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Abstract Selecting a suitable sensor configuration is an important aspect of
recognizing human activities with wearable motion sensors. This problem encom-
passes selecting the number and type of the sensors, configuring them on the human
body, and identifying the most informative sensor axes. In earlier work, researchers
have used customized sensor configurations and compared their activity recognition
rates with those of others. However, the results of these comparisons are dependent
on the feature sets and the classifiers employed. In this study, we propose a novel
approach that utilizes the time-domain distributions of the raw sensor measurements.
We determine the most informative sensor types (among accelerometers, gyroscopes,
and magnetometers), sensor locations (among torso, arms, and legs), and measure-
ment axes (among three perpendicular coordinate axes at each sensor) based on the
mutual information criterion.

1 Introduction

Automatic recognition of human activities has received considerable attention in
the recent years. The ambiguous nature of daily human activities makes their cor-
rect recognition a challenging problem: Any specific activity can be performed in
different styles by different people, a person can perform multiple activities simul-
taneously, and there is no one-to-one cause-effect relationship between consecutive
activities [1]. Using a set of sensors and intelligent detection algorithms, activities can
be automatically recognized and classified. In supervised approaches, activities are
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recognized based on priorly trained recognition models, whereas in unsupervised
approaches, no prior models are assumed. The application areas of human activ-
ity recognition include identification systems that use the individual’s physical and
behavioural attributes (e.g., gait patterns), surveillance systems detecting unusual
human activities, interactive systems responding according to the users’ behaviour,
synthesis of human activities in entertainment and robotics industries, medical treat-
ment, and autonomous nursing of the elderly and disabled people [2, 3]. In addition to
these, some recent studies are focused on localization of pedestrians and recognition
of their activities at the same time [4].

Visual data recorded by video cameras [3], motion data acquired from wear-
able inertial and magnetic sensors [2], and acoustic data captured from microphones
and vibration sensors [5] are the measurement types widely used in human activity
recognition. In some studies, sensors are embedded in the environment, limiting the
mobility area of the user, whereas in others, they are worn on the body to directly
acquire motion data. In the latter, each sensor unit comprises a set of sensors that
may include accelerometers, gyroscopes, magnetometers, inclinometers, goniome-
ters, and tilt switches [2]. Motion data are analysed while being captured at either
a single or multiple sensor locations. Commonly used sensor locations in recent
studies are the head, ears, shoulders, wrists, torso, waist, thighs, calves, and ankles.
Wearable sensors are preferable because they provide unbounded monitoring area
and do not interfere with privacy. On the other hand, the user may forget to put them
on or may feel distressed and uncomfortable while wearing them [6].

Sensor configuration is a fundamental issue in using wearable motion sensors that
involves specifying (1) the number and type of sensors employed in each sensor unit,
(2) the positions where the sensor units are placed, and (3) the axes along which each
sensor provides informative measurements. To boost the overall recognition perfor-
mance, feature sets in the time- and frequency-domains are commonly determined
with respect to fixed sensor configurations [7]. The missing aspect here is an objec-
tive criterion for selecting a suitable sensor configuration. Various sensor configura-
tions have been proposed in the literature. A couple of comparative studies [8–11]
investigate sensor configurations and feature sets in terms of recognition accuracy.
Optimal feature sets are selected while the sensor configuration is employed at full
capacity1 and vice versa. Consequently, any choice of sensor configuration seems
to be highly dependent on the feature set. This fact, for instance, is explicitly shown
in [7], where the authors compare the recognition performances of different feature
sets computed from the measurements captured at several locations. Employing a
basic classifier, they show that the contributions of the subsets of the sensor locations
to the recognition performance vary, as does the feature set.

In this study, we identify the most informative sensor configuration by using the
time-domain distributions of raw sensor data and the mutual information criterion.
The approach presented here is independent of any feature set and classifier con-
straint, making it more objective and reliable than those mentioned above.

1 The sensor configuration at full capacity implies the configuration employing all available sensor
types, sensor locations, and measurement axes.
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The rest of this article is organized as follows: In the next section, we briefly
describe the human activity dataset used in this study. In Sect. 3, we introduce the
mutual information criterion for determining the informative sensor configurations.
We provide the methodology and the results of the analysis in Sect. 4. Finally, we
summarize the throughputs of this study and provide directions for future research
in the last section.

2 Human Activity Dataset

The dataset analysed in this study is acquired by our research group at Bilkent
University and used in some of our previous studies [8, 11, 12]. Descriptions of
the 19 types of daily and sports activities included in this dataset and the physical
characteristics of the eight subjects can be found in [8] and [12], respectively.

In this study, sensor units are placed at five locations on the body: torso (T), right
arm (RA), left arm (LA), right leg (RL), and left leg (LL). Each sensor unit includes
three tri-axial devices: an accelerometer (ACC), a gyroscope (GYRO), and a magne-
tometer (MAGN), whose measurement axes are aligned with a reference Cartesian
coordinate frame, as depicted in Fig. 1a. The operating ranges of these devices are
±18g, ±1200◦/s, and ±75 μT, respectively [13]. Here, g is the gravitational accel-
eration constant which is 9.80665 m/s2. The positioning of the sensor units on the
body is illustrated in Fig. 1b.

(a) (b)

Fig. 1 a The sensor unit used in this study (reprinted from www.xsens.com/en/general/mtx) and
b the unit positions on the subject’s body. (The outline of the human body figure is taken from www.
anatomyacts.co.uk/learning/primary/Montage.htm)

www.xsens.com/en/general/mtx
www.anatomyacts.co.uk/learning/primary/Montage.htm
www.anatomyacts.co.uk/learning/primary/Montage.htm
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The set of activities in the dataset is denoted by A. When a subject performs
an activity, the signals captured from the sensor axes on the subject’s body are
simultaneously recorded at 25 Hz sampling rate. Let each recorded discrete-time
sequence be denoted by Ui jkc [n] where i ∈ {1, 2, . . . , 5} is the sensor location
index representing {T, RA, LA, RL, LL} respectively, j ∈ {1, 2, 3} is the sensor
type index representing {ACC, GYRO, MAGN} respectively, k ∈ {x, y, z} is the
measurement axis symbol, c ∈ A is the activity symbol, and n ∈ {1, 2, . . . , 7500} is
the discrete-time index.

3 Mutual Information

Entropy is a measure of the information contained in a random variable in terms
of its uncertainty. The entropy of a continuous random variable X is H (X ) =
− ∫

fX (x) log2 fX (x) dx bits, where fX is the marginal probability density function
(PDF) of X . Conditional entropy is a measure of the uncertainty of a random variable
with the knowledge of another. The conditional entropy of X , given another con-
tinuous random variable Y is H (X |Y) = − ∫ ∫

fX ,Y (x, y) log2 fX |Y (x |y) dx dy
bits, where fX ,Y and fX |Y are the joint and the conditional PDFs, respectively.

Based on entropy and conditional entropy, the mutual information between two
random variables is the reduction of the uncertainty of one random variable using the
knowledge about the other. Thus, the mutual information between X and Y is given
by I (X ,Y) = H (X )−H (X |Y) = H (Y)−H (Y|X ) bits. I (X ,Y) is bounded by
zero and min {H (X ) , H (Y)}, therefore, it is a scalable measure. Mutual information
is also the Kullback-Leibler distance between the joint PDF of the random variables
and the product of their marginal PDFs. For continuous random variables X and Y ,

I (X ,Y) =
∫ ∫

fX ,Y (x, y) log2
fX ,Y (x, y)

fX (x) fY (y)
dx dy. (1)

Consequently, mutual information becomes a measure of the dependence between
two random variables, in terms of the information that one random variable provides
about another [14]. Mutual information can be also used to measure the correlation
between two random variables, instead of computing the linear correlation coefficient
between them. The benefits of using mutual information are as follows [15]:

• Mutual information allows us to compute the correlation between multi-variate
random vectors with either the same or different dimensions.

• Since mutual information depends on PDFs, it is not affected by the range of
observed values of random variables.

• Mutual information can capture linear and non-linear dependencies between ran-
dom variables.
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4 Methodology

To determine the most informative measurement axes, sensor types, and sensor
locations for human activity recognition, we employ the mutual information crite-
rion, which is suitable for computing the dependence between human activities and
any combination of measurement types, including acceleration, rotational speed, and
magnetic field strength.

We define the human activity classes as a discrete random variable, C ∈ A where
each activity in A is represented by a distinct symbol. C is uniformly distributed such
that Pr {C = c} = 1

|A| where |A| = 19. In the following subsections, we compute
the mutual information between C and the measurements, grouped in different ways.

4.1 Determining Informative Measurement Axes

In this section, we compute the amount of activity-related information provided by
each measurement axis of the sensors on the subject’s body. For this purpose, we
represent the output of each measurement axis with a distinct continuous random
variable Mi jk ∈ �. For each subject in the dataset, we define the mutual information
between C and Mi jk according to Eq. (1) as

Il
(
Mi jk, C

) =
∑

c∈A

∫

mi jk∈�
fMi jk ,C

(
mi jk, c

)
log2

fMi jk ,C
(
mi jk, c

)

fMi jk

(
mi jk

)
Pr {C = c} dmi jk

(2)
where l ∈ {1, 2, . . . , 8} is the subject index.

Since the different activity types are independent of each other, there is no

dependence between the values of C, and fMi jk ,C
(
mi jk, c

) =
{⋃

fMi jk |C
(
mi jk |c

) :
c ∈ A}. Here, f̂Mi jk |C , a histogram-based non-parametric estimate of fMi jk |C , is
computed based on the corresponding observation sequence Ui jkc [n]. Then, fMi jk

is estimated as f̂Mi jk

(
mi jk

) = ∑

c∈A
f̂Mi jk |C

(
mi jk |c

)
. Consequently, Il

(
Mi jk, C

)
is

approximated by a Riemann sum as follows:

Il
(
Mi jk, C

) ≈
∑

c∈A

∑

mi jk∈Mi jk

f̂Mi jk ,C
(
mi jk, c

)
log2

f̂Mi jk ,C
(
mi jk, c

)

f̂Mi jk

(
mi jk

)
Pr {C = c} δmi jk

(3)
where Mi jk is the set of histogram bin centre points and δmi jk is the sufficiently
small histogram bin width over the range of Ui jkc [n] for c ∈ A.

For each measurement axis, the mean, the highest, and the lowest mutual infor-
mation computed over all subjects are plotted in Fig. 2a. According to the figure, it



290 O. Dobrucalı and B. Barshan

(a)

(b)

(c)

Fig. 2 The mean, the highest, and the lowest mutual information between the human activities and
each a measurement axis, b sensor type, and c sensor location (T torso, RA right arm, LA left arm,
RL right leg, LL left leg, ACC accelerometer, GYRO gyroscope, MAGN magnetometer)
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is observed that at all sensor locations, the measurement axes of the accelerometers
provide more activity-related information than those of gyroscopes and magnetome-
ters. Furthermore, the x-axis of the accelerometers, which is perpendicular to the
ground, is observed to contain higher activity-related information than the other two
axes of the accelerometers, at all sensor locations.

4.2 Determining Informative Sensor Types

In this section, we compute the amount of activity-related information provided by
each sensor type on the subject’s body. Here, sensor type indicates the combination
of the three measurement axes that belong to the same device (i.e., accelerometer,
gyroscope, magnetometer) at the same sensor location. We represent each sensor
type with a distinct continuous random vector Ti j = [

Mi j x Mi j y Mi j z
]T ∈ �3,

where {x, y, z} are the symbols of the measurement axes that belong to the sensor
type j at sensor location i . Based on Equation (1), the mutual information between
C and Ti j for the lth subject in the dataset is given by:

Il
(
Ti j , C

) =
∑

c∈A

∫

ti j ∈�3

fTi j ,C
(
ti j , c

)
log2

fTi j ,C
(
ti j , c

)

fTi j

(
ti j

)
Pr {C = c} dtij (4)

Since the different activities are independent of each other, fTi j ,C
(
ti j , c

) =
{⋃

fTi j |C
(
ti j |c

) : c ∈ A
}

. Here, f̂Ti j |C , a histogram-based non-parametric estimate

of fTi j |C , is computed based on the corresponding observation sequences Ui j xc [n],

Ui jyc [n], and Ui jzc [n]. Then, fTi j is estimated as f̂Ti j

(
ti j

) = ∑

c∈A
f̂Ti j |C

(
ti j |c

)
.

Using these estimates, Il
(
Ti j , C

)
is approximated by a Riemann sum as follows:

Il
(
Ti j , C

) ≈
∑

c∈A

∑

ti j ∈Ti j

f̂Ti j ,C
(
ti j , c

)
log2

f̂Ti j ,C
(
ti j , c

)

f̂Ti j

(
ti j

)
Pr {C = c} �ti j (5)

where Ti j = (
Mi j x × Mi jy × Mi jz

)
is the vector representing the set of histogram

bin centres and �ti j = (
δmi j x · δmi jy · δmi jz

)
is the histogram bin volume with

sufficiently small histogram bin widths δmi j x , δmi jy , and δmi jz over the range of
Ui j xc [n], Ui jyc [n], and Ui jzc [n] for c ∈ A, respectively.

For each sensor type, the mean, the highest, and the lowest mutual informa-
tion computed over all subjects are plotted in Fig. 2b. According to the figure, it is
again observed that at all sensor locations, accelerometers provide considerably more
activity-related information than gyroscopes and magnetometers. The information
content of gyroscope measurements are slightly higher than those of magnetometers
at all sensor locations.
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4.3 Determining Informative Sensor Locations

In this section, we compute the amount of activity-related information provided by
each of the five sensor locations on the subject’s body. Here, sensor location indicates
the combination of the three sensor types at the same location. We represent each
sensor location by a distinct continuous random vector Si = [Ti1 Ti2 Ti3]T ∈ �9,
where {1, 2, 3} are the indices of the sensor types at location i . For the lth subject in
the dataset, the mutual information between C and Si is given by:

Il (Si , C) =
∑

c∈A

∫

si ∈�9

fSi ,C (si , c) log2
fSi ,C (si , c)

fSi (si ) Pr {C = c}dsi (6)

Because of the independence between the activities, fSi ,C (si , c) = {⋃ fSi |C
(si |c) : c ∈ A}. The f̂Si |C is a histogram-based non-parametric estimate of fSi |C and
computed based on the corresponding observation sequences Ui1xc [n] , Ui1yc [n] ,

. . . , Ui3zc [n]. Then, the estimate of fSi is given by f̂Si (si ) = ∑

c∈A
f̂Si |C (si |c) and

Il (Si , C) is approximated by a Riemann sum as follows:

Il (Si , C) ≈
∑

c∈A

∑

si ∈Si

f̂Si ,C (si , c) log2
f̂Si ,C (si , c)

f̂Si (si ) Pr {C = c} �si (7)

where Si = (Ti1 × Ti2 × Ti3) is the vector representing the set of histogram bin
centres and �si = (�ti1 · �ti2 · �ti3) is the histogram bin volume. Because of
memory allocation problems that arise when an enormous number of very small
histogram bins are handled in �9, the histogram bins in the estimation of fSi |C
cannot be set as small as in the estimations of fMi jk |C and fTi j |C . Therefore, the
approximation in Eq. (7) is not as accurate as in Eqs. (3) and (5). Despite this, the
results are admissible for the comparison between the sensor locations.

For each sensor location, the mean, the highest, and the lowest mutual informa-
tion computed over all subjects are plotted in Fig. 2c. According to the figure, it is
observed that the arms provide the highest activity-related information, whereas the
legs provide the lowest.

5 Conclusion

In this study, we employ a human activity dataset comprised of inertial and magnetic
sensor measurements of 19 types of daily and sports activities and investigate the
useful sensor types, sensor locations, and measurement axes of body-worn devices
that provide high activity-related motion information.

In many human activity recognition studies, the measurements acquired from
all sensors in the configuration are considered with equal significance. However,
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the results of this study indicate that the sensors do not contribute equal amount
of information during the activity recognition process. The results of the proposed
analyses can be used to determine the level of significance of each sensor.

Based on the mutual information criterion, we identify the linear acceleration mea-
surements at all sensor locations as the most informative measurement type. Among
the linear acceleration measurements, the measurement axes along the direction per-
pendicular to the ground are more informative than the others. In terms of sensor
location, we identify the arms and the torso as the first and the second most informa-
tive locations, respectively. The legs are less informative compared to the extremities.
The mutual information based approach proposed in this study can be used in select-
ing the most suitable sensor configuration among a set of possibilities.

Future cognitive systems are expected to be able to adapt to recent states, make
estimates, and optimize their operating conditions autonomously. In parallel with this
forecast, we envision a system which employs body-worn sensors that will be able to
activate the informative sensors and suspend the others while simultaneously making
activity decisions. In this way, the inputs to the recognition unit will be simplified
to improve its decision accuracy. This study constitutes the first step of our research
on such adaptive human activity recognition systems. In future work, our aim is to
complete the relevance and redundancy relationships between sensor-feature-activity
class trio.
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