
Generalized ID-Based ElGamal Signatures
Said Kalkan

Department of Computer Engineering
Bilkent University

Ankara, 06800, Turkey
Email: skalkan@cs.bilkent.edu.tr

Kamer Kaya
Department of Computer Engineering

Bilkent University
Ankara, 06800, Turkey

Email: kamer@cs.bilkent.edu.tr

Ali Aydın Selçuk
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Abstract— ID-based cryptography has been a very active
area of research in cryptography since bilinear pairings were
introduced as a cryptographic tool, and there have been many
proposals for ID-based signatures recently. In this paper, we in-
troduce the concept of generalized ID-based ElGamal signatures
and show that most of the proposed ID-based signature schemes
in the literature are special instances of this generalized scheme.
We also obtain numerous new signatures from this generalized
scheme which have not been proposed before.

I. INTRODUCTION

In 1984, Shamir [10] introduced the concept of ID-based
cryptography to simplify key management procedures in pub-
lic key infrastructures. Following Joux’s [7] discovery on how
to utilize bilinear pairings in public key cryptosystems, Boneh
and Franklin [2] proposed first practical ID-based encryption
scheme in Crypto 2001. Since then, ID-based cryptography has
been one of the most active research areas in cryptography and
numerous ID-based encryption and signature schemes have
been proposed that use bilinear pairings.

ID-based cryptography helps us to simplify the key man-
agement process in traditional public key infrastructures. In
ID-based cryptography any public information such as e-
mail address, name, etc., can be used as a public key. Since
public keys are derived from publicly known information, their
authenticity is established inherently and there is no need for
certificates in ID-based cryptography. The private key for a
given public key is generated by a trusted authority and is
sent to the user over a secure channel.

Recently, there has been many proposals for ID-based
signatures [9], [11], [1], [8], [5], [3] and most of these
schemes, in one way or the other, have been based on the
ElGamal signature algorithm [4]. In this paper, we show that
most of these proposals are in fact special instances of a
more general concept which we call the generalized ID-based
ElGamal signature. Besides providing a unified framework
for previously proposed ID-based signatures, the generalized
scheme also yields many new ID-based signatures that have
not been explored before.

The rest of the paper is organized as follows: Background
concepts including bilinear pairings and ElGamal signatures
are discussed in Section II. We explain how to convert the
original ElGamal signature into an ID-based signature scheme
in Section III. We use the ideas of Horster et al. [6] and
generalize the basic ID-based ElGamal signature scheme in

Section IV. Some extensions and variations of this generalized
ElGamal signature scheme are also discussed in this section.
The paper is concluded with a discussion of the proposed
schemes in Section V.

II. BACKGROUND

In this section, we present the tools which will be used in
the rest of the paper. We briefly discuss bilinear pairings, the
ElGamal signature scheme and its generalizations.

A. Bilinear Pairings

Let G1 be a cyclic additive group of order q generated by P .
Let G2 be a cyclic multiplicative group of the same order. A
cryptographic bilinear pairing is defined as e : G1×G1 → G2

with the following properties:

1) Bilinearity: e(aR, bS) = e(R,S)ab where R,S ∈ G1

and a, b ∈ Zq. This can also be stated as ∀R,S, T ∈
G1 e(R + S, T ) = e(R, T )e(S, T ) and e(R,S + T ) =
e(R,S)e(R, T )

2) Non-degeneracy: The map e does not send all pairs in
G1 ×G1 to the identity of G2. That is e(P, P ) 6= 1.

3) Computability: There exists an efficient algorithm to
compute e(R,S) for any R,S ∈ G1

B. ElGamal Signature Scheme

Let p be a large prime and g be a generator of Z∗
p. The

user chooses α ∈ Zp−1 as his private key and then computes
β = gα mod p as his public key. The parameters p, g, and β
are public whereas the user keeps α secret. To sign a message,
the user generates a random k ∈R Zp−1. Then he computes
r = gk mod p and s = k−1(m−rα) mod (p− 1). The (r, s)
pair is the signature of message m. The equation

m ≡ αr + ks (mod p− 1) (1)

called signature equation and verification is done by checking
the congruence gm ?≡ βrrs mod p. Security of ElGamal
signature relies on the discrete logarithm problem (DLP) since
solving α from β or s from r, m, β can be reduced to solving
DLP in Z∗

p.
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C. The Meta-ElGamal Signature Scheme

Horster et al. [6] showed that many variations of the basic
ElGamal signature are possible by modifying the signature
equation. Instead of using ElGamal’s original signature equa-
tion, one can use the general equation

A ≡ αB + kC mod q

to obtain a signature, where (A,B,C) is a permutation of the
parameters (m, r, s), q is a divisor of p−1, and g is an element
in Z∗

p of order q. The signature can be verified by checking
the equation:

gA ?≡ βBrC (mod p) (2)

By these permutations six possible signatures can be obtained.
Different signature schemes can also be obtained by using

different coefficients instead of just using the permutations of
(m, r, s). The coefficients (A,B,C) can be chosen as a per-
mutation of (mr, s, 1), (mr, ms, 1), (mr, rs, 1), or (mr, s, 1).
Additionally the signs of (A,B,C) can be changed by multi-
plying them by ±1. Then the signature equation will be

±A ≡ ±αB ± kC (mod q)

where (A,B, C) is a permutation of the coefficients men-
tioned.

The generalization can be extended further by choosing
A,B, C as general functions of m, r, s, instead of just products
of two. The functions must be chosen carefully to guarantee
the solvability and security. To guarantee solvability, it is
necessary that the parameter s can be extracted from the
equation. To guarantee security, the parameters m, r, s have
to occur in at least one of the three coefficients. Also, the
insecure rs and ms variants should be avoided.

An insecure rs variant occurs if (A,B, C) is taken as a
permutation of (rs,m, 1): For some message m, an attacker
chooses a random c ∈R Z∗

q and substitutes it for rs in the
verification equation and computes r. Then he computes s as
s = cr−1. The (r, s) pair will be a valid signature for the
message m.

An insecure ms variant occurs if (A,B,C) is a permutation
of (ms, r, 1): Assume that (r, s) is a valid signature observed
by an adversary for some message m. For an arbitrary message
m′, the adversary computes s′ as s′ = m′−1

ms and takes
r′ = r. Then (r′, s′) will be a valid signature for m′.

III. THE BASIC ID-BASED ELGAMAL SIGNATURE
SCHEME

An ID-based signature scheme consists of four algorithms:
SETUP, EXTRACT, SIGN, and VERIFY. In SETUP, the trusted
private key generator (PKG) chooses a secret as the global
secret key and publishes the global public system parameters.
In EXTRACT, the PKG verifies a user’s identity and computes
his private key. In SIGN, the user signs a message by using
his private key. Finally in VERIFY, the verifier verifies the
signature by using the public parameters and the signer’s
identity.

An ID-based signature scheme can be obtained from the
original ElGamal signature scheme as follows:

• SETUP: Let G1 be a cyclic additive group of order
q generated by P . Let G2 be a cyclic multiplicative
group of the same order and e : G1 × G1 → G2 be an
admissible bilinear pairing. The PKG chooses s ∈R Z∗

q

as the global secret key and computes Ppub = sP as the
global public key. The PKG publishes system parameters
〈G1, G2, e, P, Ppub, H, H1〉 where H and H1 are
secure hash functions.

• EXTRACT: PKG verifies the user’s identity ID and
computes QID = H1(ID) and SID = sQID as user’s
public and private keys respectively.

• SIGN: To sign a message m ∈ Zq, a user with his private
key SID, first chooses k ∈R Zq, then computes:

r = H(kP )

U = k−1(mP − rSID)

The signature for the message m is (kP,U)

• VERIFY: Given ID, a message m, and a signature
(kP,U), the signature is valid if the following equation
holds.

e(U, kP )e(QID, Ppub)r ?= e(P, P )m (3)

Correctness of the given scheme can be shown easily by
using the bilinearity properties of e. Notice that if (kP,U) is
a valid signature for m then we have:

e(U, kP )e(QID, Ppub)r = e(k−1(mP − rSID), kP )e(QID, Ppub)r

= e(mP − rSID, P )e(rSID, P )
= e(mP,P )
= e(P, P )m

The above scheme is the ID-based version of the original
ElGamal signature scheme. The conversion process, which
will also be used for other signature equations, is described
below:

In the original ElGamal scheme, the signature equation is
m ≡ αr + ks mod (p− 1) where r = gk and the signature is
(r, s). Since additive elliptic curve groups are used in ID-based
structure, the signing equation and r will be slightly different.
Signing equation for the ID-based ElGamal signature is:

mP = rSID + kU

Uppercase letters are used to denote elements of the elliptic
curve group. SID is the private key of the user, so it is a
natural replacement for α in the original scheme. U is a part
of the signature and it is the replacement for s. We cannot use
m directly since it is not a member of elliptic curve group;
therefore mP is used to replace m. Here we can also use
mQID or mPpub instead of mP and get a slightly different
signature scheme.
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A natural choice for r in the ID-based scheme is to compute
r as r = kP since r equals gk in the original scheme.
However, r must be an integer in Zp in the signature equation,
so we use a hash function and compute r as r = H(kP ).
Additionally, since kP is needed for verification (3), the
signature will be issued as (kP,U) instead of (r, U).

IV. THE GENERALIZED ID-BASED ELGAMAL SIGNATURE
AND ITS VARIANTS

We can generalize the above ID-based signature scheme by
using the generalized signing equation

A = BSID + kC (4)

where (A,B,C) is a permutation of the parameters (m, r, U),
instead of the basic equation mP = rSID + kU . Note that,
not all the permutations generate useful variants. We should
consider that U is a member of elliptic curve group, and m, r ∈
Zp. Accordingly, A and C should be members of the elliptic
curve group, but not B. Also note that, we can use mP and rP
instead of m and r , in cases where they need to be members
of the elliptic curve group.

We get four variants by simply permuting the elements of
(m, r, U). The signing equation for these variants are:

mP = rSID + kU (5)
U = rSID + kmP (6)
U = mSID + krP (7)
rP = mSID + kU (8)

Note that, the two variants where U is a coefficient of SID

do not produce useful signing equations.
In the variants where kP is not needed for verification, r

can be computed as e(P, P )k and the signature for m will
be (r, U). This has the advantage that we can get rid of one
pairing operation in the verification phase. Additionally, since
the signer knows k, he can compute e(P, P )k without any
pairing computation. As can be seen in Table III, r is taken as
e(P, P )k in (6) and (7). Note that, in (5) and (8), we need the
value of kP for verification. In that case r will be computed as
r = H(kP ) and the signature for m will be (kP,U). We can
also compute r as H(m, kP ) instead of H(kP ) or e(P, P )k.
In that case, m does not need to occur in the signing equations.

We can generate more variants by using different permu-
tations. Instead of choosing (A,B,C) as a permutation of
(m, r, U), we can also choose them as a permutation of
(mr, U, 1), (mr, mU, 1) and (mr, rU, 1). Signs of A,B, and
C can be changed by multiplying them by ±1. We can also
use a general function f(m, r) instead of just product mr.
Note that, unlike the original ElGamal variants, we cannot
choose (A,B,C) as a permutation of (mU, rU, 1), since we
cannot extract U from the signing equation in these variants.
The signature equations for these ID-based ElGamal variants
can be found in Table I.

The verification equations and other details for all signatures
are summarized in Table III. Group I lists the variants that
are obtained by permuting (m, r, U) and (1, r, U). Group II

No. A B C ElGamal Variant ID-Based Signature
ID I.1 m r U m ≡ αr + ks mP = rSID + kU
ID I.2 r m U r ≡ αm + ks rP = mSID + kU
ID I.3 U r m s ≡ αr + km U = rSID + kmP
ID I.4 U m r s ≡ αm + kr U = mSID + rkP
ID II.1 1 mr U 1 ≡ mrα + ks P = mrSID + kU
ID II.2 mr 1 U mr ≡ α + ks mrP = SID + kU
ID II.3 U mr 1 s ≡ mrα + k U = mrSID + kP
ID II.4 U 1 mr s ≡ α + kmr U = −SID −mrkP
ID III.1 1 mr mU 1 ≡ mrα + kms P = mrSID + mkU
ID III.2 mr 1 mU mr ≡ α + kms mrP = SID + kmU
ID III.3 mU mr 1 ms ≡ mrα + k mU = mrSID + kP
ID III.4 mU 1 mr ms ≡ α + kmr mU = SID + mrkP
ID IV.1 mr 1 Ur mr ≡ α + krs mrP = SID + rkU
ID IV.2 1 mr Ur 1 ≡ mrα + krs P = mrSID + rkU
ID IV.3 Ur 1 mr rs ≡ α + mrk rU = SID + mrkP
ID IV.4 Ur mr 1 rs ≡ mrα + k rU = mrSID + kP

TABLE I
ELGAMAL VARIANTS AND THE CORRESPONDING ID-BASED ELGAMAL

SIGNATURE EQUATIONS.

lists the variants that are obtained by permuting (mr, U, 1).
Group III lists the variants that are obtained by permuting
(mr, mU, 1). Group IV lists the variants that are obtained by
permuting (mr, rU, 1) and (r, rU, 1). Group V shows the rU
variants discussed in Section IV-A. Finally group VI shows
the variants discussed in Section IV-B that were not possible
on the basic ElGamal signatures.

A. Security Analysis of Proposed Schemes

The generalized ElGamal signature schemes of Horster et
al. [6] are believed to be secure except two insecure variants.
The two insecure variants in the generalized ElGamal signature
schemes are the rs and ms variants as discussed in Section II-
C. The corresponding ID-based variants are the rU and mU
variants. These variants occur if (A,B,C) is a permutation of
(rU,m, 1) or (mU, r, 1), respectively.

The mU variants are completely insecure and the attack
works similar to the attack for the ms variant of the basic
ElGamal signature: Assume that the (r, U) pair is a valid
signature observed by the adversary for message m. For an
arbitrary message m′, the adversary computes U ′ = m′−1

mU
and uses r′ = r. Then (r′, U ′) pair will be a valid signature
for m′.

This is not always the case for the rU variants; the attack
on the basic ElGamal rs variants does not work for two of the
four ID-based rU variants. Signature and verification equation
for the rU variants can be seen in Table II.

In Table II, the variants V.3, V.4 and V.6 are insecure.
The attack for these rU variants works as follows: For an
arbitrary message m, the adversary chooses C ∈R G1. Then
he substitutes e(C,P ) for e(U, rP ) in the verification equation
and computes r. After that, he computes U = r−1C. The
(r, U) pair will be a valid signature for the message m.

The variants V.1, V.2 and V.5 in Table II seem to be
secure since an attacker cannot extract r from the verification
equation. Therefore, we have three more ID-based signatures
from the rU variants.
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Signature equation Verification equation
V.1 mP = SID + rkU e(U, kP )re(QID, Ppub) = e(P, P )m

V.2 P = mSID + rkU e(U, kP )re(QID, Ppub)
m = e(P, P )

V.3 rU = −mSID + kP e(U, rP )e(QID, Ppub)
m = r

V.4 rU = −SID + mkP e(U, rP )e(QID, Ppub) = rm

V.5 P = SID + rkU e(U, kP )re(QID, Ppub) = e(P, P )
V.6 rU = −SID + kP e(U, rP )e(QID, Ppub) = r

TABLE II
THE rU VARIANTS

B. Efficiency of the Proposed Schemes

Computing a signature requires a hash function evaluation
or a pairing evaluation depending on how r is computed, as
well as some additional computation in G1. Several inversions
modulo q may also be needed depending on the signature
equation.

The cost of verifying a signature will be dominated by the
pairing computations, which is the most expensive operation.
Two or three pairing computations are needed to verify a
signature depending on the signing equation. Note that, the
value e(P, P ) is fixed, so it needs to be computed only once.
Also the value e(QID, Ppub) is fixed for a particular user, so
it needs to be computed once for each user.

More efficient variants can be obtained by modifying the
generalized signature equation (4) as

A = BSID + kCSID (9)

Note that, this kind of generalization is not possible for the
basic ElGamal signature because when k and α are used
together we cannot extract s from the signing equation.

By the help of bilinear pairings we can solve U from the
signature equation (9) if we choose (A,B,C) as a permutation
of (m, r, U), (mr, U, 1) or (m, rU, 1). Note that B and C
cannot be a member of the elliptic curve group; hence U
should be in A’s position. So we get six more variants by
using equation (9). These variants are:

U = rSID + kmSID

U = mSID + krSID

U = rmSID + kSID

U = SID + kmrSID

rU = mSID + kSID

rU = SID + kmSID

The value of kQID will be needed for verification. Therefore
r is computed as r = H(kQID) for these variants. For a
message m the signature will be (kQID, U). We can also
compute r as r = H(m, kQID) and remove m from the
signing equations. Group VI of Table III shows the verification
equations and other details for these schemes.

As observed by Barreto et al. [1], the number of pairing
operations needed can be reduced further by changing the

definitions of SID and QID as

QID = (H1(ID) + s)P,

SID = (H1(ID) + s)−1P.

For instance, for the signature (r, U), r = e(P, P )k, U =
(k + mr)SID, the verification equation becomes

r = e(U,QID)e(P, P )−mr,

and the number of pairing evaluations needed is reduced to
one.

A similar modification can also be applied to the other
signature schemes discussed in this paper to reduce the number
of pairing evaluations in each verification.

C. Embedding Previously Known ID-based Signatures

Recently many ID-based signature schemes have been pro-
posed. Most of these signatures [11], [8], [5], [3] can be seen
as special instances of our generalized scheme:

• In Paterson’s scheme [8], the signature (kP,U) is com-
puted as

r = H(kP )

U = k−1(H2(m)P + rSID)

where H2 is a secure hash function. Paterson’s scheme
is equivalent to ID I.1 of Table III where a second hash
function H2 is used for message digest.

• In Cha-Cheon’s scheme [3], the signature (kQID, U) is
computed as

r = H(m, kQID)
U = (r + k)SID

Cha-Cheon’s scheme is the same as ID VI.7.
• In Yi’s scheme [11], the signature (kP,U) is computed

as

r = H(m, kP )
U = kPpub + rSID

Yi’s scheme is equivalent to ID I.7, where, Ppub is used
instead of P and the verification procedure is modified
accordingly.

• In Hess’s scheme [5], the signature (v, U) is computed
as

r = e(P1, P )k

v = H(m, r)
U = kP1 + vSID

where P1 is an arbitrary point on the curve. Hess’s
scheme can be converted into ID II.3 with P1 = P and
using mr instead of v = H(m, r). Besides, in Hess’s
scheme, verification takes an extra step for checking
v

?≡ H(m, r).
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No. r U Signature Verification
ID I.1 r = H(kP ) U = k−1(mP − rSID) (kP, U) e(U, kP )e(QID, Ppub)

r = e(P, P )m

ID I.2 r = H(kP ) U = k−1(rP −mSID) (kP, U) e(U, kP )e(QID, Ppub)
m = e(P, P )r

ID I.3 r = e(P, P )k U = kmP − rSID (r, U) e(U, P )e(QID, Ppub)
r = rm

ID I.4 r = e(P, P )k U = rkP −mSID (r, U) e(U, P )e(QID, Ppub)
m = rr

ID I.5 r = H(m, kP ) U = k−1(P − rSID) (kP, U) e(U, kP )e(QID, Ppub)
r = e(P, P )

ID I.6 r = H(m, kP ) U = k−1(rP − SID) (kP, U) e(U, kP )e(QID, Ppub) = e(P, P )r

ID I.7 r = H(m, kP ) U = kP − rSID (kP, U) e(U, P )e(QID, Ppub)
r = e(P, kP )

ID I.8 r = H(m, kP ) U = rkP − SID (kP, U) e(U, P )e(QID, Ppub) = e(P, kP )r

ID II.1 r = H(kP ) U = k−1(P −mrSID) (kP, U) e(U, kP )e(QID, Ppub)
mr = e(P, P )

ID II.2 r = H(kP ) U = k−1(−SID + mrP ) (kP, U) e(U, kP )e(QID, Ppub) = e(P, P )mr

ID II.3 r = e(P, P )k U = kP −mrSID (r, U) e(U, P )e(QID, Ppub)
mr = r

ID II.4 r = e(P, P )k U = mrkP − SID (r, U) e(U, P )e(QID, Ppub) = rmr

ID III.1 r = H(kP ) U = k−1(m−1P − rSID) (kP, U) e(U, kP )e(QID, Ppub)
r = e(P, P )m−1

ID III.2 r = H(kP ) U = k−1(rP −m−1SID) (kP, U) e(U, kP )e(QID, Ppub)
m−1

= e(P, P )r

ID III.3 r = e(P, P )k U = m−1kP − rSID (r, U) e(U, P )e(QID, Ppub)
r = rm−1

ID III.4 r = e(P, P )k U = rkP −m−1SID (r, U) e(U, P )e(QID, Ppub)
m−1

= rr

ID IV.1 r = H(kP ) U = k−1(mP − r−1SID) (kP, U) e(U, kP )e(QID, Ppub)
r−1

= e(P, P )m

ID IV.2 r = H(kP ) U = k−1(r−1P −mSID) (kP, U) e(U, kP )e(QID, Ppub)
m = e(P, P )r−1

ID IV.3 r = e(P, P )k U = mkP − r−1SID (r, U) e(U, P )e(QID, Ppub)
r−1

= rm

ID IV.4 r = e(P, P )k U = r−1kP −mSID (r, U) e(U, P )e(QID, Ppub)
m = rr−1

ID IV.5 r = H(m, kP ) U = k−1(P − r−1SID) (kP, U) e(U, kP )e(QID, Ppub)
r−1

= e(P, P )

ID IV.6 r = H(m, kP ) U = k−1(r−1P − SID) (kP, U) e(U, kP )e(QID, Ppub) = e(P, P )r−1

ID IV.7 r = H(m, kP ) U = kP − r−1SID (kP, U) e(U, P )e(QID, Ppub)
r−1

= e(P, kP )

ID IV.8 r = H(m, kP ) U = r−1kP − SID (kP, U) e(U, P )e(QID, Ppub) = e(P, kP )r−1

ID V.1 r = H(kP ) U = k−1r−1(mP − SID) (kP, U) e(U, kP )re(QID, Ppub) = e(P, P )m

ID V.2 r = H(kP ) U = k−1r−1(P −mSID) (kP, U) e(U, kP )re(QID, Ppub)
m = e(P, P )

ID V.3 r = H(m, kP ) U = k−1r−1(P − SID) (kP, U) e(U, kP )re(QID, Ppub) = e(P, P )
ID VI.1 r = H(kQID) U = (r + km)SID (kQID, U) e(U, P ) = e((r + km)QID, Ppub)
ID VI.2 r = H(kQID) U = (m + kr)SID (kQID, U) e(U, P ) = e((kr + m)QID, Ppub)
ID VI.3 r = H(kQID) U = (rm + k)SID (kQID, U) e(U, P ) = e((rm + k)QID, Ppub)
ID VI.4 r = H(kQID) U = (1 + kmr)SID (kQID, U) e(U, P ) = e((1 + mkr)QID, Ppub)
ID VI.5 r = H(kQID) U = r−1(m + k)SID (kQID, U) e(U, P )r = e((m + k)QID, Ppub)
ID VI.6 r = H(kQID) U = r−1(1 + kmSID) (kQID, U) e(U, P )r = e((mk + 1)QID, Ppub)
ID VI.7 r = H(m, kQID) U = (r + k)SID (kQID, U) e(U, P ) = e((r + k)QID, Ppub)
ID VI.8 r = H(m, kQID) U = r−1(1 + k)SID (kQID, U) e(U, P )r = e((1 + k)QID, Ppub)

TABLE III
THE GENERALIZED ID-BASED ELGAMAL SIGNATURES AND THEIR VERIFICATION EQUATIONS.

V. CONCLUSION

In this paper, converting the original ElGamal signature
scheme into an ID-based signature scheme is investigated. We
showed how the basic ID-based ElGamal signature scheme can
be extended into a generalized ID-based signature scheme as in
the work of Horster et al. on basic ElGamal signatures [6]. We
discussed which variants are not possible and which variants
are not secure in the ID-based setting. We also presented some
original variants which were not possible on the basic ElGamal
scheme.

Most of the ID-based signatures in the literature [11], [8],
[5], [3] can be seen as special instances of the generalized ID-
based signature scheme described in this paper. Therefore, our
generalized scheme provides a unified framework for many of
the previously proposed ID-based signatures. This framework
also yields many new ID-based signature schemes that have
not been explored before.

For future work, ways of proving the security of the
proposed ID-based signature schemes can be investigated. One
can also try to improve the efficiency of the proposed signature

schemes by changing the signature and verification equations.
The ideas presented in this paper can also be used to get new
ID-based signatures with additional features such as message
recovery and blinding.
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