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Abstract— In many intelligent vehicles applications tracking
plays an important role. This paper considers tracking of
a vehicle under delayed and noisy measurements. For this
purpose we design an H∞ optimal filter for linear systems
with time delays in the state and output variables. By using
the duality between filtering and control, the problem at hand
is transformed to a robust controller design for systems with
time delays. The skew Toeplitz method developed earlier for
the robust control of infinite dimensional systems is used to
solve the H∞ filtering problem. The results are illustrated
with simulations and effects of the time delay on the tracking

performance are demonstrated.

I. INTRODUCTION

This paper deals with an important aspect of the track-

ing problems appearing in intelligent vehicles applications,

namely state estimation under delayed and noisy measure-

ments. An example for the problem studied here is illus-

trated in Figure 1, where a target is moving according

to a certain known dynamical equations (position, velocity

and acceleration representing the state x(t)) with unknown

input w(t). Suppose that the position of the target is the

measured variable, but the measurement is noisy and it

reaches the processing unit with a certain time delay, which

may be due to physical distance between the target and the

processing unit and/or due to restrictions imposed by the

communication channels. The processing unit receives the

signal y(t) = Cx(t−h)+v(t), (where C is a constant matrix,

h > 0 is the delay amount, and v(t) is the measurement

noise) and generates an estimate ẑ(t) of the current position

z(t) = Cx(t).

Fig. 1. Tracking Problem
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Estimate of the target vehicle’s position, ẑ(t), may then

be used to give a command signal to the follower vehicle,

which may be required to follow the path traveled by the

target vehicle, or to reach the target within a certain desired

time interval. In this paper we will not deal with what the

follower does based on the command signal received from

the central processing unit. Rather, we will concentrate on

how well the position, z(t), can be estimated and discuss the

effect of time delay on best achievable tracking error.

In the literature many techniques have been developed

to solve the above problem within the framework of H∞

filtering. These methods primarily depend on the dynamical

model of the target. Our goal is to solve the H∞ optimal

filtering problem without approximations of the time delay.

Previous works mostly dealt with designing observers for

time delayed state variables, i.e. time delays are in the state

dynamics, [1], [2], [3], [7]. Linear functional state observers

with delay and stability conditions are given in [1] for delay

dependent cases. For systems with delay in the state and

the output an H∞ filter design, which is of the Luenberger

observer type is presented in [5] depending on a newly

designed version of the bounded real lemma for time delay

systems. A robust H∞ filtering method is proposed in [6]

for linear continues systems with time varying delay. The

filter is a linear observer type and guarantees that L2 induced

norm from exogenous signal to estimation error is less than

a prescribed value. A number of Linear Matrix Inequalities

(LMIs) are solved to obtain the filter. Another filtering

method that uses LMI solutions for time varying multiple

delays in state variables is given in [7] which solves robust

L2-L∞ filtering problem guaranteeing a prescribed energy to

peak noise attenuation level for uncertainties and time delays.

A different method of H∞ observer design is proposed in

[2] which studies a linear system with multiple delays in

state and output. Another method of designing an observer is

given in [3]; again, it involves LMIs. We should indicate that

most of the above mentioned techniques involving LMIs are

suboptimal in the sense that the filter can be obtained under

the condition that the LMIs are solvable. In most situations

the optimal performance level cannot be achieved. Besides

the frequency domain method proposed in this paper, there

are some time domain state-space based techniques leading

to optimal H∞ filters, see e.g. [10], [11]. In [11] a lifting

technique is used to solve the associated Nehari problem

(see Section II below). In [10], Mirkin solves the problem

by parameterizing all solutions of the non-delayed problem

and finding the ones which solve the delayed problem. This

approach involves solving Riccati equations and checking a
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Fig. 2. Dynamic System Model for Estimation

spectral radius condition. Among all available methods for

the solution of the H∞ suboptimal filtering problem under

delayed and noisy measurements, Mirkin’s approach [10] is

the simplest. Moreover, his “central” filter’s performance can

get arbitrarily close to the optimum.

In this paper, using the frequency domain representations,

we provide an alternative method to compute the H∞

optimum filter directly. First, by using the duality between

filtering and control, the problem at hand is transformed to

a robust controller design for systems with time delays. The

skew Toeplitz method developed earlier for the robust control

of infinite dimensional systems, [4], [12], [8], is used to solve

the H∞ optimal filtering problem.

Next section describes the problem and propose a new

filter design technique using the duality between filtering

and control. Section III gives an illustrative example to

demonstrate the solution method as well as the effect of time

delay on the tracking performance. Concluding remarks are

made in the last section.

II. PROBLEM FORMULATION AND

METHODOLOGY

Consider the dynamical system (Σ) shown in Figure 2

with time delays in state and output. The objective of this

paper is to design a filter F so that the error e is small in

the H∞ sense, i.e. the L2 induced gain from [w v]T to e is

small.

A. Problem Definition

Consider the linear time-delay system which is shown as

Σ in Figure 2:

ẋ(t) = A0x(t) + A1x(t − h1) + Bw(t) (1)

y(t) = C0x(t) + C1x(t − h2) + Dv(t) (2)

z(t) = Lx(t) (3)

where x(t) ∈ R
n is the state vector, y(t) ∈ R

p is output

vector, w(t) ∈ R
q and v(t) ∈ R

q are process noise and

measurement noise vectors respectively. Time delays h1 and

h2 are assumed to be known. The matrices A0, A1, B,

C0, C1, D and L are also known. In this case the transfer

matrices from disturbances to state and output are found from

the relations

X(s) = R(s)BW (s) (4)

where R(s) := (sI − A0 − A1e
−h1s)−1. Then,

Y (s) = (C0 + C1e
−h2s)R(s)BW (s) + DV (s) (5)
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Fig. 3. Feedback Control System

We seek a filter such that the estimation error e is small in

the H∞ sense,

e(t) = z(t) − ẑ(t). (6)

In the frequency domain, we have

E(s) = Z(s) − Ẑ(s) = LX(s) − F (s)Y (s) =

(L − F (s)(C0 + C1e
−h2s))R(s)BW (s) − F (s)DV (s) (7)

Assumption: In order to simplify the exposition we assume

C1 = L = C C0 = 0. (8)

Otherwise the inner-outer factorization techniques mentioned

in [8] can be used here.

With the above assumption the estimation error takes the

form

E(s) = U(s)(1 − F (s)e−h2s)W (s) − F (s)DV (s) (9)

where

U(s) = C(sI − A0 − A1e
−h1s)−1B. (10)

Let us now assume that the measurement noise v is generated

by a known coloring filter Wv , i.e. V (s) = Wv(s)V̂ (s),
where v̂ is an unknown finite energy signal. Similarly, let

w be an unknown finite energy signal. Then the L2 induced

norm from external signals w and v̂ to the error e is

γ = ‖(1 − F (s)e−h2s)U(s) − F (s)DWv(s)‖∞

= sup
v̂,w 6=0

‖e‖2

‖

[
w
v̂

]
‖2

(11)

Clearly the following two conditions must be satisfied in

order to have a finite γ:

F (s) is stable, and

(1 − F (s)e−h2s)U(s) is stable
(12)

B. H∞ Control Problem

The standard H∞ control problem associated with a stable

plant P̃ shown in Figure 3 can be defined as follows.

Transfer functions from the disturbance w̃ to ỹ and ũ are:

Tw̃→ỹ = W̃1(1 + P̃ C̃)−1

Tw̃→ũ = −W̃2C̃(1 + P̃ C̃)−1 (13)
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The optimal H∞ controller design problem is:

minimize γ

subject to (P̃ , C̃) is stable, and
(14)

||T
w̃→


 ỹ

ũ



||∞ ≤ γ (15)

In order to find the smallest (i.e. optimal) γ, following is

solved:

inf
Q̃∈H∞

‖W̃1(1 − P̃ Q̃) − W̃2Q̃‖∞ (16)

The free parameter Q̃ is obtained from the controller

C̃ =
Q̃

1 − P̃ Q̃
Q̃ =

C̃

1 + P̃ C̃
.

The important point throughout this work is that (16) is same

problem with (11) provided that the following dualities are

established:

W̃1(s) = U(s) = C(sI − A0 − A1e
−h1s)−1B

W̃2 = I

P̃ (s) = e−h2sD−1W−1
v (s)

Q̃(s) = F (s)DWv(s)

(17)

Thus, the result of the H∞ optimal control problem, Q̃, gives

the H∞ optimal filter F .

C. Solution of the H∞ Control Problem

It is clear from (17) that the H∞ control problem defined

above involves infinite dimensional weight W̃1 = U(s) and a

stable plant with time delay. We now present the solution to

the above control problem for the case A1 = 0 (or h1 = 0)

and h2 6= 0. It is possible to solve the problem when h1 6= 0
and h2 = 0; but an exact optimal solution is difficult to

obtain when both delays are non-zero, in such a case one

may have to try finding approximate solutions.

The optimal H∞ controller satisfying (16) is designed in

[4] and it is given in the form of:

C̃opt(s) = Eγ0
(s)

N0(s)
−1Fγ0

(s)L(s)

1 + mn(s)Fγ0
(s)L(s)

(18)

where mn(s) = e−h2s, No(s) = D−1W−1
v (s), Eγ0

(s) =
Uγ0

(s)Uγ0
(−s) − 1, with Uγ0

(s) = U(s)/γ0, and Fγ0
(s)

and L(s) are rational functions determined from the problem

data, see [4], [12]. Then, the desired filter is obtained as

F (s) = D−1W−1
v Q̃opt = D−1W−1

v C̃opt(1 + P̃ C̃opt)
−1

For W̃1 = U(s) = C(sI − A)−1B (i.e. h1 = 0), we have

the following structure for the optimal filter:

F (s) =
(Uγ0

(s)Uγ0
(−s) − 1) Fγ0

(s)L(s)

1 + e−h2sFγ0
(s)L(s)Uγ0

(s)Uγ0
(−s)

. (19)

In the next section we illustrate the computation this filter

with an example.

III. NUMERICAL EXAMPLE

Consider the system (1) with the assumptions (8) and

A1 = 0 (i.e. U(s) is rational). Then, we have

ẋ(t) = Ax(t) + Bw(t) (20)

y(t) = Cx(t − h2) + Dv(t) (21)

z(t) = Cx(t) (22)

x(t) is the state vector of the target vehicle and it is

composed of

x(t) :=




xp

xv

xa




xp : position
xv : velocity
xa : acceleration

(23)

The corresponding matrices are

A =




0 1 0
0 0 1
0 0 −ε


 B =




0
0
1




C =
(

1 0 0
)

D = 1 (24)

Here ε is a parameter which determines how much the initial

value of the acceleration impacts the system dynamics. We

arbitrarily take it as ε = 2. Now, with the above we have

U(s) =
1

s2(s + ε)
.

The above system describes a moving vehicle whose accel-

eration depends on w(t), considered as an unknown finite

energy signal. In all simulations below w(t) is as shown in

Figure 4.
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Fig. 4. Process Noise, w(t)

The model above is extended to two-dimensional space

by repeating it and the corresponding filter for the x-and-y

directions independently. So the trajectory to be tracked is

shown in two-dimensional space in Figure 5. The disturbance

in the acceleration (w(t) shown above is repeated in x and

y directions) leads to maneuvers as seen in the figure.
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Fig. 5. Original trajectory

Case 1. Let DWv(s) = 1, and h2 = 1. The signal shown

in Figure 6 is taken as the measurement noise in both x and

y directions.

0 50 100 150
−15

−10

−5

0

5

10

15

time (s)

n
o

is
e

Measurement Noise

Fig. 6. Measurement Noise, Case 1.

For these numerical values, the functions Fγ(s) and L(s)
necessary to obtain the filter from (19) are found by the help

of MATLAB:

L(s) = −
s2 + 2.35s + 0.72

s2 − 2.35s + 0.72

Fγ(s) =
s2(s2 − ε2)

0.655s4 + 3.183s3 + 5.104s2 + 3.22s + 0.99

with γ = 1.526. The final form of the filter (19) is

F (s) =
γR1(s)

1 + R1(s)R2(s)
(25)

where R1(s) and R2(s) are Infinite Impulse Response (IIR)

and Finite Impulse Response (FIR) filters respectively, i.e.

impulse response of R2 is zero outside the time interval

[0 , h2]. For the above numerical values of the problem we

have

R1(s) ≈
s2 + 2.35s + 0.72

s2 + 2.5s + 1.1
(26)

R2(s) ≈
0.655e−s

s6 − 4s4 + 0.43
(27)

+
0.006s5 − 0.03s4 + 0.11s3 − 0.33s2 + 0.66s− 0.66

s6 − 4s4 + 0.43

Time domain simulations have been performed for this

system with different disturbance signals. Following figures

show the estimation performance of filter against time delay.

Figure 7 shows the error in the output, namely the differ-

ence z(t)−y(t) = C(x(t)−x(t−h2))−v(t). Effect of time

delay is obvious in the figure. If the time delay h2 was zero,

then this signal would be equal to the measurement noise

−v(t), see Figure 6. Therefore, the deviation of z(t) − y(t)
from −v(t) shows how difficult the filtering problem is (the

problem is not just a simple noise elimination problem).
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Fig. 7. z(t) − y(t) for Case 1.

The performance of filter is shown in Figure 8. It illustrates

the estimation error z(t)− ẑ(t) along the path. Error caused

by time delay is corrected by filter and just a noise like

characteristics similar to measurement noise is left as the

error.

We have also applied the method of Mirkin, [10] on the

same problem. Note that in [10] we have to choose a γ
which is greater than the optimal value γo = 1.526. Then a

central suboptimal filter is designed. In order to compare the

performance of the optimal filter and the “near optimal” filter

of [10] we show both estimation errors in Figure 8 (where

dark lines correspond to the result of the filter of [10]). It

looks like the filter of [10] can eliminate the measurement

noise better, but on the average it leads to a larger error.

We have also implemented a standard Kalman filter for the

discretized delayed system model (state space has expanded

by sampling 20 times during a one delay time period). The

resulting error is shown in Figure 9. We see that Kalman

filter can eliminate the noise, but it cannot reduce the effect

of time delay.
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Fig. 8. Estimation Errors, Case 1.
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Fig. 9. Estimation Error with Kalman Filter, Case 1.

Case 2. Let DWv(s) = 1, and h2 = 3. The resulting filter

expression is the same as (25), where this time we have

γ = 3.654 and

R1 ≈
s2 + 2.264s + 0.529

s2 + 1.334s + 1.642
(28)

R2 ≈
0.274e−3s

s6 − 4s4 + 0.075
(29)

+
1.37s5 − 3.12s4 + 1.23s3 − 1.23s2 + 0.81s− 0.23

s6 − 4s4 + 0.075

The above time domain simulations are repeated for this

case. Figure 10 and Figure 11 are the errors before the filter,

z(t) − y(t) and after filter, z(t) − ẑ(t) respectively.

As before we also provide the result obtained using [10],

in Figure 11 as dark line. We see that in this case, the average

value of the error obtained using the filter proposed in [10]
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Fig. 10. z(t) − y(t), Case 2.

is about the same as the average value of the error obtained

using the optimal filter derived here.
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Fig. 11. Estimation Errors, Case 2.

Above examples have shown that the errors due to time

delay are eliminated successfully by using the H∞ optimal

filter derived here. On the other hand, the effect of measure-

ment error seems to be there. In order to reduce the effect

of the measurement error we may consider using a weight

Wv(s) which generates v(t). This is the next study case.

Case 3. h2 = 3 and DWv(s) = 10s+1

s+10
. For this case

we compute γ = 4.188. And the filter can again be put

in the form of (25). Figure 12 shows the error in delayed

state z(t)−y(t), and Figure 13 is the estimation error of the

filter z(t)− ẑ(t), using the method proposed here (blue line)

and the method of [10] (dark line). By comparing these two

graphs we observe that the filter eliminates the effect of time

delay and it reduces the noise by about a factor of two.

FrF1.3

1294



0 50 100 150
−200

0

200

400
Error in output (x−dimension)

time (s)

e
rr

o
r

0 50 100 150
−200

−100

0

100

200
Error in output (y−dimension)

time (s)

e
rr

o
r

Fig. 12. z(t) − y(t), Case 3.
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Fig. 13. Estimation Errors, Case 3.

IV. CONCLUDING REMARKS

In this paper, by using the duality between filtering and

control, we have illustrated that the earlier methods devel-

oped for the robust control of infinite dimensional systems

solve the H∞ filtering problem appearing in target tracking

problems under delayed and noisy measurements.

The structure of the filter designed is very simple (25);

one needs to compute the performance level γ, and two

functions R1(s) and R2(s). In our numerical examples R1(s)
was a low order rational function and R2(s) was an FIR

filter whose coefficients can be computed explicitly using

the formulae given in Section II, and the results of [4], [12].

Simulations show that compared to the method proposed

in [10], the H∞ optimal filter (25) results in more noisy

estimation errors. This is due to the gain of the optimal filter

at s = +∞, i.e., in Case 1 and 2 we have F (∞) = γ,

which means that the high frequency component of the noise

is amplified/attenuated by a factor of γ. Whereas the central

suboptimal filter of [10] is always strictly proper, hence high

frequency noise is always filtered. Similarly for the Kalman

filter: high frequency noise is filtered, but the effect of the

time delay is there.

For the case where h1 6= 0 and A1 6= 0 we may have

to approximate the function U(s) by a rational function so

that this approach works. The results for this situation will

be reported elsewhere due to page restrictions.
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