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Abstract— Ultra-wideband (UWB) signals have very high time
resolution, which makes them a very good candidate for range
estimation based wireless positioning. Although the accuracy is
the major concern for range estimation, it is also important to
have low-complexity algorithms that can be employed in real
time. In this study, two low-complexity range estimation algo-
rithms are proposed for UWB signals, which achieve improved
performance compared to the state-of-the-art low-complexity
ranging algorithms. The proposed algorithms are inspired from
two well-known algorithms; ‘serial backward search’ (SBS) and
‘jump back and search forward’ (JBSF). Performances of the
proposed algorithms are compared with those of the SBS and
JBSF algorithms based on real measurements. In addition, theo-
retical bounds are calculated in order to quantify the statistical
performance of the algorithms.

Keywords: Ultra-wideband, range estimation, wireless posi-
tioning, Cramér-Rao lower bound.

I. INTRODUCTION

Ultra-wideband (UWB) signals are characterized by their
very large bandwidths compared to those of conventional
narrowband and wideband signals [1], [2]. Federal Commu-
nications Commission (FCC) defines a UWB signal to have
an absolute bandwidth of at least 500 MHz or a fractional
(relative) bandwidth of larger than 20% [3]. Due to the high
absolute bandwidth, UWB signals can be realized by very short
duration waveforms, which are well-suited for accurate range
and position estimation. In addition, UWB signals have high
penetration capability through the obstacles because of their
high relative bandwidth [4]. As a result, these signals can be
used for range and position estimation not only in line-of-
sight (LOS) situations but also in non-line-of-sight (NLOS)
scenarios.

Due to its unique characteristics, the UWB technology
can be used in short range wireless sensor network (WSN)
applications for which accurate range and position estimation
is critical [5]. In particular, UWB signals can be employed in
many different applications such as surveillance of high secu-
rity areas, monitoring critical body activities of a patient, in-
building robot guidance, automated handling, and see-through-
the-wall radar imaging for rescue/military [4], [6].

The main focus of this study is to develop low-complexity
and robust range estimation algorithms for UWB systems.
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Low-complexity UWB range estimation algorithms are de-
sirable for applications with strict power and computational
complexity constraints. Among such algorithms is the ‘ranging
with largest-N peak-detection’, which considers the largest N
energy samples (or, correlation peaks) and estimates the time-
of-arrival (equivalently, the range) based on those samples
[7]. In particular, the range is estimated according to the
energy sample that has the minimum time index among the
largest N energy samples. There exist different versions of
this approach in order to achieve accurate range estimation
in various scenarios [7]. Another low-complexity UWB range
estimation algorithm is ‘serial backward search’ (SBS), which
estimates the range by searching energy samples in the back-
ward direction (i.e., in the direction of decreasing time indices)
starting from the strongest energy sample [8]. A different
approach for low-complexity UWB range estimation is the
‘jump back and search forward’ (JBSF) algorithm. In this
approach, the strongest energy sample is detected first and
then the energy samples are searched in the forward direction
starting from an energy sample that is before the strongest one
by a certain number of samples. The search continues until
an energy sample exceeds the specified threshold [4], [8]. As
investigated in various studies such as [9], the SBS and JBSF
algorithms can provide accurate range estimation for UWB
systems in real environments.

In this study, we propose two UWB range estimation algo-
rithms, which are inspired from the SBS and JBSF algorithms.
The first one is a modified version of the SBS algorithm,
which provides a more robust version via performing multiple
threshold comparisons. The second one is similar to the JBSF
algorithm but employs a completely different test for determin-
ing the index of the first arriving signal path. The proposed
algorithms are tested on real data collected from an office
environment. In addition, comparisons against the JBSF and
SBS algorithms, and the Cramér-Rao lower bound (CRLB) are
presented. The main contribution of this study is that two low-
complexity UWB range estimation algorithms are proposed,
which provide more accurate and robust range estimation
than the state-of-the-art algorithms. In addition, performance
evaluation is performed on real UWB measurements and also
the CRLB comparisons are provided.

The remainder of the paper is organized as follows: First
brief information about threshold based range estimation algo-
rithms is presented. After that, two new threshold based range
estimation algorithms are proposed. Then, performances of the
proposed algorithms are compared with the existing techniques
based on real measurements. Finally, theoretical limits for this
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Fig. 1. Illustration of JBSF and SBS algorithms. Here nmax is the index of

the strongest sample, nle is the index of the first arriving path, Nw
(sb) is the

number of samples to be jumped back, nsb is the index of the sample where
the forward search begins and Dle is the delay between the first sample of
the search window and the first arriving path [8].

problem are provided to statistically quantify the performance
of the algorithms.

II. THRESHOLD BASED UWB RANGE ESTIMATION

Large bandwidths of UWB signals result in very high time
resolution, which facilitates accurate time-of-arrival, hence
range, estimation. Although various UWB range estimation
algorithms are available in the literature [1], many of them
do not present favorable trade-offs between accuracy and
complexity. For example, maximum likelihood (ML) based es-
timators provide very accurate results. However, in the case of
no prior information about time delays and channel coefficients
of multipath components, all these parameters should be jointly
estimated in calculating the ML estimate [10]. This creates a
huge computational load and makes it almost impossible to
operate in real time. Therefore in practical applications ML
based estimators are not commonly preferred.

Since the computational complexity is a primary concern
for practical applications, several low-complexity UWB range
estimators are proposed in the literature [10]. These estimators
try to find the time index of the first arriving path, nle, in
the received signal. Then based on this index, the range is
estimated as follows:

r̂ = c

(

nle Ts +
Ts

2

)

, (1)

where c denotes the speed of light and Ts denotes the sampling
time (period). (If a two-way ranging protocol [11] is employed,
then the range is estimated by dividing the expression in (1)
by two.) Depending on how they estimate the index of the
first arriving path nle, there exist various low-complexity range
estimators. Although performance of these estimators is limited
compared to ML based estimators, some of them can still offer
satisfactory accuracy alongside low computational complexity.
An important class of such estimators is the threshold based
range estimators. These estimators determine the first path
component of the received signal by comparing the (energy)
samples of the received signal against a certain threshold [8],
[12], [13].

JBSF and SBS algorithms are two well-known examples
of threshold based range estimators [8]. These algorithms
are illustrated in Fig. 1. Both algorithms start by finding
the strongest sample in the received signal. After finding the
strongest sample, SBS performs a backward search starting
from that sample and compares each sample with a certain

threshold. It selects the first sample that is above the threshold
which is followed in the search direction by a sample that
is below the threshold [10]. This approach is problematic
when there are many noise-only samples between the first
arriving path and strong multipath components. In that case
the algorithm may terminate early and never reach to the first
arriving path. On the other hand, after finding the strongest
sample, JBSF jumps a certain number of samples back from
that sample and performs a forward search. It compares each
sample with a certain threshold and selects the first sample
that is above the threshold [8]. This approach may fail when
the strong multipath components are far away from the first
arriving path. In that case the algorithm may jump to a sample
coming after the first arriving path and never have a chance
to reach to the sample coming from the first arriving path.
The intuition behind both algorithms is that as the first signal
path commonly resides before the strongest signal sample, it is
useful to perform a search among the samples coming before
the strongest one [10]. Both algorithms perform well under
certain conditions but they are still prone to making errors
since both algorithms make the decision by considering just
one sample that is above or below the threshold.

III. PROPOSED TECHNIQUES

JBSF and SBS are similar in the sense that they both choose
the first sample that is above or below a certain threshold
in their search directions. The problem with this approach
is that the samples coming after that specific sample are not
considered at all, and making a decision based on just one
sample is not always reliable. Therefore, the main motivation
behind the proposed approaches in this section is to take
multiple samples into account in order to make more reliable
decisions and provide robustness.

As discussed in Section II, the SBS algorithm finds the
largest sample in the received signal first and then compares
the values of the previous samples with a threshold one by
one. Then it considers the first sample which is below that
threshold. Obviously, having one sample below the threshold
does not ensure that the samples coming before that sample
are also below the threshold; i.e., in the noise-only region.
Therefore, to ensure the reliability of the estimation, we need
to keep on searching even one sample below the threshold is
found. The proposed modification to SBS is to continue to
search until a specific number of consecutive samples that are
below the threshold are detected.

Before describing the proposed algorithm, called modified
SBS, in more detail, the transmitted signal model for a UWB
system is provided first:

x(t) =

Nf−1
∑

j=0

Np
∑

i=1

p(t − iTp − jTf ) , (2)

where p(t) represents the UWB pulse, Tp is the pulse duration,
Tf is the duration of a frame, Np is the number of pulses in a
frame, and Nf is the number of frames. The signal in (2) is sent
from a UWB transmitter, and the received signal is processed
in order to estimate the time-of-arrival of the incoming signal,
which is obtained by estimating the time index of the first
arriving signal path.
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Fig. 2. Flowchart of the modified SBS algorithm.

Let z[k] represent the samples of an energy detector
output at the receiver (or, absolute values of the samples of
a correlator output) for k = 1, . . . , Nb. The modified SBS
algorithm starts by finding the index of the largest sample,
which is the first sample to be compared with the threshold:

Ntest = Nmax = arg max
k∈[1,Nb]

z[k] . (3)

Then, the algorithm compares the values of the previous
samples with the threshold and searches for a certain number
of consecutive samples that are all below the threshold. If
the algorithm finds such a set of consecutive samples starting
from N , then N + 1 is declared as the index of the first
arriving path. Otherwise Nmax is decided to be the index of
the first arriving path. The flowchart of the modified SBS
algorithm searching for three consecutive samples is shown
in Fig. 2. It is noted that the number of consecutive samples
to be tested is an important design parameter that should be
selected according to the signal and channel characteristics.
As discussed in Section V, it is observed via experiments that
testing two or three consecutive samples provides the best
results in most cases.

The second proposed algorithm is called modified JBSF. As
mentioned in the previous section, the standard JBSF algorithm
finds the largest sample in the received signal first and then
jumps back to a specific sample and compares the values of
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Fig. 3. Flowchart of the modified JBSF algorithm.

the following samples with a threshold one by one. Then the
first sample which is above that threshold is selected by the
algorithm. However, it is possible that this sample can be a
pure noise sample which is followed by many samples that are
also below the threshold (i.e., in the noise-only region). Similar
to modified SBS, in order to perform more reliable estimation,
it might seem reasonable to continue searching even after one
sample above the threshold is found and to look for a specific
number of consecutive samples above the threshold. However,
since UWB pulses are very narrow in time, it is possible
that the first arriving path consists of just one sample. In that
case this modification will not work efficiently. Therefore, we
propose a different criterion for the modified JBSF algorithm,
which involves comparison of the values of all the samples
between the test sample and the largest sample against a certain
threshold. The index of the test sample is increased at each
iteration starting from 1, until a certain ratio (percentage) of
the samples between the test sample and the largest sample
are above the threshold. In this way, all samples between the
first sample and the strongest sample are considered during
the estimation process. Hence, more reliable estimation can
be performed compared to JBSF.

Similar to the previous algorithm, the modified JBSF
algorithm also starts by finding the largest sample:

Nmax = arg max
k∈[1,Nb]

z[k] . (4)

Ntest is set to 1 in the first iteration and all the samples
between Ntest and Nmax are compared with the threshold.
In each iteration, Ntest is increased by one. The algorithm
searches for a specific value of Ntest for which a certain
ratio of the samples between Ntest and Nmax are above the
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threshold. Let γ denote that certain ratio and ∆ represent the
threshold value. Then, the modified JBSF algorithm performs
the following test:

Nabove

Nmax − Ntest
> γ , (5)

where

Nabove =

Nmax
∑

n=Ntest

I{z[n] > ∆} (6)

with I denoting the indicator function that is equal to one (zero)
if the condition holds (does not hold). If the algorithm finds
a value of Ntest that satisfies the inequality in (5), that value
is declared as the index of the first arriving path. Otherwise,
Nmax is decided to be the index of the first arriving path. The
flowchart of the modified JBSF algorithm searching for 90%
of the samples above the threshold (i.e., γ = 0.9) is shown in
Fig. 3.

IV. MEASUREMENT CAMPAIGN

Measurements were collected in the second floor of the De-
partment of Electrical and Electronics Engineering at Bilkent
University. The blueprint of the measurement environment is
presented in Fig. 4. Two UWB devices were employed in the
measurements. One of the devices was kept at a fixed position
and used as a reference point. The other device was used as
the target point and its position was changed for different sets
of measurements. In Fig. 4, the position of the reference point
is shown with a red node and different positions of the target
point are shown with blue nodes.

Initially LOS measurements were collected in hall 207.
The target device was placed at 10 different points, which
were chosen in such a way that the distance between the
reference device and the target device corresponded to even
numbers in the 2-20 meters interval for each point. At each
point, 1000 measurements were collected. Then, NLOS mea-
surements were performed by placing the reference device in
room 226 and the target device in hall 220. The wall separating
room 226 and hall 220 was 35 cm thick. Similar to the LOS
measurements, the target device was placed at 10 different
points and 1000 measurements were collected at each point.

Time Domain’s PulsON400 devices were used for the
measurements. These devices operate over a band covering
the frequencies between 3.1 GHz and 5.3 GHz. The sampling
frequency is about 16.4 GHz. These UWB devices are capable
of transmitting different numbers of pulses, and higher signal-
to-noise ratios (SNRs) can be achieved by employing more
pulses. For the measurements, the minimum number of pulses
available, which is 128, is used in order to investigate the most
challenging scenarios.

V. RESULTS

Performance of the proposed algorithms in Section III is
evaluated using the measurements obtained in the measurement
environment explained in Section IV. Since the proposed
algorithms are threshold based, their performance depends
very much on the selection of an appropriate threshold. To
perform a fair evaluation, two strategies are employed in this
section. First the threshold is set to an ideal value for each

Fig. 4. Blueprint of the measurement environment.

algorithm at each distance. In other words, for each algorithm
at each distance, an exhaustive search is performed over all
possible threshold values and the one which minimizes the
root mean-squared error (RMSE) for that algorithm at that
distance is chosen. The second strategy is to set the threshold
to an ideal value, which is a fixed value for all distances, for
each algorithm. In this case, for each algorithm, an exhaustive
search is performed over all possible threshold values and the
one which minimizes the RMSE averaged over all distances
for that algorithm is chosen.

In Fig. 5, the performance of the standard SBS is compared
to that of the modified SBS when two and three consecutive
samples below the threshold are searched. Here the ideal values
of the thresholds are used at each distance, i.e., the first strategy
explained above is employed. In Fig. 6, the RMSEs of the
standard SBS algorithm and the modified SBS algorithm are
shown for fixed threshold values at each distance, i.e., for
the second strategy explained above. It can be observed from
Fig. 5 that the modified SBS achieves improvement over the
standard algorithm at all distances both in LOS and NLOS
situations. It is also noted from Fig. 6 that the modified SBS
performs better than the standard algorithm at all distances
in the LOS scenario. In the NLOS scenario, the modified
algorithm performs better than the standard one at higher
ranges, and performs close to the standard algorithm at shorter
distances.
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In Fig. 7, the performance of the standard JBSF algorithm
is compared to that of the modified JBSF algorithm for differ-
ent percentage parameters. (Note that the percentage parameter
is equal to 100γ%, where γ is as in (5).) Here the first strategy
explained above is used to determine the threshold. It can be
observed from the figure that it is possible to achieve a similar
performance to the standard algorithm. However, there is no
significant improvement. In Fig. 8, the RMSEs of the standard
JBSF algorithm and the modified JBSF algorithm are shown
for the second strategy explained above. In [9], it was observed
that the JBSF algorithm was not stable when fixed parameter
values are used. The proposed modification to JBSF is able to
solve this problem; that is, for both LOS and NLOS scenarios,
the performance of the proposed algorithm does not fluctuate
much. It can be observed that the modified JBSF performs
better than the standard one when fixed threshold values are
used for both LOS and NLOS situations.

It is very important to note that it is not practical to opti-
mize the threshold value for each distance since the distance is

2 4 6 8 10 12 14 16 18 20

0.05

0.1

0.15

Range (m)

NLOS

R
M

S
E

 (
m

)

2 4 6 8 10 12 14 16 18 20

0.02

0.04

0.06

Range (m)

R
M

S
E

 (
m

)

LOS

Standard JBSF

Modified JBSF (90%)

Modified JBSF (80%)

Modified JBSF (70%)

Standard JBSF

Modified JBSF (90%)

Modified JBSF (80%)

Modified JBSF (70%)

Fig. 7. Estimation errors of standard and modified JBSF algorithms for ideal
threshold values.

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

Range (m)

NLOS

R
M

S
E

 (
m

)
2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

Range (m)

R
M

S
E

 (
m

)

LOS

Standard JBSF

Modified JBSF (90%)

Modified JBSF (80%)

Modified JBSF (70%)

Standard JBSF

Modified JBSF (90%)

Modified JBSF (80%)

Modified JBSF (70%)

Fig. 8. Estimation errors of standard and modified JBSF algorithms for fixed
threshold values.

unknown during the range estimation process.1 Therefore, the
fixed threshold case considered in Fig. 6 and Fig. 8 corresponds
to practical scenarios in which an optimal threshold value is
employed for all distances. It is observed that the proposed
algorithms provide significant improvements and robustness
in this practical scenario.

VI. THEORETICAL LIMITS

The range estimation algorithms considered in this study
are low-complexity algorithms. Since these algorithms are not
optimal, their performance should be compared to theoretical
limits to determine if the trade-off between complexity and
performance is acceptable or not.

One of the commonly used lower bounds in estimation
problems is the CRLB. The CRLB sets a lower bound on the
variance of unbiased estimators. It yields a tight bound at high
SNR values, whereas at low SNR values the bound may not be
very tight. For short range estimation problems, SNR values

1Fig. 5 and Fig. 7 are presented for illustrating the best performance that
can be achieved at each distance.
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are generally high and therefore the CRLB is a meaningful
bound for such applications.

The CRLB for time based ranging can be obtained for
both single-path channels and multipath channels [5]. Since it
is difficult to know the exact number of paths in the multipath
formulation, the single-path formulation is considered here by
taking only the first arriving path into account. In fact, this for-
mulation is valid also for multipath channels if the first signal
path does not overlap with the other multipath components. (If
there is such an overlap, the single-path formulation provides
a lower bound on the multipath-formulation.)

For a single path additive white Gaussian noise channel,
the CRLB is expressed as

√

Var(d̂) ≥ c

2
√

2π
√

SNR β
(7)

where SNR is the signal-to-noise ratio and β is the effective
signal bandwidth [4]. The value of β is equal to 4.28 GHz for
the Pulson400 devices used in our measurements.

In the formulation of the CRLB, SNR is the only term
depending on the measurements. First of all, for each mea-
surement at each distance, an SNR value is calculated. Since
the single-path formulation is considered, only the power of the
first arriving path is considered as the signal power. However,
in order to have a more reliable result, for each measurement
the average power of three consecutive samples starting with
the first arriving path is considered as the signal power. On
the other hand, the noise power is found as the average power
of all the samples coming before the first arriving path. At
each distance, 1000 measurements are collected for both LOS
and NLOS situations. To reduce the effects of outliers, these
measurements are divided into 100 groups which consist of
10 measurements. For each group, an average SNR value is
found by averaging the SNR values of 10 measurements in
that group. Using this average SNR value, a CRLB value is
calculated for each group. Finally, the average of these 100
groups CRLB values is used as the average CRLB value at
that distance.

In Fig. 9, the RMSEs of the modified SBS and JBSF
algorithms for ideal threshold values are compared to the
CRLB for both LOS and NLOS situations. It is observed that
the performances of the proposed algorithms are quite close to
the bound especially in the LOS situation. Considering the fact
that the optimal estimators are quite complicated compared to
these algorithms, it can be concluded that these algorithms can
be used in practical applications without severe performance
degradation.

VII. CONCLUSIONS

In this study two range estimation techniques have been
proposed for real-time UWB positioning applications. These
algorithms are inspired from two well-known algorithms;
namely, SBS and JBSF. Performances of the proposed al-
gorithms have been tested on real UWB data. It has been
observed that the proposed algorithms can perform better than
the SBS and JBSF techniques. Also performance of these
algorithms has been compared with the theoretical limits and it
is observed that the proposed approaches provide good trade-
offs between performance and complexity.

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

Range (m)

R
M

S
E

 (
m

)

LOS

CRLB

Modified SBS

Modified JBSF

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

Range (m)

R
M

S
E

 (
m

)

NLOS

CRLB

Modified SBS

Modified JBSF

Fig. 9. Comparison of the modified algorithms with CRLB.
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