
An Automatic Approach to Construct Domain-Specific
Web Portals

Ismail Sengor Altingovde1, Rifat Ozcan1, Suleyman Cetintas2, Hakan Yilmaz2, Özgür Ulusoy1
Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey

1{ismaila, rozcan, oulusoy}@cs.bilkent.edu.tr, 2{sule, yilmazh}@ug.bilkent.edu.tr

ABSTRACT
We describe the architecture of an automatic domain-specific Web
portal construction system. The system has three major components:
i) a focused crawler that collects the domain-specific pages on the
Web, ii) an information extraction engine that extracts useful fields
from these Web pages, and iii) a query engine that allows both
typical keyword based queries on the pages and advanced queries
on the extracted data fields. We present a prototype system that
works for the course homepages domain on the Web. A user study
with the prototype system shows that our approach produces high
quality results and achieves better precision figures than the typical
keyword based search.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – search process, query formulation

General Terms
Experimentation, Design.

Keywords
Focused Crawling, Information Extraction, Querying.

1. INTRODUCTION
With the very fast growth of WWW, the quest for locating the
most relevant answers to users’ information needs becomes more
challenging. In addition to general purpose Web directories and
search engines, several domain specific Web portals or search
engines also exist, which essentially aim to cover a specific
domain/topic (e.g., education), product/material (e.g., product
search for shopping), geographic region (e.g., transportation,
hotels etc. at a particular country [2]) or media/file type (e.g., mp3
files or personal homepages [9]).

Such specialized search tools may be constructed manually (by
also benefiting from possible assistance of the domain experts) or
automatically. Some examples of the automatic approaches
simply rely on intelligent combination and ranking of results
obtained from traditional search tools (just like meta search
engines), whereas some others first attempt to gather the domain
specific portion of the Web using focused crawling techniques

and then apply several post processing operations (i.e.,
information extraction, integration, etc.) on this collection (e.g.,
[7]). In [10], focused crawling is used for obtaining high quality
pages on a mental health topic (depression) and constructing a
Web portal. In [7], a prototype system is constructed that achieves
focused crawling and multilingual information extraction on the
laptop and job offers domains.

In this paper, we describe the architecture of a domain-specific
Web portal construction system. This system will enlarge and
refresh its collection by periodic focused crawls, and allow simple
keyword based search on the raw Web pages as well as the
advanced queries on the structured data obtained by using
information extraction techniques.

As a prototype, we present Course Homepage Finder which is a
Web portal for course homepages. To our knowledge, there is no
automatically built portal that aims to maintain and query course
homepages for various departments/majors, although several
manually maintained pointers to course related resources may exist.
We believe that such a system would be of great value for
academicians, instructors and teaching assistants who want to
survey similar course contents while preparing the course materials
as well as the students who want to reach additional material for
studying. We conduct a user study with the prototype system and
show that the advanced queries supported by our approach produce
higher quality results than the typical keyword based queries.

2. SYSTEM OVERVIEW
The overall architecture of the system is depicted in Figure 1. In
what follows, we briefly describe each stage of the proposed
system.

Figure 1. System architecture.

Focused Crawling. In this study, we first implemented the
baseline focused crawler described in [3]. In particular, the
crawler involves a document classifier which is trained with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’07, November 6-8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011...$5.00.

849

example Web pages for each topic in the system. The target topic
is given by the user as one or more of these training topics.
During the crawling, the crawler maintains a priority queue of
URLs to be visited. A URL score is computed according to the
classifier score indicating the relevancy of the target topic to the
page from which the URL is extracted.

In addition to the above approach, two recent methods that exploit
link context information are also explored [6], as well as a third one
that we propose. In the first approach, so called text-window, only a
number of words around each hyperlink are used for determining
the priority of that link. The second one, tag-tree heuristic, uses the
words that are in the DOM (Document Object Model) tree
immediately in the node that a link appears, or its parents, until a
threshold is satisfied [6]. Finally, we propose a similar but slightly
different technique, so-called page segmentation method, which
fragments a Web page according to the use of HTML tags. More
specifically, for each tag, we define rules to decide whenever it
constitutes to a semantic group. For instance, each (<p>, </p>) tag
pair including more than, say 50 words, is a group. The list of some
rules to determine the page segments in a Web page is given in
Table 1. The segments are obtained in a recursive manner starting
from the inner-most segment. Our intuition is that segmentation of a
page would yield a set of coarse structural groups that are probably
related to a single topic. The coarseness is intended to provide the
classifier adequate evidence to decide a segment’s class, in contrast
to the fine grain approaches, which provide only some words around
each link. Figure 2 shows an example faculty web page that is
segmented by our approach. Each page segment is shown by
rectangular blocks.

Table 1. Use of HTML tags for page segmentation method.

Explanation & usage Semantic group

Unordered list:
 * .

Ordered list:
 * .

If the total length of list items is less
than a predefined threshold, the entire
text between the (or)
tags define a segment; otherwise each
list item defines a segment on its
own.

Paragraph:
<P></P>

If the total length of the text between
<P> tags is greater than a predefined
threshold, the entire text in-between
defines a segment. Otherwise, the
text between these tags is combined
with the first succeeding segment in
the page.

Table:
<TABLE><TBODY>
(<TR><TD></TD>
</TR>)*
</TBODY></TABLE>

A table can be used for organizing
the content or providing a neat
presentation for the Web page.
Therefore, if the length of the text in
rows and columns is less than a
predefined threshold and the cells do
not include any of the above tags, the
entire table defines a segment.
Otherwise, each row, column or even
cell may define a segment.

<FRAME>
Each frame is considered as a
separate web page and further
segmented by using the above rules.

Information Extraction. In our IE engine, we employ two
different approaches and merge their results. The SRV (Sequence
Rules with Validation) algorithm [4] based on a top-down
machine learning technique, and Sanner’s IE software [8] based
on the Hidden Markov Model are adapted to our framework.

Figure 2. Segmentation of an example web page
SRV is a machine learning algorithm that learns first order logic
extraction pattern rules from training examples. Training set
consists of annotated HTML pages. Each learned extraction rule
consists of predicates. Rule learning phase starts with an empty
rule and it greedily adds predicates to the rule which achieves the
most information gain by covering as many positive examples as
possible and at the same time as few negative examples as
possible. Each learned rule covers different positive examples in
the training set.

Sanner’s IE software is based on the algorithm given in [5]. The
software learns three different HMMs using the same training
data. Each of these HMMs has different state transition structures.
These HMMs are combined by a weighted sum of their
probability values.

Searching and Querying. The system provides two basic
methods to retrieve relevant information to a user query.

• Inverted index based keyword searching: An inverted index
of terms included in the Web pages is used to answer the
keyword based searches. The Information Retrieval (IR)
engine assigns term weights by using the vector space model
and TF-IDF weighting scheme (see [12] for details). The
similarity comparisons between the pages and user queries
are computed by the cosine measure [12].

• SQL-like advanced querying: In this case, the users can
specify search values for one or more of the fields that are

850

populated during the information extraction stage. The final
query is constructed as a typical SQL query and sent to the
underlying database system. We envision that advanced
queries over the structured fields would significantly
facilitate reaching relevant information with respect to the
keyword based search on the entire crawl data. The validity
of this expectation is evaluated by a user study as discussed
in the next section.

3. PROTOTYPE SYSTEM
Dataset. For the prototype system, we only concentrate on the
Computer Science (CS) course homepages and use a collection of
25,614 pages obtained from 4 Turkish university Web sites
(namely Bilkent, METU, Bogazici and Koc). For this dataset,
freely available crawlers are seeded with the university
homepages and the crawls are restricted to .edu domain. Note
that, we prefer to evaluate crawler strategies by using offline
datasets, to avoid fluctuations of the online crawling with several
parallel threads.

Crawling Stage. For the classifier component of the focused
crawler, we use an SVM package, namely libSVM
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/), as discussed in [6].
The classifier is trained with the WebKB dataset
(www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/).
This dataset has been manually constructed from the CS
departments of various universities and includes seven classes
(topics), namely, course, student, staff, project, faculty,
department and other, which constitute to 8,282 pages in total. As
mentioned before, “course” topic is set to be the target topic.

BFS

FullPage FC

PageFragments FC

TextWindow FC

DomTree FC

0,075

0,08

0,085

0,09

0,095

0,1

0,105

0,11

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100
Number of Downloaded Pages

H
ar

ve
st

 R
at

e

BFS FullPage FC PageFragments FC TextWindow FC DomTree FC

Figure 3. Harvest ratios for crawling strategies.

In Figure 3, we evaluate several crawlers on the pages collected
from Bilkent University Web site. In particular, we compare the
performance of breadth-first crawler (BFS), and four different
focused crawler (FC) strategies, which assign URL scores
according to either the full page content, or the context defined by
the text-window, tag-tree or page segments. For the context-
sensitive approaches, the final score of a URL is computed as a
linear combination of the full page score and context score as
computed by the corresponding strategy. Following the practice in
[6], we use 25% of the full page score and 75% of the context
score as the final score of a URL. The plot shows the harvest rate,
i.e., the ratio of the number of relevant pages to the number of
crawled pages at each point. Note that, as all strategies will
eventually converge to the same harvest rate for the entire dataset,
the performance at the beginning of the crawl (shown with dots)
would be more informative for comparison purposes.

The results reveal that, BFS, the baseline strategy, is inferior to all
focused approaches. Furthermore, the findings observed in earlier

works are confirmed in that combining context information
usually improves focused crawler performance and especially the
text-window strategy may improve the harvest rate [6]. Finally,
the page segmentation based approach proposed in this paper is
also shown to be a worthwhile strategy as it is better than or
comparable to the text window approach.

During the focused crawling stage, the pages with the classifier
score 1.0 are decided to be the course homepages and stored to be
fed to the IE component. We also manually determined CS related
course pages and used them to evaluate the precision and recall
for the data passed to the IE engine. For our dataset, 1084 pages
are assigned the score 1.0 by the classifier, which constitutes the
4.2% of the entire collection. Our findings show that, for this
dataset, the average precision and recall are 0.37 and 0.54,
respectively.

Information Extraction Stage. The IE-engine is trained with a
subset of WebKB dataset (including 900 annotated course
pages) to extract the following fields: course id’s, course
names, semester, instructors’ names and emails. The extracted
data is stored in a relational DBMS, as shown in Figure 1. We
manually evaluated the success of the extraction process for CS
related course pages. Since user study experiments are
performed by searching for course homepages using course
name field, the performance of IE-engine is evaluated only for
course name extraction. While SRV system achieves 0.28
precision and 0.43 recall on course name field, Sanner’s IE
software has 0.48 precision and 0.71 recall figures for the same
field.

Querying stage. The prototype system (available at
http://139.179.21.106/~ismaila/seniorTR/index.php) supports
both keyword-based searches and SQL-like advanced queries
on the extracted fields. In particular, the keyword-based search
uses an inverted index over all crawled dataset including 25K
pages, whereas the SQL-like system uses the fields extracted
from the 1084 pages that are decided to be course pages, as
described above. The user interface for Course Homepage
Finder is shown in Figure 4.

User study. A user study including a group of senior and
graduate CS students is conducted to measure the user
satisfaction for the advanced and keyword-based querying
approaches. In particular, a random set of 60 course names are
determined from a disjoint dataset and each user is assigned 5
of them. Each user is required to enter the given query and
evaluate the resulting records as relevant or irrelevant. Figure 5
shows the user interface that is used for the relevance judgment
part of the user study. The results from the keyword-based and
advanced querying approaches are shuffled, to prevent any bias.
Next, for each query, we compute the precision score for the
number of documents that are returned by the advanced
approach. This is necessary, since the SQL-like advanced
approach may return a restricted number of results per query
whereas keyword-based query may return much more pages
(due to keyword similarity based ranking). For this case, the
precision of the advanced system is 66%, whereas the keyword-
based system achieves 57%. Note that, comparing recall is not
possible since it is impossible to know the all relevant pages in
the entire dataset. (The Web site for the user study is available
at http://139.179.21.106/~ismaila/SENIOR-1-TR/login.html)

851

Figure 4. Course Homepage Finder user interface.

4. CONCLUSION AND FUTURE WORK
In this study, we present an automatic approach to create domain-
specific Web-portals and show its usability by conducting a user
study on the prototype system constructed for course homepages.

Future work involves extensive experimentation with the proposed
focused crawling methods, as well as adapting some other Web
page segmentation methods in the literature (e.g., the VIPS
algorithm, which segments Web pages based on the visual clues [1],
or the method proposed in [11]). The effectiveness of IE component
will also be further investigated, giving special emphasis on
adaptive methods where only the most similar instances to a test
instance in the train set are used for IE purposes. Finally, we plan to
combine results from keyword-based and advanced-querying
components, to further increase user satisfaction.

5. ACKNOWLEDGMENTS
This work is supported by The Scientific and Technical Research
Council of Turkey (TÜBİTAK) under the grant no 105E024. We
also would like to thank P. Angin, L. Ak, B. Atikoglu, A.
Boynuegri, Ö. R. Atay, O. Ö. Dolu, İ. Durmaz, E. Karaca, T.
Yıldız, E. Kucukoguz, A. Türk and E. Karaca for their help
during the implementation.

6. REFERENCES
[1] Cai, D., Yu, S., Wen, J.-R., and Ma, W.-Y. Extracting

Content Structure for Web Pages based on Visual
Representation. In Proc. of the Fifth Asia Pacific Web
Conference (APWeb2003), 2003.

[2] Cambazoglu, B. B., Karaca, E., Kucukyilmaz, T., Turk, A.
and Aykanat, C. Architecture of a Grid-Enabled Search
Engine. Information Processing & Management, 43, 3 (May
2007), 609–623.

Figure 5. Relevance judgment interface for the user study.

[3] Chakrabarti, S. Mining the Web Discovering Knowledge
from Hypertext Data. MK. Publishers, San Francisco, 2003.

[4] Freitag, D. Machine Learning for Information Extraction in
Informal Domains. Ph.D. Thesis, Carnegie Mellon
University, PA, 1998.

[5] Freitag, D. and McCallum, A. Information Extraction with
HMM's and Shrinkage. In Proc. of AAAI '99 Workshop on
Machine Learning for Information Extraction, 1999.

[6] Pant, G. and Srinivasan, P. Link Contexts in Classifier-
Guided Topical Crawlers. IEEE TKDE, 18, 1 (Jan. 2006),
107-122.

[7] Pazienza, M. T., Stellato A., and Vindigni, M. Purchasing
the Web: an Agent based E-retail System with Multilingual
Knowledge. In Proc. of WI2003 Workshop on Applications,
Products and Services of Web-based Support Systems,
Halifax, Canada, 2003.

[8] Sanner’s HMM-based Text Mining and Extraction Tool.
Available at www.cs.toronto.edu/~ssanner/software.html

[9] Shakes, J., Langheinrich, M. and Etzioni, O. Dynamic
Reference Sifting: A Case Study in the Homepage Domain.
In Proc. of WWW6, Santa Clara, CA, 1997, 189-200.

[10] Tang, T., Hawking, D., Craswell, N., Griffiths, K. Focused
crawling for both relevance and quality of medical
information. In Proc. of CIKM 2005, 2005, 147-154.

[11] Vadrevu, S., Gelgi F., Davulcu, H. Semantic Partitioning
Web Pages. World Wide Web, Internet and Web Information
Systems (WWWJ), Springer, 2006.

[12] Witten, I. H., Moffat, A. and Bell, T. C. Managing Gigabytes
Compressing and Indexing Documents and Images, Van
Nostrand Reinhold, New York, 1994.

852

