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ABSTRACT 
Dynamic textures are common in natural scenes. Examples of 
dynamic textures in video include fire, smoke, clouds, trees in the 
wind, sky, sea and ocean waves etc. In this showcase, (i) we 
develop real-time dynamic texture detection methods in video and 
(ii) present solutions to video object classification based on 
motion information.   
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1. OBJECTIVE OF THE SHOWCASE 
PROJECT 

Researchers extensively studied 2-D textures and related 
problems in the field of image processing. On the other hand, 
there is very little research on dynamic texture detection in video. 
It is well known that tree leaves in the wind, moving clouds etc. 
cause major problems in outdoor video motion detection systems. 
If one can initially identify bushes, trees, and clouds in a video, 
then such regions can be excluded from the search space or proper 
care can be taken in such regions, and this leads to robust moving 
object detection and identification systems in outdoor video. One 
can take advantage of the research in 2-D textures to model the 
spatial behaviour of a given dynamic texture. To be able to detect 
and segment dynamic textures in challenging real world 
applications, differences in dynamics must be also analyzed. Two 
different approaches will be studied in this showcase. In the first 
approach, dynamic textures are classified as weak dynamic 
textures will be analysed with standard optical flow algorithms 
relying on the brightness constancy assumption. However, self-
occlusion, material diffusion, and other physical processes not 
obeying the brightness constancy assumption make such 
algorithms inappropriate for strong dynamic textures. An 
alternative to the brightness constancy assumption, the brightness 
conservation assumption enables the brightness of an image point 
to propagate to its neighborhood and thus to model complex 
brightness changes. A non-regular optical flow calculation based 
on the brightness conservation assumption provides a better 
model for strong dynamic textures.  
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In the second approach, prior information about dynamic 
textures is used for detecting smoke and flames in video. It is 
experimentally observed that flame flicker process is not a 
narrow-band activity but it is wide-band activity covering 2 to 15 
Hz. Zero-crossings of wavelet coefficients covering the band of 2 
to 15 Hz is an effective feature and Hidden Markov Models 
(HMM) can be trained to detect temporal characteristics of fire 
using the wavelet domain data. Similarly, temporal behaviour of 
tree leaves in the wind or cloud motions will be investigated to 
achieve robust video understanding systems including content 
based video retrieval systems. 

2. FIRE DETECTION IN VIDEO 
Conventional point smoke and fire detectors typically detect the 
presence of certain particles generated by smoke and fire by 
ionisation or photometry. An important weakness of point 
detectors is that they are distance limited and fail in open or large 
spaces. The strength of using video in fire detection is the ability 
to monitor large and open spaces. Current fire and flame detection 
algorithms are based on the use of color and motion information 
in video. In this work, we not only detect fire and flame colored 
moving regions but also analyze the motion [1,2]. It is well-
known that turbulent flames flicker with a frequency of around 10 
Hz. Therefore, fire detection scheme was made more robust by 
detecting periodic high-frequency behavior in flame colored 
moving pixels compared to existing fire detection systems 
described in [2]. However, this approach may also produce false 
alarms to police cars in tunnels. Our experiments indicate that 
flame flicker frequency is not constant and it varies in time. 
Variations of a flame pixel in video is plotted in Fig. 1. In fact, 
variations in flame pixels can be considered as random events. 
Therefore, a Markov model based modeling of flame flicker 
process produces more robust performance compared to 
frequency domain based methods[3]. Similar arguments are also 
valid for video based smoke detection [4,5]. 

 
Figure 1. Temporal variation of a flame pixel and the 
corresponding wavelet coefficients (bottom plot). 
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Another important clue for fire detection is the boundary of 
moving objects in the video. If the contours of an object exhibit 
rapid time-varying behavior then this is an important sign of 
presence of flames in the scene. This time-varying behavior is 
directly observable in the variations of color channel values of the 
pixels under consideration. Hence, the model is built as consisting 
of states representing relative locations of the pixels in the color 
space. When trained with flame pixels off-line, such a model 
successfully mimics the spatio-temporal characteristics of flames. 
The same model is also trained with non-flame pixels in order to 
differentiate between real flames and other flame colored ordinary 
moving objects.  

In addition, there is spatial color variation in flames (cf. 
Fig.2). Flame pixels exhibit a similar spatial variation in their 
chrominance or luminosity values, as shown in Fig. 2. The spatial 
variance of flames are much larger than that of an ordinary flame-
colored moving object. The absolute sum of spatial wavelet 
coefficients of low-high, high-low and high-high subimages of the 
regions bounded by gray-scale rectangles excerpted from a child’s 
fire colored t-shirt and inside a fire, are shown in Fig. 2 [2]. This 
feature of flame regions is also exploited by making use of the 
Markov models. This way of modeling the problem results in less 
number of false alarms when compared with other proposed 
methods utilizing only color and ordinary motion information as 
in [1]. 

 
Figure 2. Comparison of spatial variations of fire-colored 
regions. Flame(bottom-left) have substantially higher spatial 
variation(bottom-right) compared to an ordinary fire-colored 
region. 

In spatial color analysis step, pixels of flame coloured 
regions are horizontally and vertically scanned using the same 
Markov models in temporal analysis. If the fire-coloured model 
has a higher probability spatially as well, then an alarm is issued.  

Our experimental studies indicate that Markovian modeling 
of the flames is not only more robust than the use of FFT to detect 
10 Hz flame flicker but also computationally more efficient. 
Details of our experimental studies can be found in [3]. 

The method can be used for fire detection in movies and 
video databases as well as real-time detection of fire. It can be 

incorporated with a surveillance system monitoring an indoor or 
an outdoor area of interest for early fire detection. 

3. DETECTION OF SWAYING TREE 
LEAVES 

It is well known that tree leaves and branches in the wind, 
moving clouds, etc., is a main source of false alarms in outdoor 
video analysis. If one can initially identify bushes, trees and 
clouds in a video, then such regions can be excluded from the 
search space or proper care can be taken in such regions. This 
leads to robust moving object detection and identification systems 
in outdoor video. A method for detection of tree branches and 
leaves in video is developed. It is observed that the motion 
vectors of tree branches and leaves exhibit random motion. On the 
other hand regular motion of green colored objects has well-
defined directions as shown in Figure 3. In our method, the 
wavelet transform of motion vectors are computed and objects are 
classified according to the wavelet coefficients of motion vectors. 
Color information is also used to reduce the search space in a 
given image frame of the video. Motion trajectories of moving 
objects are modeled as Markovian processes and Hidden Markov 
Models (HMMs) are used to classify the green colored objects in 
the final step of the algorithm. 

Our detection algorithm consists of three main steps: (i) 
green colored moving region detection in video, (ii) estimation of 
the motion trajectories and computation of  the wavelet domain 
signals representing motion trajectories, and iii) HMM based 
classification of the motion trajectories. 

 
Figure 3. The car has a directionally consistent trajectory 
whereas the leaves, marked by an arrow, randomly sway in 
the wind. 

       A random behavior with low temporal correlation is apparent 
for leaves and branches of a tree, in both the horizontal and 
vertical component of the temporal motion signal as shown in 
Figs. 3, respectively. On the other hand, an ordinary moving 
object with a well-defined direction does not exhibit such a 
random behavior. In this case there is high correlation between 
the samples of the motion feature signal. This difference in 
motion characteristics is also apparent in the wavelet domain [6]. 
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4. SEGMENTATION AND ANALYSIS OF 
DYNAMIC TEXTURES 
Dynamic textures are common in natural scenes, however, in 
many cases only parts of the scene form a dynamic texture. 
Furthermore, the spatial location and extent of dynamic textures 
can vary with time and they can be partially transparent. All these 
make it difficult to separate them from a (moving) textured 
background. To be able to detect and segment dynamic textures in 
such challenging cases, differences in dynamics must be 
analyzed. Color and geometry can be misleading in many cases. 

 

Based on general characteristics of the underlying processes, 
dynamic textures can be grouped in two main categories: weak 
and strong dynamic textures. A weak dynamic texture such as a 
simple moving texture does not posses any intrinsic dynamics. 
Following it in an appropriate local moving coordinate system – 
i.e. “going with the flow” – a weak dynamic texture becomes 
static and thus it can be processed with classical techniques. 
Contrary, characteristics of strong dynamic textures possessing an 
intrinsic dynamics cannot be fully captured with regular motion 
compensation. 

       Weak dynamic textures can be studied with standard optical 
flow algorithms relying on the brightness constancy assumption. 
However, self-occlusion, material diffusion, and other physical 
processes not obeying the brightness constancy assumption make 
such algorithms inappropriate for strong dynamic textures. An 
alternative to the brightness constancy assumption, the brightness 
conservation assumption enables the brightness of an image point 
to propagate to its neighborhood and thus to model complex 
brightness changes. A non-regular optical flow calculation based 
on the brightness conservation assumption models strong dynamic 
textures more precisely (see Fig. 4). Information encoded in the 
optical flow can be extracted and analyzed [7]. 

 

 

Figure 4. Motion compensation: Original frames (a, d), Horn-
Schunck flow (b, e), non-regular flow (c, f). 

 

While a static or weak dynamic texture obeys brightness 
constancy, a strong dynamic texture is better modeled with 
brightness conservation. Using this, we have developed a level set 
segmentation scheme for identifying and segmenting dynamic 

texture regions based on their general motion characteristics, 
without using any color information. We have tested our method 
on videos of non-segmented dynamic textures showing flowing 
water, steam, smoke, and fire – all in a natural context [8]. The 
experimental results show the adequacy of our approach for 
detecting and segmenting strong dynamic textures in challenging 
cases [9]. An optimized (less accurate) version of our software 
works in real-time. 

 

 

 

Figure 5. Dynamic texture segmentation: Stream (a, d), Steam 
(b, e), Fire (c, f). 
 

5. DEMO AND WEB-SITE 
Sample fire and smoke detection videos and the software can 

be downloaded from URL: 

http://signal.ee.bilkent.edu.tr/VisiFire/index.html 

Proposed fire and smoke detection method is also explained 
at CVonline, compendium of  computer vision by Prof.R.B.Fisher 
of University of Edinburgh at URL: 

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/TO
REYIN2/index.html 

Segmentation of dynamic textures can be reached at: 

http://vision.sztaki.hu/~fazekas/dtsegm/CIVR07/ 
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