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ABSTRACT

Diffraction field computation is an important task in the sig-
nal conversion stage of the holographic 3DTV. We consider
an abstract setting, where the diffraction field of the desired
3D scene to be displayed is given by discrete samples distrib-
uted over 3D space. Based on these samples, a model of the
diffraction field should be built to allow the field computation
at any desired point. In our previous works, we have proved
our concepts for the simplistic 2D case. In this paper, we gen-
eralize the earlier proposed techniques, namely the projection
onto convex sets and conjugate gradient based techniques and
test them for their computational efficiency and memory re-
quirements for a specific 3D case.

Index Terms— Scalar Optical Diffraction, Rayleigh - Som-

merfeld Diffraction, Plane Wave Decomposition, Projection
onto Convex Sets, Conjugate Gradient

1. INTRODUCTION

Holographic 3DTV requires the following basic building
blocks: capture, representation, coding, signal conversion and
display. In this chain, the display device plays a very im-
portant role, as it generates the light field being the optical
replica of the captured and abstractly represented 3D scene.
This work is related with the signal conversion part which
provides the connection between the 3D scene representation
and the display end.

In diffraction theory, computation of a diffraction field at a
surface due to a given field elsewhere is one of the major prob-
lem which has attracted researchers for decades [1]. Compu-
tation of the scalar optical diffraction due to an abstract 3D
scene is a challenging problem.

In this work, we assume that a 3D scene is described by a
set of distributed data points over the 3D space. In our earlier
works [2], [3], this problem has been addressed within a 2D
space and now it is extended to 3D space. Problems computa-
tional complexity and memory management arising with this
extended space setting, are commented in more details.
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2. BASICS OF THE SCALAR OPTICAL
DIFFRACTION THEORY

To compute scalar optical fields, we do not use Fresnel or
Fraunhofer approximations. Instead, we rely on the Rayleigh-
Sommerfeld (R-S) integral as the more general and exact scalar
optical diffraction integral. More specifically, we utilize the
plane wave decomposition (PWD) since it provides the same
result as the R-S diffraction integral [4]. While the latter uti-
lizes spatial domain relations, the former interprets the prob-
lem in frequency domain and is more attractive from compu-
tational point of view. The notations in this work are general-
ized from [2] and [3].

Lets assume that an initial diffraction field, u,(x,y,0),
is given on the plane z = 0. 2D Fourier transform (FT) of
uq(z,y,0) gives the complex coefficients of the plane waves,
A(ky, ky), that form u, (2, y, 0),

2m)? A(ky, ky) = Flua(z,y,0)} ()
where F denotes the 2D FT [5]. Then, the diffraction field

for monochromatic waves on another plane which is parallel
to z = 0 is expressed as
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where k;, k, and k, are the spatial frequencies of the prop-
agating waves along the directions x, y and z axes, respec-
tively. The x and y axes denote the transversal directions and
z is the longitudinal axis which is the optical axis. The vari-
able k. can be expressed as a function of %, and k,,, because

of dealing with monochromatic waves, k, = 1/k? — kIZ — ky2,

where k = 2%,

The spatial frequencies of the diffraction field which is
propagating along the optical axis may be restricted to be
within —B < kg, k, < B, where B < k. For numerical
computations the frequencies k; and k, are discretized to N
frequency terms each. Consequently, the input signal can be
represented by N? frequency components. These frequency

components are selected as k, = nf% and ky, = m f%,



where ny and my are integers and elements of the set
[-N/2,N/2). Uniform sampling operation in frequency do-
main causes periodicity in the transversal spatial domain. The
period in both x and y axes is X = %. Therefore, the ex-
pression given by Eq. 2 becomes
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where Ap(nyg,my) is a 2D array representing samples of
A(ky, ky) [6]. Sampling along the x and y axes is accom-
plished by setting the sampling period Xy = % to satisfy
the Nyquist rate. Therefore, the expression in Eq. 3 can be
rewritten as
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where H,(n s, my) is the frequency response of the free space
propagation kernel, which is defined as

2
Hy(ng,my) = exp (Jﬁmp), (5)

whereﬁ:%andp:i

- Thus the discrete diffraction
field becomes,

u(n,m,p) = DFT " {DFT{u(n,m,0)}H,(ns,my)},
(6)
where DFT and DFT ! stand for discrete FT and inverse
discrete FT, respectively [6].

3. DISCRETE FIELD COMPUTATION FROM
DISTRIBUTED DATA

Two methods are presented: projection onto convex sets
(POCS) and conjugate gradient (CG). Both of them take the
given distributed sample points as an input and give the dif-
fraction field on a reference plane. We choose to implement
these fast iterative methods, because direct solution needs much
more computation time.

3.1. Projection Onto Convex Sets

First method is based on an iterative approach POCS. Our

problem falls in the framework of POCS as proven in [2]. The

constraints for the problem are the given samples and the R-S

diffraction field relationship. The algorithm utilizes Eq. 6.
The summary of the algorithm is

1. initialize the first line of the desired field f(n;,,m;,,1) =
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2. fori =1tong,
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(b) end

©) f(n,m,1) =
DFT_l{DFT{f(n, m,pM)}H_M+1(nf’mf)}

(d f(ni,,mi, 1) =vy;
3. end

where v; is the vector of the known samples on the plane
z = p; X, and 4; and 4; are the vector of indices of the known
and the unknown values on the plane z = p; X, respectively.
q(n,m) is an arbitrary function whose samples are used in
place of the unknown samples and n;; is the number of total
iteration [2].

3.2. Conjugate Gradient

The second algorithm is based on Eq. 3 which provides the
relation between the complex amplitudes of the plane waves,
Ap(ny,my), and the given data samples. The relationship
given by Eq. 3 can be expressed as a matrix multiplication,

u = Ra @)

where the vector a denotes the complex amplitudes of the
plane waves that form the diffraction field on the reference
plane. In Eq. 3, these complex amplitudes, Ap(nys, my), are
given as a 2D array, Ap = [ai|ag]. .. |ay]. The representa-
tion of A p is converted into a vector, a, in Eq. 7 as

al
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The vector u in Eq. 7 denotes the diffraction field on the given
data points. The R matrix in Eq 7 is the reconstruction matrix
and its elements are
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where x; and y; are the locations of the given samples on the
plane z = z;. The R matrix is formed as in Eq. 10.

Multiplication of u by the pseudo-inverse of the R will
give a. The pseudo-inversion of the matrix R is taken by CG
algorithm. The method is summarized as
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1. compute the R by using Eq. 9 and Eq. 10
2. if s < N2 compute Q = RR¥ and b = u, otherwise
compute Q = R¥R and b = R7u

[0]

3. initialize %% arbitrarily, dy = b — Q%% and gy =

—d,
4. forn=1tony; < N2
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5. if s < N? compute & = R %, otherwise 4 = %

6. reconstruct the diffraction field on the reference plane
from the estimated complex amplitudes of the plane
waves by utilizing inverse FT relation.

4. RESULTS

The outlined algorithms are evaluated by a synthetically gen-
erated simple optical field on the reference plane. Then, the
diffraction field over the 3D space, due to the diffraction field
on the reference plane, is computed according to Eq. 6. The
field on the reference plane consists of NV by N samples,
where N = 64. There is an 8 by § unit-magnitude rectangular
opening located in the middle of the reference plane and the
rest of the samples are taken as zero. The 3D space consists
of M = 64 planes which are uniformly located along the z-
axis and there is a 64 by 64 uniform grid on each plane. An
illustration of the implemented scenario is given in Figure 1.
In the scenario, the distance parameter p between the refer-
ence and first plane equals to four and there are M planes in
the defined 3D space. Typical results of the algorithms can be
seen in Figure 2.

Evaluation of the results is based on two parameters. One
of them is the normalized error between the original and the
reconstructed diffraction patterns, u(n, m,0) and v/ (n, m, 0):

( Ni [ (n, m, 0)=u(n,m, 0)?) / ( Ni fu(n,m, 0)/?).

n,m=0 n,m=0
(11)
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Fig. 1. Implemented scenario.

The other one is the number of complex multiplications re-
quired by the algorithms. From the computed field over the
3D space, we randomly take s data points to reconstruct the
field on the reference plane. For each value of s, ten different
random selections of data points are generated, assessment
parameters are computed for each selection and then aver-
aged for each value of s.

Increasing the number of given samples, s, in both algo-
rithms provides faster convergence to the given field on the
reference plane, as expected. The curves in Figure 3 show
how fast the normalized errors decrease when the number of
complex multiplications is fixed to 1.7x10°.

When s < N2, the solution sets of the algorithms will not
be comprised by only the original field. Hence, the solution
may converge to pattern which may not be the same as the
original one.

The computational complexities of both algorithms are
determined by the number of complex multiplications, be-
cause we assume that complex multiplication needs more com-
putation time than complex addition, data fetching and writ-
ing operations. Both algorithms use the 2D-DFT operation
which can be implemented by N?log, N complex multipli-
cations if common 2D-FFT algorithms are used. For the POCS
algorithm, total number of complex multiplications is

ni(2MN?log, N + N2M). (12)

The parameter n;; is related to the s, but there is no closed
form for it. It can be found from the experiments. For the CG
algorithm, the total number of complex multiplications is

2ny N* + sN? + N%log, N (13)

where the parameter n;, is again heuristically estimated. It is
found by the numerical experiments for each scenario. The
curves in Figure 4 illustrate the necessary complex multipli-
cations in POCS and CG algorithms.



Fig. 2. Layout of the figure |2|2| (a) Magnitude of the re-
constructed diffraction field on the reference plane obtained
by the POCS algorithm when the number of given samples
is 0.8 N2. (b) The same scenario as in (a) when CG is used
(c) Reconstructed field by POCS on the same plane when the
number of given samples is 2.0N2. (d) The same scenario as
in (c) when CG is utilized.

5. CONCLUSION

Two effective methods to calculate the scalar optical diffrac-
tion field simultaneously due to the arbitrarily distributed sam-
ple points over the 3D space are presented. First method uti-
lizes POCS algorithm and the second one is based on CG al-
gorithm. Both of them are iterative methods. POCS needs
less memory space than CG. In CG, we have to use large
matrices to represent the diffraction field relationship. Imple-
mentation of POCS needs less number of complex multiplica-
tions than CG in the case, when the given 3D diffraction field
samples are taken from an uniform grid with large enough
sampling period over the z-axis.
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Fig. 3. Convergence of the POCS and the CG algorithms for
different number of known samples at approximately 1.7x10°
complex multiplications. These curves are obtained by aver-
aging the results of 10 simulations. Solid line stands for the
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Fig. 4. Number of complex multiplications for POCS and CG
methods when the normalized error is limited to 0.0005. The
given results are based on the average of 10 simulations. Solid
line represents the POCS, dashed line indicates the CG.
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