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Motivated by the pionieering experiments of Buks et al. [Nature 391, 871 (1998)] we investigate the visibil-
ity of the Fano effect in a single-dot Aharonov-Bohm interferometer which is Coulomb-coupled to a nearby
quantum dot. The latter acts as a ’Which Path Detector’ and is coupled to two leads on which a finite bias
is applied. Using the non-equilibrium Keldysh-Green function formalism we compute the currents through
the detector and the interferometer. We take into account the first two contributions to the interaction self-
energy and emphasize the correction to the Landauer formula which appears beyond the single-particle
approximation. Particular attention is given to the coherence properties of the interferometer in the presence
of the electron-electron interaction between the embedded dot and the detector. We show that when the
detector is subjected to a finite bias the amplitude of Aharonov-Bohm oscillations of the current through the
interferometer decreases. The Fano line is in turn rather stable under interaction. Our results generalize an
earlier work of Silva and Levit [Phys. Rev. B 63, 201309 (2001)] and complement the existing description
of the controlled dephasing.

1 Introduction and model The electron-electron interaction lies at the origin of some outstanding

effects in mesoscopic transport: the Coulomb blockade, the Kondo effect or the Coulomb drag. On the

other hand it is generally accepted that the quantum interference is scrambled by the Coulomb repulsion.

Given the new challenge of implementing quantum compution algorithms in solid state devices it has

become necessary to understand the interplay between coherence and interaction in Coulomb-coupled

systems.

In this paper we study the Aharonov-Bohm and Fano effects in a single-dot interferometer with a nearby

’Which Path Detector’ (WPD). This system was studied experimentally by Buks et al. [1]. It was found in

this setup that due to the mutual Coulomb interaction between the embedded dot and the nearby quantum

point constriction (QPC) the current through the detector feels the passage of electrons via the dot. The

current measurements also showed that the visibility of the AB oscillations is reduced when the detector

is subjected to a finite bias. Since in the experiment one can tune the transport properties of the detector

the suppresion of quantum interference is viewed as a controlled dephasing phenomena. A theoretical

approach to the experimental results in Ref. [1] was given by Aleiner et al. [2]. The formalism described

the dephasing rate of a quantum dot coupled to leads and interacting to a quantum point constriction. The

ring-dot geometry was not considered. A similar problem was also treated by Levinson [3].

The natural framework for computing non-equilibrum properties of interacting systems is the Keldysh

formalism [4]. We describe by a tight-binding Hamiltonian a simple interferometer composed of three

sites, one of them simulating the quantum dot. Two leads α, β are attached to the sites 1 and 3. Their

chemical potentials satisfy µα − µβ = eV0, V0 being the bias applied on the leads. The role of the ’Which
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Path Detector’ is played by a single site coupled also to two leads γ, δ. Although this is not a quantum point

constriction as in the experiments of Buks et al. it turns out that the dephasing process can be captured

even in such a simplified model system. The explicit form of the Hamiltonian is as follows:

H =
4∑

i=1

(εi + δi2Vg)d
†
idi +

3∑
i �=j,i,j=1

eiϕij tijd
†
idj + Ud†

2d2d
†
4d4

+ tLI(d
†
1c0α + d†3c0β) + tLD(d†4c0γ + d†4c0δ) + h.c. (1)

di, d
†
i are annihilation/creation operators in the interferometer (i = 1, 2, 3) and detector (i = 4). Similarly

we have on leads the pair c, c† (0α is the lead site coupled to the ring). In Eq. (1) Vg simulates the gate

voltage applied on the dot (i.e on the second site) and the magnetic flux φ piercing the ring is included

in the Peierls phases φij attached the hopping constants tij . It is expressed in quantum flux units φ0 and

specifically we have ϕ12 = ϕ23 = ϕ31 = 2πφ/3Φ0 and ϕji = ϕ∗
ji. U is the Coulomb interaction strength

between the embedded dot and the detector. tLI and tLD are hopping constants between the lead and

interferometer and between lead and detector.

The non-equilibrium Green function is computed from the coupled Dyson equations:

G = Geff + GeffΣiG, Geff = G0 + G0ΣlGeff , (2)

where Σi is the self-energy due to interactions and the effective Green function describes the noninteracting
system in the presence of the leads. While the leads’ self-energy Σl is known exactly the interaction self-

energy will be computed perturbatively up to the second order in the interaction strength U , i.e we put

Σi = Σ1
i + Σ2

i . The two contributions are expressed in terms of the noninteracting effective Keldysh-

Green functions and can be readily computed. Following the standard procedures [5] we obtain a closed

formula for the current through the lead α attached to the interferometer (we omit the energy dependence

in the integrand for brevity):

〈Jα〉 =
et2LI

h̄

∫ 2tL

−2tL

dE(2πρ2GR
13G

A
31(f

α − fβ) − ρGR
12Im(2ΣR,2

i,22f
α + Σ<,2

i,22)G
A
21), (3)

where fα, fβ are the Fermi functions of the leads α,β and ρ is the lead’s density of states. The second

term in the current is due entirely to the electron-electron interaction and emphasizes the known fact that

the Landauer picture fails beyond the mean-field approach for Coulomb interaction. We shall denote this

contribution by J2 and the first one by J1. In the noninteracting case J1 is just the Landauer-like current.

Our calculations are similar to those of Silva and Levit [5] but brings more generality since we have

considered explicitly the ring-dot geometry and the correction to the Landauer formula. To our best knowl-

edge, this is the first study that treats that mesoscopic Fano effect in AB intereferometers interacting with

a second system.

2 Results In the following we give the main results of our analysis. We have used Eq. (3) to compute

the current through the interferometer for various parameters. The interferometer is subjected to a small

bias V0 = 0.1 while the bias applied to the leads γ, δ of the detector is allowed to vary. We choose weak

ring-dot couplings t12 = t23 = 0.2. Fig. 1a shows two Fano lines in the presence of electron-electron

interaction between the embedded dot and the detector (U = 0.5 and U = 0.9) at fixed bias V = 0.5. The

two lines are very similar except that the curve corresponding to U = 0.9 is shifted due to a larger real part

of the interacting self-energy. The Fano line is therefore stable against the Coulomb repulsion between the

dot and the environment. We have also checked that the current through the detector exhibits a step-like

behavior as a function of the gate potential that is applied only to the embedded dot. Therefore the detector

is sensitive to resonant processes in the interferometer.
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Fig. 1 a) Coulomb-Fano lines at φ = 0, V = 0.5; full line - U = 0.9, dashed line - U = 0.5. b), c) Aharonov-Bohm

oscillations at U = 0.5 (b) and U = 1.0 (c) for three values of the bias on the detector; full line - V = 0, dashed line

- V = 0.5, dotted line V = 1.0. d) The currents J1 - full line, J2 - dashed line and the total current - dotted line.

U = 1.0, V = 1.0.

In Figs. 1b and 1c one can see the dephasing effect on the Aharonov-Bohm oscillations (ABO) at finite

bias V on the detector. The plots are made at two gate voltages corresponding to the Fano dips of the two

lineshapes in Fig. 1a (Vg = 0.52 for U = 0.5 and Vg = 0.975 for U = 0.9). The full lines are clear and

periodic ABOs that appear even in the interacting case at V = 0. This happens because in the absence

of bias on the detector the latter does not feel the tunelling processes in the embedded dot. At a formal

level one argues that the imaginary part of the interaction self-energy vanishes. The situation changes

drastically as V increases. As seen from the dashed and dotted curves in Figs. 1b and 1c the ocillation

amplitude decreases and the flux periodicity is lost.

The oscillations are destroyed because the amplitude of their maxima decreases while their minima

increases at finite bias. Figure 1d provides further details of the total current at U = 0.9 and V = 1.0. The

full lines represents the current J1 which gives the main contribution. The dashed line shows the correction

to the LB formula J2. Two features are noticed: i) neither J1 nor J2 are flux periodic, ii) in several flux

ranges J2 is comparable to J1 or even bigger. Therefore, J2 contributes nontrivially to the total current

and to the dephasing processes and cannot be neglected. At V = 0 this correction dissapears (not shown).

We have checked that the reduction of the Aharonov-Bohm oscillations is present for other values of the

gate potential (e.g at the middle of the Fano line or at the Fano peak) and for other values of the ring-dot

coupling. The most damaged oscillations are however the ones around the Fano dip because only in this

region the correction J2 takes significant values. The current J1 near the Fano peak still decreases at higher

bias and the associated AB oscillations are clearer than the ones we presented here.

Summing up, we have shown that the coherence of a single-dot AB interferometer can be destroyed

by the Coulomb interaction coming from a quantum dot placed in its vicinity. However, a finite bias is

needed on the dot in order to discern the dephasing. Further details about the formalism and a complete

analysis of the controlled dephasing are presented elsewhere. [6] Further progress in the understanding of

decoherence at nanoscale would involve the inclusion of the intradot interaction as well as the spin-flip

effects. The latter were proved to be important in dephasing [7].
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