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Abstract. A power method formulation, which efficiently handles the
problem of dangling pages, is investigated for parallelization of PageRank
computation. Hypergraph-partitioning-based sparse matrix partitioning
methods can be successfully used for efficient parallelization. However,
the preprocessing overhead due to hypergraph partitioning, which must
be repeated often due to the evolving nature of the Web, is quite sig-
nificant compared to the duration of the PageRank computation. To
alleviate this problem, we utilize the information that sites form a natu-
ral clustering on pages to propose a site-based hypergraph-partitioning
technique, which does not degrade the quality of the parallelization. We
also propose an efficient parallelization scheme for matrix-vector multi-
plies in order to avoid possible communication due to the pages without
in-links. Experimental results on realistic datasets validate the effective-
ness of the proposed models.

1 Introduction

PageRank is a popular algorithm used for ranking Web pages by utilizing the
hyperlink structure among the pages. PageRank algorithm usually employs the
random surfer model [21], which can be described as a Markov chain, where the
PageRank values of pages can be computed by finding the stationary distribu-
tion of this chain. Traditionally, PageRank computation is formulated as finding
the principal eigenvector of the Markov chain transition matrix and solved using
the iterative power method. Recently, linear system formulations and associated
iterative solution methods [3, 9, 18] are investigated for PageRank computation
as well. In both types of formulations, PageRank computation can be acceler-
ated via parallelization [9,20] or increasing the convergence rate of the iterative
methods [5, 12, 15, 16, 19].

The focus of this work is on reducing the per iteration time through par-
allelization. Among several formulations [13, 15, 17, 18] proposed for handling
the dangling-page (pages without out-links) problem, widely used formulation
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of Kamvar et al. [15] is selected for parallelization. In this formulation, which
is based on the power method, the kernel operations are sparse-matrix vector
multiply and linear vector operations. The partitioning scheme adopted in our
parallelization is based on rowwise partitioning of the transition matrix and con-
formable partitioning of the linear vectors used in the iterative power method.

Recently, the hypergraph-partitioning-based sparse matrix partitioning met-
hod of Catalyurek and Aykanat [6, 7] is applied by Bradley et al. [4] for ef-
ficient parallelization of the above-mentioned power method formulation. This
parallelization technique successfully reduces the communication overhead while
maintaining computational load balance. However, the preprocessing overhead
due to hypergraph partitioning, which must be repeated often due to constantly
evolving nature of the Web, is quite significant compared to the duration of the
PageRank computation.

In this work, we investigate techniques for reducing the overhead of the pre-
processing step before the PageRank computation without degrading the quality
of the parallelization. To this end, we propose a site-based compression on the
rows of the transition matrix relying on the expectation that sites form a natural
clustering on pages. Then, the conventional hypergraph model [6, 7] is applied
on the compressed site-to-page transition matrix to induce a partitioning on the
original page-to-page transition matrix. We also propose an efficient paralleliza-
tion scheme for matrix-vector multiplies in order to avoid possible communica-
tion due to the pages without in-links. Furthermore, we extend the hypergraph-
partitioning model to encapsulate both this efficient parallelization scheme and
the computational load balance over the whole iterative algorithm. Experimental
results on realistic Web datasets verify the validity of the proposed models. The
proposed site-based partitioning scheme reduces the preprocessing time drasti-
cally compared to the page-based scheme while producing better partitions in
terms of communication volume. Our implementation for the proposed parallel
PageRank algorithm shows that site-based partitioning scheme leads to better
speedup values compared to the page-based scheme on a 32- node PC cluster.

The rest of the paper is organized as follows. Section 2 summarizes the PageR-
ank algorithm. The proposed parallelization scheme is discussed in Section 3. Sec-
tion 4 describes the proposed page-based and site-based partitioning schemes.
Experimental results are presented in Section 5. Finally, concluding remarks are
given in Section 6.

2 PageRank Algorithm

PageRank can be explained with a probabilistic model, called the random surfer
model. Consider a Web user randomly visiting pages by following out-links within
pages. Let the surfer visit page i at a particular time step. In the next time step,
the surfer chooses to visit one of the pages pointed by the out-links of page i at
random. If page i is a dangling page, then the surfer jumps to a random page.
Even if page i is not a dangling page, the surfer may prefer to jump to a random
page with a fix probability instead of following one of the out-links of page i.
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In the random surfer model, the PageRank of page i can be considered as the
(steady-state) probability that the surfer is at page i at some particular time
step. In the Markov chain induced by the random walk on the Web containing n
pages, states correspond to the pages in the Web and the n×n transition matrix
P = (pij) is defined as pij = 1/deg(i), if page i contains out-link(s) to page j,
and 0, otherwise. Here, deg(i) denotes the number of out-links within page i.

A row-stochastic transition matrix P′ is constructed from P as P′ = P+dvT

via handling of dangling pages according to the random surfer model. Here,
d = (di) and v = (vi) are column vectors of size n. d identifies dangling pages,
i.e., di = 1 if row i of P corresponds to a dangling page, and 0, otherwise. v is the
teleportation (personalization) vector which denotes the probability distribution
of destination pages for a random jump. Uniform teleportation vector v, where
vi = 1/n for all i, is used for generic PageRank computation [14]. Non-uniform
teleportation vectors can be used for achieving topical or personalized PageRank
computation [11, 21], or preventing link spamming [10].

Although P′ is row-stochastic, it may not be irreducible. For example, the Web
contains many pages without in-links, which disturb irreducibility. An irreducible
Markov matrix P′′ is constructed as P′′ = αP′+(1−α)evT , where e is a column
vector of size n containing all ones. Here, α represents the probability that the
surfer chooses to follow one of the out-links of the current page, and (1 − α)
represents the probability that surfer makes a random jump instead of following
the out-links.

Given P′′, PageRank vector r can be determined by computing the stationary
distribution for the Markov chain, which satisfies the equation (P′′)T r = r.
This corresponds to finding the principal eigenvector of matrix P′′. Applying
the power method directly for the solution of this eigenvector problem leads
to a sequence of matrix-vector multiplies pk+1 = (P′′)T pk, where pk is the kth
iterate towards the PageRank vector r. However, matrix P′′ is completely dense,
whereas original P is sparse. Kamvar et al. [15] propose an efficient multiplication
scheme by reformulating the multiplication with dense matrix (P′′)T in terms
of sparse PT . This efficient PageRank algorithm is given in Fig. 1.

3 Parallel PageRank Algorithm

Two basic types of operations are performed repeatedly at each iteration of the
PageRank algorithm given in Fig. 1. The first type is sparse-matrix vector multi-
ply (i.e., q ← αAp), and the second type is linear vector operations, such as L1
norm (e.g., ‖q‖1), DAXPY (i.e., q ← q+γv) and vector subtraction (i.e., q−p).
We consider the parallelization of the computations of the PageRank algorithm
through rowwise partitioning of the A matrix as A = [AT

1 · · ·AT
k · · ·AT

K ]T ,
where processor Pk stores row stripe Ak. All vectors (e.g., p and q) used in
the algorithm are partitioned conformably with the row partition of A to avoid
communication of the vector components during linear vector operations. That
is, the p and q vectors are partitioned as [pT

1 · · ·pT
K ]T and [qT

1 · · ·qT
K ]T , re-

spectively. Processor Pk is responsible for performing the local matrix-vector
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PageRank(A, v)
1. p ← v
2. repeat
3. q ← αAp
4. γ ← ||p||1 − ||q||1
5. q ← q + γv
6. δ ← ||q − p||1
7. p ← q
8. until δ < ε
9. return p

Fig. 1. Efficient PageRank algorithm based on the power method: A = PT is the
transition matrix, v is the teleportation vector, and ε is the convergence threshold

multiply qk ← αAkp while holding pk. Processor Pk is also responsible for the
linear vector operations on the kth blocks of the vectors.

In this scheme, the linear vector operations can be efficiently performed in par-
allel such that only the norm operations require global communication overhead.
Fortunately, the volume of communication incurred due to this global commu-
nication does not increase with increasing n, and it is only K−1 words. On the
other hand, depending on the way in which rows of A are partitioned among
the processors, entries in p may need to be communicated among the processors
before the local matrix-vector multiplies, hence this scheme can be considered as
a pre-communication scheme. During the pre-communication phase, a processor
Pk may be sending the same pk-vector entry to different processors according
to the sparsity pattern of the respective column of A. This multicast like op-
eration is referred to here as Expand operation. Note that the communication
requirement during the pre-communication may be as high as (K − 1)n words
and K(K − 1) messages, and the communication occurs when each sub-matrix
Ak has at least one nonzero in each column.

As seen in Fig. 1, PageRank algorithm requires two global communication
operations in the form of all-to-all reduction due to the norm operations at steps
4 and 6 in Fig. 1. The global operations may incur high communication overhead
in parallel architectures with high message latency. In this work, we propose a
coarse-grain parallel PageRank algorithm, which reduces the number of global
communication operations at each iteration from two to one by rearranging the
computations as shown in Fig. 2. Here, two global norms are accumulated at
all processors in a single all-to-all reduction operation performed at step 5(c) in
Fig. 2. Hence, the proposed coarse-grain formulation halves the latency overhead
while keeping the communication volume the same. The only drawback of this
formulation is that it will perform an extra iteration compared to the power
method formulation given in Fig. 1, because the convergence check is applied on
the p vectors of the previous two iterations. In Fig. 2, a superscript k denotes
the partial result computed by processor Pk, e.g., γk is the partial result for
global scalar γ, where γ =

∑K
k=1 γk.
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Parallel-PageRank(Ak, vk)
1. pk ← vk

2. tk ← 0
3. repeat
4. (a) p ← Expand(pk)

(b) qk ← αAkp
5. (a) γk ← ‖pk‖1 − ‖qk‖1

(b) δk ← ‖pk − tk‖1

(c) 〈γ, δ〉 ← AllReduceSum(〈γk, δk〉)
6. tk ← pk

7. pk ← qk + γvk

8. until δ < ε
9. return pk

Fig. 2. Coarse-grain parallel PageRank algorithm (pseudocode for processor Pk)

Web data may contain many pages without in-links [3]. This property can be
utilized to increase the efficiency of the parallel PageRank algorithm as follows.
Since pages without in-links correspond to zero rows of matrix A, the matrix-
vector multiply at step 4 of Fig. 2 results in zero values for the respective q-vector
entries. Hence, for each page i without in-links, pi iterate can be simply updated
as γvi instead of the DAXPY operation at step 7. Note that vi is a constant
throughout the iterations and γ is a global scalar computed and stored at all
processors at each iteration of the algorithm. Hence, possible expand communi-
cations of pi due to the sparsity pattern of column i of A can be totally avoided
as follows: We replicate vi among the processors that have at least one row with
a non-zero at column i at the very beginning of the algorithm and then enforce
each one of those processors to redundantly compute pi = γvi at each iteration
of the algorithm.

4 Rowwise Partitioning

The objective in the proposed parallelization is to find a rowwise partition of A
that minimizes the volume of communication during each sparse matrix-vector
multiply while maintaining the computational load balance during each iteration.

4.1 Page-Based Partitioning

Rowwise partitioning of irregularly sparse matrices for the parallelization of
matrix-vector multiplies is formulated using the hypergraph-partitioning model
[6, 7]. In the column-net model proposed for rowwise partitioning [6, 7], a given
matrix is represented as a hypergraph which contains a vertex for each row
and a net for each column. The net corresponding to a column connects the
vertices corresponding to the rows that have a non-zero at that column. The
vertices connected by a net are said to be its pins. Vertices are associated with
weights which are set equal to the number of non-zeros in the respective rows.
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A K-way vertex partition on the hypergraph is decoded as assigning the rows
corresponding to the vertices in each part of the partition to a distinct processor.
Partitioning constraint on balancing the part weights corresponds to balancing
the computational loads of processors, whereas partitioning objective of mini-
mizing the cutsize corresponds to minimizing the total communication volume
during a parallel matrix-vector multiply.

In this work, we adopt the hypergraph-partitioning model and extend it to
encapsulate both the computational load balance over the whole iterative algo-
rithm and the efficient parallelization scheme described in Section 3. For this
purpose, we reorder the rows and columns of matrix A in such a way that rows
and columns corresponding to the pages without in-links are permuted to the
end. Then, we decompose the reordered transition matrix A as follows:

A =
Z

WC

Here, rows of sub-matrix Z and columns of sub-matrix W correspond to the
pages without in-links. Note that Z is a sub-matrix containing all zeros. We
compute a rowwise partition of A in two phases. The first and second phases
respectively incorporate the partitioning of the PageRank computation for the
pages with and without in-links among the processors.

In the first phase, we obtain a K-way row partition of sub-matrix [C |W]
by partitioning the column-net representation H(C) of the C sub-matrix. H(C)
contains one vertex and one net for each row and non-zero column of sub-matrix
C, respectively. Note that no nets are introduced for zero-columns which cor-
respond to dangling pages. Vertices of H(C) are weighted to incorporate the
floating point operations (flops) associated with the non-zeros of both C and W
sub-matrices as well as the flops associated with the linear-vector operations.
That is the weight of vertex i is set equal to: 2×nnz(row i of [C |W])+7. The
first term accounts for the number of flops associated with row i during a matrix-
vector multiply operation since each matrix non-zero incurs one multiply and
one add operation. The second term accounts for the number of flops associated
with the linear vector operations performed on the ith entries of the vectors.

In the second phase, rows of sub-matrix Z are distributed among the parts
of the rowwise partition obtained at the end of the first phase. Although it may
seem awkward to mention about distributing zero-rows across processors, recall
that partitioning of rows also incur the assignment of the respective vector en-
tries and the associated linear vector operations. The number of linear vector
operations performed on the vector entries corresponding to the zero rows re-
duces from 7 to 4 flops since the respective q-vector entries remain as zero. The
only metric considered during this distribution is to improve the balance of the
partition obtained in the first phase.
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4.2 Site-Based Partitioning

Experimental results show that the page-based partitioning technique proposed
in Section 4.1 is quite successful in minimizing the total volume of communi-
cation during the parallel PageRank computation. However, the preprocessing
overhead incurred in the first phase of the page-based scheme is quite signifi-
cant due to the partitioning of the hypergraph representing the page-to-page C
sub-matrix, which is very large in practice. For example, the time elapsed for
16-way partitioning of the Google and In-2004 datasets are as high as the time
elapsed for 64 and 47 iterations of the PageRank computations performed for
the respective datasets.

In this section, we propose a technique to reduce this overhead by partitioning
a compressed version, C̄, of the page-to-page sub-matrix C. We generate the site-
to-page C̄ matrix exploiting the fact that Web sites form a natural clustering of
pages. In matrix C̄, rows correspond to Web sites while columns corresponds to
pages. The union of the non-zeros of the C-rows that correspond to the pages
residing in a site form the non-zeros of the C̄-row corresponding to that site.
Then, we apply the column-net model on C̄ to obtain the H(C̄), and partition
H(C̄) instead of H(C). The weight of a vertex j in H(C̄) corresponding to site j
is set equal to

∑

page i∈ site j

(2 × nnz(row i of [C |W])) + 7 × pin−links(site j),

where pin−links(site j) denotes the number of pages with at least one in-link in
site j.

Although the compression of C reduces the number of vertices in H(C̄) sig-
nificantly, the compression does not reduce the number of nets. However, ex-
perimental results show that H(C̄) contains many nets that connect a single
vertex. These single-pin nets correspond to the pages that have out-links only to
the sites they belong to. Since single-pin nets have no potential to incur cost to
the cutsize, they can be discarded from H(C̄) before the partitioning. Removal
of single-pin nets significantly reduces the number of total nets in H(C̄). The
partitioning time of H(C̄) is expected to be much less than that of H(C), since
H(C̄) contains significantly fewer vertices and nets.

5 Experimental Results

In our experiments, two datasets with different sizes are used. The Google1

dataset is provided by Google and includes .edu domain pages in the US. The
In-20042 dataset is crawled by UbiCrawler and includes pages from the Web
of India. The properties of these datasets are given in Table 1. For the conver-
gence threshold of ε = 10−8, the PageRank computations converge in 91 and 90

1 http://www.google.com/programming-contest/
2 http://law.dsi.unimi.it/

http://www.google.com/programming-contest/
http://law.dsi.unimi.it/
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Table 1. Properties of datasets and column-net hypergraph representations of the
respective C and C̄ matrices

Google In-2004
# of pages 913,569 1,347,446
# of pages w/o in-links 132,167 86
# of sites 15,819 4,376
# of links 4,480,218 13,416,945
% intra-site links 87.42 95.92
% inter-site links 12.58 4.08
Page-based # of vertices 781,402 1,347,446
hypergraph # of nets 608,769 1,065,161

# of pins 4,741,970 14,482,106
Site-based # of vertices 15,819 4,376
hypergraph # of nets 214,659 205,106

# of pins 600,952 555,195

iterations for the Google and In-2004 datasets, respectively. In the PageRank
computations, the damping factor α is set to 0.85, conforming with the usual
practice [3].

Table 1 also shows the properties of the column-net hypergraphs H(C) and
H(C̄), which represent the C and C̄ matrices, respectively. As seen in Table 1,
the proposed compression scheme leads to a significant decrease in the size of
the hypergraphs. For example, in the In-2004 dataset, approximately 99%, 80%
and 96% reductions are obtained in the number of vertices, nets and pins, re-
spectively. Direct K-way hypergraph partitioning tool kPaToH [2, 8] is used,
with default parameters and an imbalance tolerance of 3%, for partitioning the
hypergraphs. As kPaToH involves randomized heuristics, kPaToH is run ten
times with different seed values for each partitioning instance and the averages
of those results are reported in the following figures. The partitioning operations
are performed on an Intel Pentium IV 3.0 GHz processor with 2 GB of RAM.
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Fig. 5. Speedup curves

Fig. 3 displays the variation of the preprocessing times of page-based and
site-based partitioning schemes with increasing number of processors. For the
page-based scheme, the preprocessing time involves only the partitioning time,
whereas for the site-based scheme, it involves both compression and partitioning
times. As seen in Fig. 3, the proposed site-based partitioning scheme achieves a
drastic reduction in the preprocessing time compared to the page-based scheme.
For example, the site-based scheme performs the preprocessing approximately 11
and 40 times faster than the page-based scheme in partitioning the Google and
In-2004 datasets, on the overall average. In Fig. 3, the number annotated with
each bar shows the ratio of preprocessing time to the sequential per iteration
time. According to these values, in the In-2004 dataset, the preprocessing time
of the site-based scheme is approximately equal to a single iteration time of the
sequential PageRank computation.

Fig. 4 displays the quality of the partitions obtained by the page-based and
site-based partitioning schemes in terms of total communication volume. As
seen in the figure, the partitions obtained by the site-based scheme incurs 70%
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and 54% less communication volume than those of the page-based scheme for the
Google and In-2004 datasets, respectively. These experimental findings verify
the expectation that sites constitute natural clusters of pages.

In order to compare the speedup performances of the page- and site-based
partitioning schemes, the parallel PageRank algorithm proposed in Section 3 is
implemented using the ParMxvLib library [22]. The parallel PageRank algorithm
is run on a 32-node PC cluster interconnected by a Fast Ethernet switch, where
each node contains an Intel Pentium IV 3.0 GHz processor, 1 GB of RAM.
The speedup curves are given in Fig. 5. As seen in the figure, the site-based
partitioning scheme leads to higher speedup values than the page-based scheme,
in accordance with the reduction in the communication volumes. For example,
the site-based scheme leads to a speedup of approximately 24 on 32 processors,
whereas the page-based scheme achieves a speedup of 16.

6 Conclusion

An efficient parallelization technique for PageRank computation was proposed
and implemented. Experimental results show that, compared to a state-of-the-art
parallelization scheme, the proposed technique not only reduces the preprocess-
ing time drastically, but also reduces the parallel per iteration time. Although
the proposed parallelization scheme is applied on a particular power method
formulation, the underlying ideas can be easily and effectively applied to the
parallelization of other iterative method formulations investigated in the litera-
ture for PageRank computation.
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