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Summary. In this paper a new approach for image feature extraction is
presented. We used the Compressive Sensing (CS) concept to generate the
measurement matrix. The new measurement matrix is different from the mea-
surement matrices in literature as it was constructed using both zero mean
and nonzero mean rows. The image is simply projected into a new space using
the measurement matrix to obtain the feature vector. Another proposed mea-
surement matrix is a random matrix constructed from binary entries. Face
recognition problem was used as an example for testing the feature extraction
capability of the proposed matrices. Experiments were carried out using two
well-known face databases, namely, ORL and FERET databases. System per-
formance is very promising and comparable with the classical baseline feature
extraction algorithms.

1 Introduction

Reliable automated face recognition is useful in several applications such as
security and access control systems. There are many other possible uses for
facial recognition that are currently being developed. For example, the tech-
nology could be used as a security measure at ATMs and airports in order
to intensify security. The same concept could also be applied to comput-
ers where facial images would replace passwords in the login process. Given
still or video images of a scene, the system should identify or verify one or
more persons in the scene using a stored database of faces. The face repre-
sentation falls into two categories[1]. The first category is global approach
or appearance-based, which uses holistic texture features and is applied to
the face or specific region of it. Many applied well-known algorithms falls in
this category such as principal components analysis (PCA) [2, 3], which is
also called eigenfaces [4, 5], linear discriminant analysis (LDA) [6, 7], Ga-
bor wavelet transform[8, 9], and Discrete cosine transform[10]. The second
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category is feature-based or component-based, which uses the geometric re-
lationship among the facial features like mouth, nose, and eyes. Wiskott et
al. [11] implemented feature-based approach by a geometrical model of a face
by 2-D elastic graph. Another example of feature-based was done by inde-
pendently matching templates of three facial regions (eyes, mouth and nose)
and the configuration of the features was unconstrained because the system
did not include any geometrical model [12]. In this paper we used the con-
cept of compressive sensing (CS) to generate a random measurement matrix.
The CS is based on the fact that we can represent images and signals with
a small number of coefficients which, in turn, makes CS powerful as a fea-
ture extractor [13] [14]. In our proposed approach, the measurement matrix
is different from the random measurement matrices used in most CS prob-
lems. We used a matrix containing both zero-mean and nonzero-mean rows.
We also compared this matrix with another measurement matrix which is
constructed using random binary entries. The measurement matrix will serve
as a projection matrix to project image vectors to a new space resulting in
feature vector with much shorter length. The matrix with both zero-mean
and non-zero mean rows showed superior results using both face databases
with various feature vector lengths.

The paper is organized as follows: Section 2 discusses the compressive
sensing concept; Section 3 explains the proposed approach. The experimental
results and discussions are in Section 4 and then results are concluded at the
end of this paper.

2 Compressive Sensing

The Nyquist-Shannon sampling theorem [15] is one of the fundamental the-
orems in signal processing literature. It specifies the conditions for perfect
reconstruction of a continuous signal from its samples. If a signal is sampled
with a sampling frequency that is at least two times larger than its band-
width, it can be perfectly reconstructed from its samples. This approach is
very simple to implement however, it is not very efficient in terms of data
rates. Sampling the signal according to the Nyquist criteria will end up in
large amount of samples, most of which may be thrown away in the later
parts of the processing e.g. compression. For example in JPEG compression,
first the sampled image is transformed into the DCT domain and then most
of the negligible valued (small amplitude) DCT coefficients are thrown away.

Compressed sensing (CS) overcomes this problem by taking compressed
measurements [16, 18, 20] from the signal. In a compressive sensing frame-
work, the signal is assumed to be K-Sparse in a transformation domain,
such as the wavelet domain or the DCT domain. A signal with length N is
K-Sparse if it has at most K non-zero and (N − K) zero coefficients in a
transform domain. The case of interest in CS problems is when K << N ,
i.e., sparse in the transform domain.



Image Feature Extraction Using Compressive Sensing 179

In CS instead of taking individual, regularly spaced samples from the sig-
nal, a composition of the values of the signal at some instances is taken. These
new samples are called compressed measurements y, and they are collected
as follows

y = φx = φ.ψ.s = θ.s, (1)

where φ is the M×N measurement matrix, M << N , and s is the K−sparse
transform domain representation of the signal x in the transform domain rep-
resented by ψ. The reconstruction of the original signal x from its compressed
measurements y cannot be achieved by simple matrix inversion or inverse
transformation techniques. A sparse solution can be obtained by solving the
following optimization problem:

sp = argmin||s||1 such that θ.s = y (2)

One important characteristic of the measurement matrix φ is that it does
not need to have a specific structure like transformation matrices or sampling
matrices. In fact, in [16, 17, 18], the authors states that the measurement ma-
trix should satisfy the restricted isometry property (RIP) for a given number
of measurements. They also prove that a random matrix with entries that
are i.i.d Gaussian random variables, satisfies the RIP property. Measurement
matrix can even be constructed from binary entries [19].

Reconstruction of the original signal from these compressed measurements
is another active research field in signal processing and mathematics. Different
optimization techniques are frequently used for this purpose. However, for the
proposed classification method, we are only interested in the sampling part
of the CS framework. Therefore, we will not get into the details of these
techniques since the proposed method is related to only the sampling part of
the CS framework.

As the perfect reconstruction of the original signal from these compressed
measurements is possible, it is also possible to state that, these compressed
measurements have descriptive information about the original signal. There-
fore, they can used as features in a classification process. In the proposed
framework, we are taking compressed measurements from face images us-
ing gaussian and binary random measurement matrices and use the mea-
surements as features in the classification. The details of the algorithm is
presented in Section 3.

3 Proposed Approach

An illustration of the proposed approach is shown in Fig. 1. The face database
is divided into two sets; training set and testing set. Each image in both
sets are projected into new space using one of the proposed measurement
matrices. After generating the feature vectors of both training set and testing
sets, an appropriate classifier is used for classifying each test image to its
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Fig. 1. Flowchart of the proposed approach

corresponding class by comparing its feature vector with the feature vectors
of the training set.

The similarity measures used in our experiments to evaluate the efficiency
of different representation and recognition methods include �1 distance mea-
sure, δ�1 , �2 distance measure, δ�2 , and cosine similarity measure, δcos. The
measures for n dimensional vectors are defined as follows

δ�1(x, y) = |x− y| (3)

δ�2(x, y) = ||x− y||2 (4)

δcos(x, y) =
xy

||x||||y|| (5)

Experiments were conducted on two commonly used face databases:
FERET database [21] and ORL database [22]. For FERET database, 600
frontal face images from 200 subjects are selected. The 600 face images were
acquired under varying illumination conditions and facial expressions. Each
subject has three images of size 256 × 384 with 256 gray levels. Each face
image is resized to 128×128. Fig. 2(a) shows sample images from the FERET
database. The first two rows are the training images while the third row shows
the test images. It can be noticed from this figure that the test images all dis-
play variations in illumination and facial expression. To test the algorithms,
two images of each subject are randomly chosen for training, while remaining
one is used for testing.

The ORL database consists of 400 face images acquired from 40 subjects
(i.e., ten images per subject) with variations in facial expression and facial
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(a) (b)

Fig. 2. Example images from the face databases: (a) Example images from the
FERET database. (b) Example images from the ORL database.

details. All images are grey scale with a 92×112 pixels resolution. All images
in the database are resized to 128×128 pixels. Fig. 2(b) shows sample images
from the ORL database.

4 Comparative Results and Discussions

Preliminary experiments were conducted on both FERET and ORL databases
to study the performance of the proposed algorithm for the face recogni-
tion problem. Leave-one-out strategy is used in the preparation of the re-
sults in Table 1 and 2. Taking p as the number of poses for each person in
the database, p-1 poses will be used for training while remaining one pose
for testing. In this strategy, test pose is changed at every run of the pro-
gram and the rest p-1 is used for training making a total of ( p!

p−1! = p)
runs. At the end, averaging the results from all these runs will give the final
recognition rate.

Both in Table 1 and 2 results of using 3 different measurement matri-
ces were recorded; measurement matrix with zero mean rows, measurement
matrix with nonzero mean rows and measurement matrix with mixed zero
mean and nonzero mean rows. The measurement matrix size is M×N , where
N = 128× 128 and M can take an arbitrary value which will later represent
the resulting feature vector length.

In Table 1, the best performance obtained by using measurement ma-
trix on FERET database with zero mean rows was 81.5%, while it reached
80% by using measurement matrix with nonzero mean rows. Using measure-
ment matrix with zero and nonzero mean rows gave a better performance
reached 84.5%. In Table 2, the max performance obtained by using measure-
ment matrix on ORL database with zero mean rows was 96.25%, while it
reached 96.5% by using measurement matrix with nonzero mean rows. Using
measurement matrix with zero and nonzero mean rows gave a better perfor-
mance reached 96.75%. It is clear from these results that using a measurement
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matrix with both zero and nonzero mean rows helped to slightly improve the
performance for both ORL and FERET databases.

Table 3 has the same scenario as in Table 1 and 2. The difference is in the
used random measurement matrix. In Table 3 a random measurement matrix
with binary entries is used. Normalization of the feature vectors obtained by
measurement matrix before the classification stage dropped the performance
in Table 1 and 2 by nearly 1 to 2%. On the other hand, normalizing the
feature vectors obtained using the binary random measurement matrix helped
to improve the performance of the �1 and �2 classifiers drastically while it
had almost no effect on Cosine distance results. For example, with ORL
database, using normalized feature vector of length 1000 gives 96.29% using �1
distance(Table 3) while it gives 47.5% without feature vector normalization.
So, Table 1 and 2 were prepared without normalization of the feature vectors,
while Table 3 was prepared using normalized feature vectors.

Even though the results for FERET database show that by using a mea-
surement matrix with both zero and nonzero mean rows (reached 84.5%)
can give better performance than using a matrix with binary entries(reached
81%). This improvement was not very clear in ORL database results, as it

Table 1. Face recognition rates on FERET database obtained using different num-
ber of features taken using different Measurement Matrices. The rates are given in
3 different metrics defined in (3)-(5).

zero mean rows nonzero mean rows mixed mean rows

M δ�1 δ�2 δcos δ�1 δ�2 δcos δ�1 δ�2 δcos

50 70.50 70.50 70.00 70.50 70.00 70.00 72.00 71.75 71.50
100 73.00 75.00 72.00 75.00 74.50 75.00 76.00 78.50 75.00
200 78.00 79.50 78.50 79.00 80.50 77.50 80.00 82.00 79.75
300 79.50 79.50 80.00 79.50 80.00 80.00 82.50 82.00 81.50
500 79.00 79.50 79.00 79.75 80.50 81.00 84.50 84.00 81.50

1000 80.50 81.00 81.50 81.00 81.00 80.00 83.00 83.50 82.50

Table 2. Face recognition rates on ORL database obtained using different number
of features taken using different Measurement Matrices. The rates are given in 3
different metrics defined in (3)-(5).

zero mean rows nonzero mean rows mixed mean rows

M δ�1 δ�2 δcos δ�1 δ�2 δcos δ�1 δ�2 δcos

50 89.25 90.25 90.25 91.50 91.50 90.75 90.00 92.75 92.00
100 93.75 93.75 94.00 92.75 93.50 92.75 93.75 94.00 93.75
200 94.50 94.75 93.50 94.75 94.75 94.00 95.00 94.25 94.50
300 95.75 95.00 95.25 95.25 95.00 95.00 95.25 95.75 95.75
500 95.25 96.00 95.50 94.75 95.50 93.50 96.25 96.25 95.00

1000 96.00 96.25 94.50 96.50 95.75 94.50 96.75 96.50 94.75
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Table 3. Face recognition rates on FERET and ORL database obtained using
different number of features taken using Measurement Matrices with binary entries.
The rates are given in 3 different metrics defined in (3)-(5).

FERET ORL

M δ�1 δ�2 δcos δ�1 δ�2 δcos

50 69.50 68.25 69.75 90.50 91.00 90.25
100 77.50 76.50 76.75 94.00 95.00 93.00
200 80.50 80.25 80.51 94.75 95.75 94.25
300 80.00 79.75 80.25 94.50 94.25 95.00
500 79.50 78.75 79.25 95.50 95.75 94.25

1000 80.75 80.00 81.00 95.50 96.50 95.25

reached 96.75% by using a measurement matrix with both zero and nonzero
mean rows and 96.5% by using a matrix with binary entries, which is a very
close performance.

5 Conclusion

In this paper the compressive sensing concept is used to prepare a Gaussian
or binary random measurement matrix. Measurement matrix is used as a pro-
jection matrix for the image feature extraction. The proposed approach were
tested on the face recognition problem. It is experimentally observed that mea-
surement matrices with nonzero mean rows improve results compared to ordi-
nary measurement matrices. This is due to the fact that multiplying an image
with a zero mean row is somewhat equivalent to bandpass or highpass filtering.
By including nonzero mean rows we also introduce lowpass energy to the mea-
surement process. The preliminary results of the experiments conducted on
both FERET and ORL databases indicate that the proposed approach is able
to extract the salient features from the face images effectively and provides a
high recognition performance . In our future work, more extensive experiments
will be carried out on various pattern classification problems to evaluate the
performance of the proposed approach under different conditions.
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