Balanced Blocks World
(BBW), in which dynamic balance and physical alignment
properties of planar blocks are also considered in conjunction
with logical properties associated with different stackings.

tleft(b) tright(b)

bleft(b) bright(b)

mass(b)

Fig. 1. Static parameters of a block in the Balanced Blocks World

Each block in BBW is named and their geometry is
specified through five functions from the set of block names
to real numbers, illustrated in Figure 1. Furthermore, in order
to enrich the logical fragment of the planning problem, the
top and bottom surfaces of each block are assigned specific
colors, intended to capture “compatibility” between blocks.

The current state of block placements is captured through a
number of predicates, summarized in the top half of Table II.
These predicates are intended to be used as linear resources
to capture the dynamic nature of the system state. In contrast,
the predicates defined in the bottom half of Table II will be
used to capture invariant facts about the world such as the
colorings of individual blocks and slot positions.

2As in [16], we call a constraint formula non-convex if it entails a
disjunction of constraints without entailing any of the constraints alone.

dynamic state of the system
tableempty(i) There are no blocks on slot i of the table
ontable(b, i) Block b is directly on slot i of the table
available(b) Block b is available for placement
on(a, b, x) Block a is on top of block b at an absolute position x
clear(b, x) Block b is at absolute position x and its top is clear

invariant facts about the world
tcol(b, c) The top of block b has color c
bcol(b, c) The bottom of block b has color c
slotcol(i, c) Slot i on the table has color c
slotisat(i, x) Slot i is located at distance x from table origin

TABLE II

RESOURCE PREDICATES FOR THE BALANCED BLOCKS WORLD

B. Basics: Using CILL for Planning in the BBW Domain

As in [18], we model the starting state for the planning
problem as a set of linear propositions. For instance, a very
simple state where there is a single empty slot on the table
and two available blocks yields the linear context

∆o = (tableempty(1), available(a), available(b)) .

In contrast, the unrestricted context Γ serves two purposes.
First, it includes logical formulae to capture invariant facts
about the environment. For the example above, we have

Γf = (tcol(a, red), bcol(a, blue), tcol(b, blue),
bcol(a, grn), slotcol(1, grn), slotisat(1, 0) .

Second, the unrestricted hypotheses include models of ac-
tions that are available in the domain in the form of linear
implications, summarized in Table III. For example, the
hypothesis labeled putontable models the act of placing an
available block onto an empty slot on the table. Note that
the linear resources associated with the current state of the
system are “consumed” and new resources are introduced to
indicate the updated state of the system. This action does not
involve any constraint connectives since slots on the table
are expected to support blocks of any size and shape. In
contrast, the stacking of blocks on top of each other requires
that balance constraints are satisfied (see Section III-C).

The final necessary component in specifying the planning
problem is a goal. Since we adopt an intuitionistic setting,
this is required to be a single linear formula, appearing on
the right side of the sequent. If, for instance, our goal is to
reach a state where block b is placed either on the table or
on another block, this would be expressed as

G = (∃i. ontable(b, i) ⊕ ∃a. ∃x. on(b, a, x)) ⊗�
in which the disjunction connective is used to indicate that
the plan construction has to pick which one of the two
alternatives will be satisfied. � is used to specify incomplete
goals since it consumes all resources left unused by the rest
of the proof. At this point, the planning problem reduces to
finding a proof for the sequent

Ψe | (Γf ,Γa); ∆0 =⇒ G

where additional environmental constraints can be specified
in Ψe. Such a proof will include a sequence of applications
of the −◦ L rule on hypotheses corresponding to actions,
which can be easily converted to an executable plan.

FrB6.5

3708

putontable : ∀a. ∀i. ∀c. ∀xi. available(a) ⊗ tableempty(i) ⊗ slotcol(i, c) ⊗ bcol(a, c) −◦ ontable(a, i) ⊗ clear(a)

getofftable : ∀a. ∀i. ontable(a, i) ⊗ clear(a) −◦ available(a) ⊗ tableempty(i)

putonblock : ∀a. ∀b. ∀c. ∃xa. available(a) ⊗ clear(b) ⊗ bcol(a, c) ⊗ tcol(b, c) −◦ on(a, b, xa) ⊗ testing(a) ⊗ check(b, mass(a), xa)

getoffblock : ∀a. ∀b. ∃xa. on(a, b, xa) ⊗ clear(a) −◦ available(a) ⊗ clear(b)

checkiter : ∀a. ∀b. ∀m. ∀xm. ∀xa. check(a, m, xm) ⊗ on(a, b, xa) −◦

isin(xm − xa, tleft(a), tright(a)) ⊃c

„
check(b, m + mass(a),

mxm + mass(a)xa

m + mass(a)
) ⊗ on(a, b, xa)

«

checkend : ∀a. ∀b. ∀m. ∀i. ∀xa. ∀xm. check(a, m, xm) ⊗ ontable(a, i) ⊗ slotisat(i, xa) ⊗ testing(b) −◦
isin(xm − xa, tleft(a), tright(a)) ⊃c (ontable(a, i) ⊗ clear(b)) .

TABLE III

CILL REPRESENTATIONS OF BBW ACTIONS AND SUPPORTING RULES FOR CHECKING BALANCE OF NEWLY PLACED BLOCKS.

C. A Detailed Example: Stacking A Single Tower

h

a

b

c

d e

fg

0 x

Fig. 2. Stacking a single tower from a set of available blocks

One of the simplest BBW goals we can represent in CILL
is that of stacking a single tower of blocks to reach a certain
minimum distance away from the table origin using available
blocks (see Figure 2). Together with coloring constraints, this
represents a hybrid goal, difficult to capture within traditional
formalisms. More formally, given a constant xg, we would
like to achieve the goal

G := ∃a. ∃b. ∃x. (x > xg) ∧c on(b, a, x)

from an arbitrary initial condition.
One of the interesting features of the BBW domain is

exposed by the primitive action putonblock to place a block
on top of an existing one on the tower. To keep the tower
balanced, it is not sufficient to check that the center of mass
of the new block rests on the top supporting surface of the
tower. We also need to check that the newly placed block
does not cause any part of the existing structure to collapse.
Even though this problem is easier to solve if we were
to start from the top of the stack and plan backwards, we
would like to constrain our action representations to move the
system forward in “time” 3 in order to admit more complex
goals such as bridges between two adjacent towers or ad-
ditional concepts such as stability margins of constructions.
Consequently, the primary action in our encoding is that of
placing a block on top of an existing block, encoded with
the hypothesis labeled putonblock in Table III.

To perform this balance check, we recursively compute the
center of mass of connected groups of blocks from top to
bottom and ensure that all combined centers of mass lie on
support surfaces. This is accomplished by using the resource
check(a,m, xm), intended to mean that a group of blocks
with combined mass m and center of mass xm will stay
balanced on block a. This predicate is introduced for the

3For the time being, CILL’s concept of time is limited to forward progress
and does not capture quantitative aspects of temporal relations.

topmost block with the application of the putonblock, iter-
ated through the hypothesis checkiter until the query reaches
the bottom of the block with the hypothesis checkend.

Note that by delaying the generation of clear(c) while the
balance check is being performed, we effectively halt the
execution of any more block placements on the same tower
until the end of the recursive balance check marked by the
termination rule above. The predicate isin() is simply used
as a shorthand for a conjunction of linear inequalities.

Even this relatively simple goal illustrates the expressive
power of CILL in incorporating logical reasoning (i.e. dif-
ferent orderings of blocks) and continuous constraints (i.e.
balance requirements) towards a goal specified in terms of
satisfying a specific continuous constraint.

D. Examples on More Complex Planning Problems

The example presented in Section III-C does not signif-
icantly exercise logical reasoning, but relies more heavily
on the constraint domain, often reducing to a constrained
combinatorial search. In this section, we briefly describe
more complex scenarios in which the logical fragment of
the formalism would be expected to play a more significant
role in pruning the tree of possible action sequences.

1) Multiple towers and no free use of a “bucket”: The
typical blocks world planning problem includes an initial
state with multiple existing stacks of blocks and a desired
final state consisting of a particular ordering. This more
constrained domain usually adopts a single “buffer” in the
form of a robot which picks up a block and places it either
on the table or on top of an existing tower. Consequently,
plans can no longer make free use of an unlimited buffer (the
bucket), imposing stricter constraints on the set of possible
plans.

A similar setting in BBW would place more burden on
the logical fragment of the reasoning, enabling more goal-
directed pruning of the search over possible actions. Along
similar lines, one can also explore a range of possibilities
between underspecified goals such as the one in the previous
section and a fully specified goal states through the use
of existential quantifiers. The more aspects of the goal are
specified, the better chance the proof engine has to proceed
in a goal directed manner, emphasizing the advantages of
representing the problem within a logical formalism.

FrB6.5

3709

2) Bridges across towers: Suppose, for example, that we
were working with two slots on opposite ends of a table,
located at x = −1 and x = 1. A possible goal would be
to place a block at x = 0, but the available blocks are not
sufficient to build a single tower capable of reaching this
goal. However, if we introduce a very wide block, together
with a new action to place long blocks as a bridge between
two towers, this would admit a richer set of constructions,
admitting a feasible solution in this case.

There are, of course, further extensions and more complex
examples that are possible within the BBW setting. However,
we hope that the examples given above concisely illustrate
the expressive power of our formalism and its application for
planning problems in hybrid domains.

IV. CONCLUSION

In this paper, we introduced a new logical formalism,
Constrained Intuitionistic Linear Logic, in which it is possi-
ble to express and reason with hybrid properties of systems
which incorporate both discrete and continuous elements.
The distinguishing feature of our approach is that instead of
artificially mapping one of these elements into an unnatural
representation within the other, we merge available reasoning
tools for both within a single, uniform formalism. Doing so
allows the use of efficient decision procedures for constraint
domains in conjunction with theorem proving in linear logic
to yield an effective method for constructing behavioral plans
for physically realistic domains. The expressive power of the
formalism and its application for physically realistic robotic
planning problems were illustrated in the Balanced Blocks
World, an example domain incorporating physical models of
balance into the familiar toy domain of Blocks World.

Some of the theoretical foundations of CILL still need
to be finalized. In particular, a well defined semantics and
the completeness of the proof theory must be established.
Especially in the presence of non-convex constraint domains,
there are significant challenges in doing this while preserving
the ability to perform efficient proof search and maintaining
the elegant separation between constraint solvers and the
proof engine.

Another important step towards the deployment of CILL
for real robotic planning problems is an efficient imple-
mentation that is not only capable of overcoming various
fundamental problems in writing effective theorem provers
for linear logic [5], but also provides ways in which existing
decision procedures for a variety of constraint domains can
be modularly incorporated into the system. Even though the
formalization of the proof theory goes a long way towards
enforcing modularity, there are still architectural issues to be
resolved before a fully practical implementation is achieved.

Notwithstanding these issues, the set of possible applica-
tions of CILL for robotic planning problems is quite rich.
Overall, Constrained Intuitionistic Linear Logic provides a
uniform framework in which hybrid properties of a system
as well as goals incorporating both discrete and continuous
elements can be combined. We believe that this framework,
complemented with physically meaningful formal semantics

for a usable fragment as well as a variety of efficient
decision procedures for relevant constraint domains promises
to bridge the wide gap between discrete and continuous
reasoning methods in a principled yet practical way.

V. ACKNOWLEDGMENTS

We thank Kaustuv Chaudhuri for his contributions and
ideas on formalizing various aspects of CILL and Alfred A.
Rizzi for his ideas and feedback on formulating application
examples for CILL within robotics.

REFERENCES

[1] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete
abstractions of hybrid systems. Proc. of the IEEE, 88:971–984, 2000.

[2] M. Bozzano. A Logic-Based Approach to Model Checking of Param-
eterized and Infinite-State Systems. PhD thesis, U. of Genova, 2002.

[3] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential
composition of dynamically dexterous robot behaviors. International
Journal of Robotics Research, 18(6):534–555, 1999.

[4] B.-Y. E. Chang, K. Chaudhuri, and F. Pfenning. A judgmental analysis
of linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon
University, December 2003.

[5] K. Chaudhuri and F. Pfenning. A focusing inverse method theorem
prover for first-order linear logic. In Proceed. of the 20th Int. Conf.
on Automated Deduction, Tallinn, Estonia, July 2005.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The
MIT Press, 2000.

[7] N. Davoren, J. M. Logics for hybrid systems. Proc. of the IEEE,
8(7):985–1010, 2000.

[8] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Temporal logic
motion planning for mobile robots. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, pages 2032–
2037, April 2005.

[9] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence, 2:189–208, 1971.

[10] G. Gentzen. Untersuchungen über das logische Schließen. Mathema-
tische Zeitschrift, 39:176–210, 405–431, 1935.

[11] J.-Y. Girard. Linear logic: its syntax and semantics. In Proc. of the
workshop on Adv. in linear logic, pages 1–42. Cambridge University
Press, 1995.

[12] L. Jia and D. Walker. ILC: A foundation for automated reasoning
about pointer programs. In P. Sestoft, editor, Proc. of the 15th
European Symp. on Programming Languages and Systems, pages 131–
145, Vienna, Austria, March 2006. Springer Verlag LNCS 3924.

[13] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006. To be published in 2006.

[14] P. Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):11–60, 1996.

[15] J. McCarthy and P. J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence 4, pages 463–502. Edinburgh University
Press, 1969. reprinted in McC90.

[16] D. C. Oppen. Complexity, convexity and combinations of theories.
Theoretical Computer Science, 12(3):291–302, Nov. 1980.

[17] F. Pfenning. Structural cut elimination in linear logic. Technical Report
CMU-CS-94-222, Cepartment of Computer Science, Carnegie Mellon
University, December 1994.

[18] F. Pfenning. Lecture Notes on Linear Logic. Carnegie Mellon
University, 2002.

[19] E. Rimon and D. Koditschek. Exact robot navigation using artificial
potential functions. IEEE Transactions on Robotics and Automation,
8(5):501–518, October 1992.

[20] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[21] J. Slaney and S. Thiebaux. Blocks world revisited. Artificial
Intelligence, 125(1-2):119–153, Jan. 2001.

[22] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. The
CLARAty architecture for robotic autonomy. In IEEE Proc. of the
Aerospace Conference, volume 1, pages 121–132, Big Sky, MT, March
2001.

FrB6.5

3710

