
PRACTICAL AND REALISTIC ANIMATION OF CLOTH

Serkan Bayraktar, Uǧur Güdükbay, and Bülent Özgüç

Bilkent University
Dept. of Computer Engineering
Bilkent 06800 Ankara, Turkey

ABSTRACT

In this paper, we propose a system for the practical animation
of cloth materials. A mass spring based cloth model is used.
Explicit time integration methods are used to solve the equa-
tions of motion. We update the spring constants dynamically
according to the net force acting on them. In this way, spring
constants do not grow arbitrarily to introduce numerical insta-
bility and realistic cloth appearance without over elongation
is obtained.

Index Terms— Mass-spring, collision handling, cloth sim-
ulation, physically-based, over-elasticity.

1. INTRODUCTION

Techniques developed to model cloth can be categorized as
geometric, physically-based, and hybrid. Geometric methods
do not consider physical properties of cloth. They empha-
size appearance represented as geometric equations, requiring
more user intervention than other methods [1]. Physically-
based techniques offer more reality and ease of modeling. In
these methods cloth is represented as triangular or rectangular
grids composed of a finite number of mass points whose equa-
tions of motion are solved based on the forces acting on the
particles [2, 3, 4]. Breen et al. [5] used particles and energy
minimization to model the draping behavior of cloth. The hy-
brid methods can be considered as a combination of physical
and geometrical methods [6].

In this paper, we present our work on cloth simulation by
using mass-spring networks. An algorithm based on polygon-
to-polygon collision detection is used for detecting collisions
of cloth with rigid objects. Bounding volume hierarchies are
used to speed up the collision detection process. The simula-
tion algorithm is based on the Newtonian laws of dynamics.
An explicit integration method, namely Fourth order Runge-
Kutta with adaptive time stepping, is used to solve the equa-
tions of motion. Over elasticity is one of the drawbacks of
mass-spring models when clothlike objects are simulated. The

This work is supported by European Union 6th Framework Program
under Grant No. FP6-511568 (3DTV NoE Project) and The Scientific and
Technical Research Council of Turkey (TÜBİTAK) under grant no EEEAG-
105E065.

reason is that real cloth is much more stiff to stretching and
shearing than mass-spring models can robustly simulate. The
result is a grid that looks like rubber rather than cloth. The
proposed solution is to update the spring constants dynami-
cally according to the net force acting on them. This method
guarantees robustness since spring constants do not grow to
introduce numerical instability and realistic cloth appearance
is obtained.

2. MASS-SPRING MODEL

A mass-spring network consists of mass points connected by
massless damped springs. By this model, it is assumed that
the mass of the body is concentrated at specific points rather
than it is scattered along the body. One of the constraints on
the realism of the model is the density of the mass points.
External and internal forces act on the mass points. Internal
forces are spring forces that mass points exert on each other
through damped springs, and external forces are environmen-
tal forces such as gravity, viscous drag, impulse based forces,
and user defined forces such as mouse drag. The mesh is sim-
ulated through time by calculating the positions of the mass
points at each time step.

Figure 1 shows three kinds of springs used in construct-
ing the mesh. Structural springs connect masses [i, j] to [i +
1, j] and [i, j] to [i, j + 1], shear (diagonal) springs connect
mass points [i, j] to [i + 1, j + 1] and [i + 1, j] to [i, j + 1],
and finally flexion (bending) springs connect masses [i, j] to
[i + 2, j] and [i, j] to [i, j + 2]. Structural springs are con-
strained by the stretching and compression forces. Diagonal
springs are constrained by the shear stresses, whereas bend-
ing springs are used to limit bending of the structure, since
they are constrained by the flexion stresses. Setting spring
constants of these spring types independently enables us to
mimic different types cloth and rubbery objects.

We use the Newtonian second law of dynamics to deter-
mine position of a mass point mij at a particular time:

Fij = µij aij , (1)

where µij is the mass of the point, aij is the acceleration
caused by the net force Fij acting on the mass point. The net

1-4244-0722-2/07/$20.00 ©2007 IEEE

mass point

structural spring

bending spring

diagonal spring

Fig. 1. A sample mass-spring mesh

force is calculated by considering the internal forces, namely
the forces mass points exert on each other through springs,
and external forces such as gravity, viscous air drag, wind etc.
The internal force on two mass points mij and mkl caused by
the damped spring connecting them can be calculated by the
Hooke’s Law:

F spring
ij =

(
−ks

(
lij,kl − l0ij,kl

)
+ kd

lij,kl × l′ij,kl

|lij,kl|
)

lij,kl

|lij,kl|

F spring
kl = −F spring

ij ,
(2)

where:

• ks is the spring constant, and kd is the damping con-
stant,

• lij,kl = −−−−−→mij mkl and l0ij,kl is the spring’s rest length,

• l′ij,kl is the relative velocity of mij with respect to mkl.

Viscous air drag is another external force to act on all the
mass points. It has the effect of dissipation of kinetic energy
of mass points. This force can be calculated by using:

F air
ij = −Cdis vij , (3)

where Cdis is the coefficient of air drag and vij is the velocity
vector of the mass point. Adding moderate amount of viscous
drag introduces stability to the system, but much of this force
gives unrealistically oily look.

Moving air (or fluid) also exerts a force on the mass points
which can be found by employing equation 4:

Fwind
ij = Cwind[nij . (vair − vij)]nij , (4)

where Cwind is a coefficient to express the amplitude of wind,
vair is the velocity vector of wind, vij is the velocity vector
of the mass point, and nij is the normal vector to the surface
of the model at the mass point mij .

We used an explicit integration method to solve the equa-
tions of motion. In order to compute the position and velocity
of a mass point at time t+∆t, where ∆t is a chosen time step,
we used the fourth-order Runge-Kutta method, which, most
of the time, gives much more accurate results with larger time
steps. Each step of Runge-Kutta involves four function eval-
uations. In our case each function evaluation involves finding

(a) (b)

Fig. 2. Cloth (a) without and (b) with elongation limit.

net forces acting on each mass point, updating bounding vol-
umes, finding surface normal vectors, checking for collisions
and self-collisions, and resolving any existing collisions.

Efficiency of the numerical solution can be improved by
employing adaptive step size control. A numerical solver with
adaptive step size control tries to achieve some predetermined
accuracy by using as large time steps as possible. To use
larger time steps in the integration, an implicit time integra-
tion method can be also used [7].

Cloth is much stiffer than a damped spring and it should
not behave like a rubber. To prevent over-elongation, we set
an elongation limit between rest length and elongation up to
the rest length of the spring (see Figure 2). At each step, we
measure the ratio of the distance between the mass points to
the rest length. In this way, we measure how far we are from
the predetermined elasticity of the spring. Then, we multi-
ply the spring coefficient by the ratio of the distance to the
allowed elongation to find the new coefficient. The spring
coefficient is updated according to the following equation:

knew =

{
koriginal

dcurrent

drest
if dcurrent ≥ dallowed

koriginal else
(5)

where knew and koriginal are the new and original spring con-
stants, respectively, dcurrent is the length of the spring at the
current time step, and drest is the rest length of the spring.
dallowed is the maximum spring length that is allowed with-
out modifying the spring coefficient.

3. COLLISION HANDLING

The most expensive stage of a physically-based simulation
is detecting collisions between objects. Collision detection
should be accurate, fast, stable, and robust for a simulation to
be realistic. We have to check if a part of the cloth collides
with another object in the scene and/or with itself. Bound-
ing volumes have been widely used to speed up the colli-

sion detection. The main idea is to encapsulate objects by
bounding volumes whose collision detection is much easier.
A hierarchy of bounding volumes (usually spheres or boxes)
is utilized to make collision-detection faster. The hierarchy
is usually designed as a tree where parent nodes encapsulate
their children. In the leaf nodes, polygons of the objects to be
checked for a possible collision reside.

Two methods can be employed to detect collisions be-
tween two polygons. One method is to check if any vertex
of the cloth polygon intersects with an object polygon. The
other method is to utilize an algorithm that detects intersec-
tion of two triangular polygons. The former method is easy
to implement and faster in terms of detecting collisions. The
latter, however, has several advantages in terms of resolving
intersections. It is fast to find mass-point to object polygon in-
tersections, but this does not guarantee coverage of all possi-
ble collisions between a cloth polygon and an object polygon.
A collision detection algorithm using mass-point to polygon
test may fail and object polygon penetrates unrealistically into
the cloth. Although computationally more costly, detecting
polygon-to-polygon intersection does not have the mentioned
drawbacks. The algorithm we used to find out triangle in-
tersections works moderately fast and it includes minimum
number of divisions [8].

To resolve collisions, we mark the cloth polygons inter-
secting with other polygons at each time step. The identifier
of the intersecting polygons and the number of them are also
stored. At each iteration, we go through the cloth polygons
looking for intersecting polygons. During resolution process,
we modify velocity and position of the cloth polygon so that
any existing intersection is resolved and possible ones are
avoided. To modify velocity and position, we first calculate
the average of the normal vectors of the object polygons that
the cloth polygon intersects. Then we find the components
of the vertex velocities in the direction of this average normal
and eliminate them, thus avoiding the cloth polygon going
deeper into the object polygons. To resolve the intersection,
we move the cloth polygon vertices along the average normal
as long as the polygons intersect.

During collision resolution, we also simulate friction be-
tween the rigid object and the cloth. To achieve this, we find
the components of the net forces acting on mass-points per-
pendicular to the average normal. Multiplying these forces
with a friction coefficient provides a friction force.

Self-collision is the case where both of intersecting poly-
gons belong to the same deformable model. Several tech-
niques are proposed to speed up the self-collision detection,
such as [9, 10]. Bounding box hierarchies are commonly used
to improve the self-collision detection [7]. In our implemen-
tation, we also use a bounding volume hierarchy for this pur-
pose. Two cloth polygons are tested for an intersection only
if their bounding volumes intersect. Adjacent cloth polygons
are not tested for a collision and our data structure can easily
reveal the polygon adjacency information.

Collision response in self-collisions should be handled more
precisely than collisions with rigid objects since we cannot
make the simplifying assumption that one of the polygons is
motionless. The method we used to resolve the collision elim-
inates the force and velocity components that are perpendic-
ular to the collision plane. Although this method gives mod-
erately satisfying results in cases like simulating garments on
fixed bodies, it is unrealistic if we consider dynamic move-
ments of a cloth mesh. We should enforce the conservation
of momentum to achieve a higher level of reality. Moreover,
collision resolution should not create new collisions. Huh et
al. [11] develop an algorithm that considers self-collision as
a special case of N-body collisions. They group cloth parti-
cles into parts and handle collisions between these parts while
conserving momentum.

4. IMPLEMENTATION

Each mass point is positioned such that the distance between
mass points is equal to the predetermined rest length of the
mesh. Flexion (bending) springs are inserted between every
other mass points and diagonal springs are inserted along the
diagonals of the rectangles created by the mass points. 2D
texture coordinates are found for each mass point and used in
texture mapping. After creating the cloth mesh, we construct
the bounding volume hierarchies. Bounding volume hierar-
chies are stored in binary trees where each bounding sphere
residing in a leaf node encapsulates a cloth polygon. The ra-
dius of these leaf node bounding spheres are set to the longest
edge of the triangular polygon; the center of the sphere is the
midpoint of that edge (Figure 3 (a)).

The nonleaf nodes are created in bottom-up fashion where
the radius of a higher level sphere is calculated by finding the
length of the line connecting the centers of the child spheres
(Figure 3 (b)). The higher level spheres store the identifier of
the child spheres. Bounding boxes that reside in the leaf node
of the tree are found by calculating maximum and minimum
coordinates of cloth polygons in three axes. The identifier
of each cloth polygon is stored in the corresponding bound-
ing box node. Higher level bounding boxes are created by
finding the maximum and minimum coordinates of two child
bounding boxes.

At each time step, we update normal vectors of cloth poly-
gons and bounding volumes of the cloth mesh. When up-
dating bounding volumes, we only update the positions and
dimensions of the bounding volumes and do not modify the
structure of binary trees used to store bounding volume hi-
erarchies. Then, we call the numerical solver. The fourth
order Runge-Kutta method updates the velocity and positions
of the mass points four times at each time step, thus it needs
force calculation to be done four times. Each step of the
Runge-Kutta begins with finding net forces acting on mass
points. The numerical solver updates the velocity and posi-
tion of mass points by using these forces. At the end of the

longest edge

polygon

bounding sphere

(a)

higher level sphere

lower level spheres

(b)

Fig. 3. Bounding sphere hierarchies: finding center and radius
of (a) leaf-level spheres; and (b) higher-level spheres.

step, collision detection is done to see if any collisions oc-
curred due to position change. Finally, we redraw the scene
using the updated positions.

5. RESULTS AND CONCLUSIONS

Sample animations produced by our implementation can be
found in http://www.cs.bilkent.edu.tr/∼gudukbay/

cloth.html. The simulations are performed on a PC with
1.5 GHz Intel Pentium 4 processor, 256 MB RDRAM, and
GeForce2 display adapter.

In the first simulation, a cloth mesh with size 24x30 is
constrained in two points and hung while there is gravitation
and wind blowing toward the camera point (Figure 4 (a)). The
average frames per second (fps) is 27, which is enough for a
real time simulation. The cloth is textured and rendered. The
cloth mesh consists of 720 mass points, 4,052 springs (1,386
structural, 1,334 diagonal, and 1,332 bending springs), and
1,334 cloth polygons.

In the second simulation, a cloth grid with size 26x26 is
draped onto a table (Figure 4 (b)). The cloth grid has reached
its equilibrium shape in 24 seconds and in 450 iterations (in
average 18.75 fps). The cloth mesh consists of 676 mass
points, 3,798 springs (1,300 structural, 1,250 diagonal, and
1,248 bending springs), and 1,250 cloth polygons. There is
no wind in the environment and a small degree of friction is
applied between the table surface and the cloth. The scene is
composed of 51 object polygons constructing the floor and the
table. Table 1 shows the processing times of this simulation.

mesh run time frames per
size (seconds) second (fps)

26x26 24 18.75
36x36 45 10
48x48 86 5.2

Table 1. Processing times of draping cloth with different
cloth sizes (450 iterations)

(a)

(b)
Fig. 4. The still frames from the simulation of a hanging cloth
(a) and a table cloth draping onto a table (b).

6. REFERENCES

[1] J. Weil, “The synthesis of cloth objects,” Proc. ACM SIG-
GRAPH’86, pp. 49–54, 1986.

[2] D. Terzopoulos, J. Platt, A. H. Barr, and K. Fleischer, “Elas-
tically deformable models,” Proc. ACM SIGGRAPH’87, pp.
205–214, 1987.

[3] P. Volino, M. Courchesne, and N. M. Thalmann, “Versatile and
efficient techniques for simulating cloth and other deformable
objects,” Proc. ACM SIGGRAPH’94, pp. 137–144, 1994.

[4] X. Provot, “Deformation constraints in a mass-spring model
to describe rigid cloth behavior,” Proc. Graphics Interface, pp.
147–154, 1995.

[5] D. Breen, D. House, and P. Getto, “A physically-based particle
model of woven cloth,” the Visual Computer, vol. 8, pp. 264–
277, 1992.

[6] T. Kunii and H. Gotoda, “Singularity theoretical modeling and
animation of garment wrinkle formation process,” Visual Com-
puter, vol. 6, pp. 326–336, 1990.

[7] D. Baraff and A. Witkin, “Large steps in cloth simulation,”
Proc. ACM SIGGRAPH’98), 1998.

[8] T. Moller, “A fast triangle-triangle intersection test,” Journal of
Graphics Tools, vol. 2, pp. 25–30, 1997.

[9] P. Volino and N. M. Thalmann, “Efficient self-collision detec-
tion on smoothly discretized surface animations using geomet-
rical shape regularity.” Computer Graphics Forum, vol. 13, pp.
155–166, 1994.

[10] X. Provot, “Collision and self-collision handling in cloth model
dedicated to design garments,” Proc. Graphics Interface, pp.
177–189, 1999.

[11] S. Huh, D. Metaxas, and N. Badler, “Collision resolutions in
cloth simulation,” Proc. IEEE Computer Animation, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

