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Abstract
Executing array based applications on a chip multiprocessor requires

effective loop parallelization techniques. One of the critical issues that
need to be tackled by an optimizing compiler in this context is loop
scheduling, which distributes the iterations of a loop to be executed in
parallel across the available processors. Most of the existing work in this
area targets cache based execution platforms. In comparison, this paper
proposes the first dynamic loop scheduler, to our knowledge, that targets
scratch-pad memory (SPM) based chip multiprocessors, and presents an
experimental evaluation of it. The main idea behind our approach is to
identify the set of loop iterations that access the SPM and those that do
not. This information is exploited at runtime to balance the loads of the
processors involved in executing the loop nest at hand. Therefore, the
proposed dynamic scheduler takes advantage of the SPM in performing
the loop iteration-to-processor mapping. Our experimental evaluation
with eight array/loop intensive applications reveals that the proposed
scheduler is very effective in practice and brings between 13.7% and
41.7% performance savings over a static loop scheduling scheme, which
is also tested in our experiments.

1 Introduction
Loop scheduling is an important component of any computing

system that employs multiple processing units, e.g., chip multi-
processors. The basic functionality of this component is, for a
loop-intensive application, to perform loop iteration-to-processor
mapping so that a given loop nest can be executed in parallel to
reduce execution latency. Depending on when this mapping is
performed, a loop scheduling scheme can be described as static or
dynamic. Static schedulers perform this mapping before the exe-
cution of the application starts, and therefore, cannot adapt well
to dynamically changing execution conditions. Dynamic sched-
ulers, on the other hand, decide this mapping at runtime, but, do-
ing so requires a decision mechanism to be executed at runtime,
which means an additional overhead in practice. In addition to
these two main loop scheduling paradigms, prior work also ex-
plored the possibility of taking advantage of data reuse informa-
tion to achieve better schedules than possible with pure static and
dynamic schemes. Both static and dynamic schedulers have their
advantages as well as drawbacks. Static schedulers are easy to
implement and incur little overhead at runtime. However, they
cannot capture runtime context well. In comparison, dynamic
schedulers can capture runtime context (i.e., they can exploit the
differences among the execution times of different iterations that
belong to the same parallel loop) but are costly to implement and
lead to extra runtime overheads.

A scratch-pad memory (SPM) is a small on-chip memory unit
that is managed by software (e.g., through application program
directly or via compiler-inserted code). They have low access la-
tencies similar to conventional on-chip caches; however, they can
be more energy-efficient than on-chip caches due to lack of dy-
namic tag-matching logic [5]. While there have been several at-
tempts [10, 7] in the past to design data locality aware loop sched-
ulers, these attempts target generally conventional data caches. In
fact, the only SPM conscious loop scheduler we are aware of is
[21], which is a static scheduler.

In this paper, we propose and experimentally evaluate an SPM-
aware dynamic loop scheduling scheme for parallel computing
systems. The main idea behind our approach is to take the ac-
cess latencies of the SPM and off-chip memory into account
explicitly so that the workloads of the parallel processors can
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be better balanced as compared to a conventional dynamic loop
scheduler. To our knowledge, this new scheduler is the first dy-
namic scheduler that takes advantage of the SPM in perform-
ing the loop iteration-to-processor mapping at runtime. To study
the behavior of this new scheduler, we implemented it using a
publicly-available compilation framework and performed exper-
iments with several array/loop intensive applications, targeting a
chip multiprocessor system. In our experimental evaluation, we
tested not only how this new scheduler compares to well-known
static and dynamic schedulers, but also how much additional im-
provements it brings over three previously-proposed loop sched-
ulers, which are either data locality oriented or SPM based. These
experiments reveal that the proposed dynamic scheduler is very
effective in practice and the performance gains it brings over a
static loop scheduler vary between 13.7% and 41.7% (even when
all the overheads incurred by our approach are included). In ad-
dition, we show that this approach can be used with the differ-
ent variants of dynamic scheduling as well, such as tapering [13]
and factoring [6]. Overall, our implementation and experimental
evaluation not only show the practicality of building SPM-aware
dynamic loop schedulers but also demonstrate that being SPM
aware during loop iteration-to-processor mapping can be very im-
portant in scheduling array/loop intensive applications on parallel
architectures.

The remainder of this paper is organized as follows. The next
section gives a brief overview of existing static and dynamic loop
scheduling techniques, including the most recent data locality
aware schedulers as well as an SPM aware static scheduler. Sec-
tion 3 presents the mathematical details of our proposed dynamic
loop scheduler. Section 4 discusses our experimental results and
explains our major findings. Section 5 concludes the paper.

2 Discussion of Related Work
Since there exist numerous studies on SPM management for

both data and instruction accesses and this paper does not pro-
pose a new SPM management scheme, we do not discuss these
SPM space management related efforts in this section, and refer
the interested reader to [11, 21, 4, 5, 1, 15, 19, 3] and the refer-
ences therein. Angiolini et al [2] present a fast SPM partitioning
algorithm. Suhendra et al [16] combine SPM management and
task scheduling targeting parallel architectures. As mentioned
earlier, loop scheduling techniques can be divided into two main
categories: static and dynamic. In static techniques, the iteration
space of the loop to be executed in parallel across P processors is
divided at compile time into P sets, (also called chunks) and each
of these sets is assigned to a processor. Note that, while each set
contains the same number of iterations, this does not mean that
they will experience similar execution latencies at runtime. This
is because two different iterations that belong to the same parallel
loop can exhibit quite different data cache behaviors, execute the
different branches of a conditional statement (i.e., different set of
instructions), or contain sequential loops with different iteration
counts (which means different workloads). All these factors (if
they are severe) can eventually make a static scheduler very inef-
ficient. In a dynamic loop scheduler, there is a master processor
which assigns loop iterations to processors at runtime. The it-
eration space is divided into sets (chunks) of small sizes, and a
processor that completes its current set asks for a new set from
the master. In that way, a processor that finishes its load earlier
than the others can ask for more work, thereby preventing it from
waiting idle. Researchers have also studied several variants of this
pure dynamic loop scheduling scheme. These variants include ta-
pering [13], factoring [6], and trapezoidal loop scheduling [18],
and they differ from the base dynamic scheduler in the sizes of
the loads (in terms of loop iterations) assigned to processors at
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runtime (we will later give an example that demonstrates the dif-
ferences between some of the variants of dynamic scheduling).

Apart from these two main scheduling schemes, previous re-
search also investigated locality conscious and SPM aware loop
scheduling schemes. In [10], Markatos et al discuss a locality
aware loop scheduling scheme for conventional cache based sys-
tems. This approach takes advantage of a typical program be-
havior where the same parallel loop can be visited multiple times
throughout the execution time of the program. This is really the
case, for example, when a parallel loop is contained within an
outer, sequential loop. The scheduling approach in [10] tries to
ensure that a CPU is assigned the same set of loop iterations
each time the same parallel loop is scheduled. In this way, the
chances of catching the same data elements in the data cache are
increased. More recently, [7] proposed a different locality aware
scheduling scheme where the compiler selects the chunks of it-
erations to be assigned to a CPU carefully, based on the results
of the loop-level data reuse analysis performed. In the SPM do-
main, recent work [21] proposes a static SPM scheduling algo-
rithm oriented towards balancing the workloads across the CPUs
taking into account the latency variation between an SPM access
and an off-chip memory access. As compared to locality aware
schedulers such as [10] and [7], our work is different as it targets
an SPM based execution environment. In comparison to [21], on
the other hand, our work, described in this paper, is a dynamic
scheduler rather than a static one. In our experimental evalua-
tion, in order to demonstrate the additional benefits brought by
our dynamic loop scheduling approach over the state-of-the-art,
we compare it to the loop schedulers published in [10], [7], and
[21] as well.

3 Details of Our Approach
3.1 Architecture and Assumptions

While the loop scheduling approach explained below is appli-
cable to a wide range of parallel systems, in this paper, our focus
is on a chip multiprocessor with a shared on-chip SPM space.
Note that what we mean here is a logical sharing of the avail-
able SPM space; this space can be physically distributed such
that each processor is attached an SPM sub-space (a local SPM).
Each SPM access is assumed to be much faster and takes much
less energy to complete, as compared to an off-chip memory ac-
cess. Whether this architecture has also instruction SPMs or not
does not really concern us, as we are interested in only data SPM.
We also assume that the SPM management decisions have already
been made before our loop scheduler is invoked (i.e., before the
master CPU gives a set of iterations to a requesting processor, it
knows how many SPM accesses each iteration performs). Again,
the exact algorithm used for deciding the contents of the SPM
during the course of execution is orthogonal to the main focus
of this paper, and in fact, our scheduler can work along with any
SPM management algorithm. In particular, we want to empha-
size that some SPM management schemes update the contents of
the SPM dynamically at runtime. However, such updates are typ-
ically scheduled at compile time. Therefore, our dynamic sched-
uler can know the cost of every loop iteration (in terms of the
number of SPM and off-chip memory accesses it makes) before
it distributes, at runtime, chunks to CPUs. As a matter of fact,
as will be discussed below, our proposed scheduling approach
exploits this information about the relative costs of the different
iterations that belong to the same parallel loop to better balance
the workloads of the different CPUs, thereby (1) minimizing the
number of times a CPU comes to the master processor asking for
more work, and (2) reducing the overall execution time of the ap-
plication by ensuring that each processor takes more or less the
same number of cycles to finish.

Before discussing the details of our loop scheduling algo-
rithm, we want to explain why SPMs make a good target for
loop scheduling (as opposed to conventional hardware-managed
caches). It is important to note that SPMs are managed by soft-
ware, either by the application programmer manually, or by an
optimizing compiler automatically. In either case, the contents
of SPM at any given point in execution can be predicted since
data transfers between the SPM and the off-chip memory are con-
trolled by the software. As a result, one can estimate the cost of
a given loop iteration as one can identify the number of SPM ac-
cesses and off-chip accesses that iteration will make at runtime.

This estimation, while may not be extremely accurate, can be very
useful in practice as it allows us to balance the workloads of dif-
ferent CPUs at compile time. As will be explained later in detail,
this ability of estimating the costs of loop iterations and balancing
workloads is an important component of the static portion of our
loop scheduling algorithm. Its dynamic portion on the other hand
adjusts the workloads at runtime to minimize overall application
execution latency. Note that, since conventional data caches are
managed by hardware such a cost estimation is not possible in
general without being too conservative. Consequently, the use
of static analysis for helping loop scheduling will be limited in
practice when conventional cache memories are employed.

3.2 Compiler Analysis
The first component of the proposed approach is a static com-

piler phase, in which we assign a cost to each iteration of the
loop to be executed in parallel by the CPUs in our chip multi-
processor. While this cost normally has both computation and
memory access parts, we make our scheduling decisions based
on only the memory access part because (1) it generally domi-
nates computation cost and (2) computation cost does not change
much from one loop iteration to another in our applications. Re-
call that we assume the SPM management decisions have al-
ready been made before our approach is applied. Hence, at
any given point during execution we know the contents of the
SPM. These contents are either compiler generated or specified
by the application designer. Let us assume that a loop iteration
i executes Mi memory access instructions, and an SPM access
has a latency of LSPM cycles, and a main memory access has
a latency of LMEM cycles, where LSPM � LMEM in gen-
eral (e.g., two orders of magnitude difference). The values of
LMEM and LSPM are based on the architecture and hence are
known at compile time. As far as the cost due to data memory
access instructions is concerned, the cost of this loop iteration
can be expressed as MSPMi

LSPM + MMEMi
LMEM , where

MSPMi
+MMEMi

= Mi. It needs to be noted that MSPMi
rep-

resents the number of accesses made by iteration i to the SPM,
whereas MMEMi

captures the number of accesses to the main
off-chip memory by the same iteration. As the contents of the
SPM are known at any point, the values of MSPMi

and MMEM i

are known as well. It is also important to note that this memory
access cost can vary from one loop iteration to another, as a loop
iteration can have different number of SPM and/or off-chip mem-
ory accesses than the other iterations that belong to the same par-
allel loop. In fact, the memory cost of a loop iteration can vary
between MiLSPM and MiLMEM , depending on how many of
its data requests are satisfied from the on-chip SPMs. If we use

Li
TOT to denote the memory cost of the ith iteration of the loop

nest being analyzed, the total memory cost of executing this loop
nest can be expressed as:

LTOT =

N∑

i=1

Li
TOT =

N∑

i=1

(MSPMi
LSPM + MMEMi

LMEM ),

where N is the total number of iterations in the loop nest. Since
the overall execution time of a parallel loop is determined by the
latency incurred by the latest processor, it is very important to
balance the execution latencies of the different processors. In
other words, the execution latency of each processor should be as
close to LTOT /P as possible, where P is the number of CPUs
in the chip multiprocessor architecture. Note that a formulation
similar to the one above can also be written if there are latency
differences between the different SPM components in the system
(e.g., a local SPM can be faster to access than a remote SPM).

As explained earlier, a classical dynamic loop scheduler ad-
dresses this load balancing problem by distributing the loop it-
erations to CPUs at runtime. In fact, the only difference among
the different dynamic scheduling schemes proposed in literature
is in the number of loop iterations given to a CPU when it re-
quests more work during the parallel execution of a loop. In the
baseline dynamic scheduler known as the self-scheduler, the iter-
ation space is divided into L chunks of the same size (in terms
of the number of iterations), where L � P (i.e., the number
of groups is larger than number of CPUs). Each time a proces-
sor finishes its work and asks for more, it is given one of these
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L chunks, which have not been processed so far. In tapering,
a variant of the baseline dynamic scheduling, the size of each
chunk of iterations given to a processor (when it requests more
work) is always 1/P of the remaining loop iterations to be ex-
ecuted. Under this scheduling policy (which is also referred to
as the guided self-scheduling in some research papers [13]), it
is guaranteed, under certain circumstances, that all the CPUs will
finish within one iteration of another. Another variant of the base-
line dynamic scheduling is called factoring, which is similar to
tapering but, instead of computing the size of one chunk of iter-
ations at each scheduling step, it computes the size of a batch of
chunks. However, since all these schemes work with the number
of iterations rather than predicted memory access latencies, the
resulting workloads assigned to processors may not be well bal-
anced, which means (1) processors frequently ask the master CPU
to give them more work and (2) one or more of the processors can
finish their last work much earlier than the others, increasing the
overall execution latency (an example will be given in Section 3.3
to make this issue clear).

Our approach, instead, tries to balance the workloads across
the CPUs as much as possible, which helps to address the two
problems mentioned above. Our goal is to eliminate the two
problems, mentioned above, associated with the conventional dy-
namic schedulers. Suppose that, at some point during execution,
we want to schedule a set S of iterations across P processors.
We use LTOT (S) to denote the total access latency of these loop

iterations. In other words1,

LTOT (S) =

|S|∑

i=1

Li
TOT .

Our goal is to divide these |S| iterations into P sets (T1, T2, · · ·,
TP ) such that

∑

i∈T1

Li
TOT ≈

∑

i∈T2

Li
TOT ≈ · · · ≈

∑

i∈TP

Li
TOT ≈ LTOT (S)/P,

where T1∪T2∪· · ·∪TP = S and T1∩T2∩· · ·∩TP = ∅. We now
describe how our SPM aware scheduling approach achieves such
a balanced distribution, and in Section 3.3, we show an example
application of our approach.

We use Qi to denote the iterations in S which have the same
latency (i.e., the iterations in a Qi need the same number of SPM
and off-chip memory accesses). In other words, the iterations
in different Qi sets have different latencies. Since each Qi is a
subset of S, we have:

m⋃

i=1

Qi = S.

Note that the Qi sets are identified at compile time, and this
forms the static portion of our approach. Our scheduling algo-
rithm then builds, at runtime, each Ti set by assigning |Qj |/P
iterations to Ti from each and every Qj , where 1 ≤ j ≤ m and
m represents the number of different latencies. In other words,
our Ti set construction is based on satisfying the following con-
straint:

|Ti| ≈
m∑

j=1

|Qj |/P .

This ensures that the iterations having the same latency are
evenly distributed to all the available processors, that is P sets
(T1, T2, · · · , TP ). Since we repeat this step until all Qi sets are
processed, the resulting loop distribution will satisfy our goal ex-
plained above.

At this point, we want to explain why our scheduling approach
is a dynamic one, as opposed to a static one. It is true that, using
a static compiler analysis, we first group the iterations of the loop
to be scheduled into latency classes (the Qi sets, as explained
above). However, the actual assignment of these iterations to

1Given a set S, we use |S| to denote the cardinality of S.

P : the number of processors available for scheduling.

.Tk: the set of iterations being assigned to processor k.

Qj : the set of iterations exhibit same latency.

S: the set of iterations to be scheduled, i.e., S =
⋃m

j=1
Qj .

For each Tk, where 1 ≤ k ≤ P , initialize Tk to ∅.

While (S != ∅)

For each k, where 1 ≤ k ≤ P
For each j, where 1 ≤ j ≤ m

While (Qj != ∅)

sj = the next |Qj |/P iterations from Qj .

Qj = Qj – sj . /* update Qj */

S = S – sj . /* update S */

Tk = Tk ∪ sj .

End while

End for

End for

End while

Figure 1. Our loop scheduling algorithm in pseudo
code.

CPUs is performed at runtime based on the explanation given
above (Figure 1 gives the pseudo code that makes this iteration-
to-CPU assignment). This is because, although the compiler can
estimate the cost of a loop iteration, this estimation may not be
very accurate, due to several reasons (e.g., increased memory ac-
cess latency due to contentions). Also, some of the iterations
may simply be dropped as a result of some conditionally-executed
constructs (e.g., if statements). If we perform the iteration as-
signment at compile time, we could not take advantage of this
runtime information. In our implementation, whenever there is a
change detected (at runtime) in iteration latencies, this informa-
tion is taken into account and the Qi sets are updated accordingly.
Therefore, our approach performs iteration assignment at runtime
and, thus, it is dynamic.

We also want to clarify the issue of how the dependencies are
handled. Our current implementation does not parallelize a loop
that carries any data dependence, and among the loops (in a nest)
that can run parallel, we select the outermost one to minimize the
potential synchronization costs (or try to interchange loops such
that the parallel loop is placed in the outermost position). How-
ever, if desired, our approach can be modified to work with the
cases where loops that are not entirely dependence-free are par-
allelized. In this case, our loop iteration costs should be updated
with the necessary interprocessor synchronization costs. An anal-
ysis of our benchmark codes showed however that in nearly 82%
of the loop nests, our compiler was able to identify at least a loop
that is dependence-free. In addition, in about 95% of such cases,
we were able to bring that (parallel) loop to the outermost posi-
tion, thereby minimizing the synchronization overheads among
the parallel CPUs.

3.3 Example

To see the differences between the base dynamic scheduler and
its two variants (tapering and factoring) as well as the SPM aware
versions of these schedulers, let us consider a scenario where 60
iterations (for illustrative purposes) of a parallel loop are to be
scheduled across 4 processors. Table 1(a) shows the iteration as-
signments with three conventional dynamic schedulers. In this
example, the chunk size used for Dynamic is 6 and factoring
value, f , used for Factoring is 2. It is important to note that none
of these three schedulers are SPM aware. Consequently, the real
execution times of any two chunks of the same size (in terms of
iterations) can be dramatically different from each other. Assum-
ing the iteration latencies given in Table 1(b), the execution times
of the four processors are shown as in Table 1(c). For illustra-
tive purposes, we assume that there are 2 cycles for SPM access
and 90 cycles for off-chip memory access. For instance, if there
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are 2 SPM accesses and 3 off-chip memory accesses in a par-
ticular loop iteration, the latency of that iteration is estimated to
be 274 (2*2+3*90) cycles. In Table 1(c), for each processor, we
give the execution latency for each scheduling step. For exam-
ple, in Dynamic scheduling, the cell that contains 8+98+10 (116)
means that the total latency of the third CPU is 116 at that par-
ticular scheduling step, and this value (116) results from the con-
tributions of three different latency groups of iterations. For each
scheduling scheme, the largest latency value is given in bold. For
example, in Dynamic scheduling, the overall execution latency is
752. Since the overall execution latency of the parallel loop is
dictated by the slowest processor, we can estimate the execution
latencies of this example under the Dynamic, Tapering, and Fac-
toring scheduling schemes to be 752 cycles, 758 cycles, and 948
cycles, respectively, without taking into account the bookkeeping
performed by the master CPU and other CPU related activities.
Now, let us look at the execution latencies under these three dy-
namic scheduler variants when they are made SPM aware using
our proposed approach. The processor latencies (cycles) in this
case are given in Table 1(d). We see that the execution latencies
under the SPM aware versions of Dynamic, Tapering, and Fac-
toring scheduling schemes to be 596 cycles, 598 cycles, and 590
cycles, respectively. When compared with the results obtained by
using the corresponding SPM oblivious versions, we observe sig-
nificant performance improvements (20.7% in Dynamic; 21.1%
in Tapering; and 37.8% in Factoring to be exact).

4 Experimental Evaluation

4.1 Setup

We used a SIMICS [14] based simulation platform to make
our experiments. We first enhanced SIMICS with accurate tim-
ing models and then simulated a chip multiprocessor, where each
processor has a local SPM space. Each processor can access local
SPM spaces of other processors as well. A compiler pass, applied
prior to our scheduling, decides the contents of the SPMs at any
given point in the program code, using the approach described in
[1]. In this SPM management approach, first, a data reuse anal-
ysis is performed, and then, the data transfers between the SPM
and the off-chip memory are scheduled based on the results of
this data reuse analysis. The goal of this scheme is to displace a
block of data from the SPM once its temporal reuse is over. While
we used this particular SPM management scheme in our experi-
ments, nothing prevents us from using our dynamic scheduling
scheme with other SPM management strategies as well. This
SPM management part and the static compiler part of our ap-
proach have been implemented using the SUIF infrastructure [8].
Note that our simulator simulates, in detail, the activities of both
the master processor and the processors that execute loop itera-
tions in parallel and also records all the overheads involved, due
to dynamic scheduling.

For each benchmark code in our experimental suite, we per-
formed experiments with different versions. Specifically, in this
section, Dynamic, Tapering and Factoring refer, respectively, to
the baseline dynamic loop scheduler, its tapering version, and
its factoring version, respectively. The specific implementations
used for Dynamic, Tapering and Factoring are, respectively, from
[17], [13], and [6]. We also report results when these three major
dynamic scheduling schemes are made SPM aware using the ap-
proach proposed in this paper. LA-I and LA-II represent the loop
scheduling schemes described in [10] and [7], respectively. The
detailed discussions of these schemes are given earlier in Sec-
tion 2. In addition, we also compare our approach to the only
SPM aware loop scheduling scheme we are aware of [21], whose
details are also discussed in Section 2. As mentioned earlier, the
scheme in [21] is a purely static loop scheduling scheme.

Table 2 gives the default simulation parameters used in most
of our experiments, and Table 3 lists the benchmark code used
for evaluation of the different scheduling schemes. The second
column presents a brief description of the benchmark and the next
column gives the amount of data processed by it. The last column
gives the execution cycles under a static loop scheduling scheme.
In this scheme, the iteration space of a parallel loop is divided
into P even (or nearly even) sets, and each processor is assigned
a set; this partitioning takes place at compile time.

(a) Iteration assignment under three dynamic loop scheduler.

274

39

186

34

274

30

186

28

186

47

10

27

98

21

10

18

98

14

274

10

98

4

10

2

10

50

274

48

98

53

186Latency

58Iteration #

(b) Latency of some of the iterations; all other iterations are

assumed to have 2 cycles latency.

2 (9 4 8 )

2 (502)

186 (582)

2 (326)

4 (946)

2+98 (500)

4 (396)

2+10 (324)

186 (7 5 8 )

2 (664)

2 (332)

2 (606)

10+186 (596)

8+10+98 (428)

4+186+274 (942)

6+274 (400)

8 (392)

6+186 (312)

4+274+10 (572)

4 (662)

8+186 (330)

4+98 (604)

6+10+186+274 (584)

10+274 (400)

8+186+274 (7 5 2 )

10+186 (312)

10+274 (284)P 4

12+186+274+186 (658)P3

18+10+98+10 (136)P2

22+10+98+274+98 (502)P1

Tapering

12+274+98 (384)P2

12+10+98 (120)P1

8+10+98 (116)P1

10+274 (284)P 2

8+98+10 (116)P3

P 4

P3

P4

Factoring

Dynamic

10+10+186+274 (480)

12+10+98 (120)

10+98 (108)

(c) Execution times under the conventional approaches.

2 (5 9 0 )

2 (590)

2 (590)

2 (590)

4 (588)

4 (588)

4 (588)

4 (588)

2 (584)

2 (5 9 8 )

2 (596)

2 (596)

12 (5 9 6 )

12 (596)

8 (584)

8 (584)

8 (584)

8 (584)

10 (582)

8 (596)

6 (594)

4 (594)

12 (584)

12 (584)

12 (584)

12 (584)

10+98+186+274+4 (572)P4

10+98+186+274+10 (578)P 3

10+98+186+274+16 (584)P2

10+98+186+274+22 (590)P1
SPM
Aware
Tapering

10+98+186+274+8 (576)P2

10+98+186+274+8 (576)P1

10+98+186+274+4 (572)P1

10+98+186+274+4 (572)P 2

10+98+186+274+4 (572)P3

P 4

P3

P4

SPM
Aware
Factoring

SPM
Aware
Dynamic

10+98+186+274+8 (576)

10+98+186+274+8 (576)

10+98+186+274+4 (572)

(d) Execution times under our SPM aware approaches.

Table 1. Example.

4.2 Results
Before presenting the performance improvements provided by

our proposed scheduling approach, let us see how much benefit
an SPM oblivious dynamic loop scheduling and its variants (ta-
pering and factoring) can bring. We give in Figure 2 the execution
latencies of our benchmarks under these three dynamic schemes
on an 8 CPU chip multiprocessor, normalized with respect to the
latency of the static loop scheduling. That is, for each benchmark,
the execution latency of the static loop scheduling scheme is set
to 100, and the rest of the results are normalized with this value.
An interesting trend we observe from these results is that none of
the variants of the dynamic scheduling provides any performance
improvement over the static scheduling scheme. The main reason
for this is that these schedulers treat all iterations of a given par-
allel loop the same, whereas in reality each iteration can have sig-
nificantly different execution latency than the others, depending
on how many SPM and off-chip memory accesses it performs as
well as the relative latencies (in terms of clock cycles) of the SPM
and off-chip accesses (as illustrated by the example discussed in
Section 3.3). In addition, dynamic scheduling of loop iteration
at runtime itself brings a certain degree of overhead, as the iter-
ation distribution is carried out at runtime. More imbalance the
workload distributions exhibit, more frequently the master CPU is
required to perform workload distribution. These factors together
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Simulation Parameter Default Value

Number of Processors 8

IPC 2

SPM (Per Processor) 8KB

SPM Access Latency 1 Cycle (local); 3 cycles (remote)

On-Chip Memory Access Latency 100 Cycles

Table 2. Our main simulation parameters and their

default values.

Benchmark Brief Dataset Execution

Name Description Size Latency

Med-Im04 Medical Image Reconstruction 0.79MB 1.36sec

Radar Radar Imaging 3.83MB 3.54sec

Shape Pattern Recognition and Shape Analysis 3.28MB 2.97sec

Track Visual Tracking Control 1.09MB 1.88sec

Sparrow Image Extraction 2.84MB 3.15sec

Ecode Image Encoding/Decoding 5.16MB 4.24sec

Rod Video Frame Reordering 4.91MB 3.72sec

Balls Game Application (Bouncing Balls) 2.27MB 2.96sec

Table 3. Our applications.

make classical dynamic scheduling and its variants unattractive
for an SPM based execution platform. Consequently, we observe
that Dynamic, Tapering and Factoring degrade the original per-
formance of the static scheduler by 3.2%, 12.6% and 12.9%, re-
spectively, on average. Figure 2 also shows the optimal execution
latencies of our benchmarks. These values, which are captured
by the last bar of each benchmark in the graph, are calculated as-
suming that each processor experiences the same (ideal) latency,
LTOT /P . Note that this may or may not be realizable, depend-
ing on the SPM and off-chip memory latency values as well as
the number of CPUs in the system and the number of loop itera-
tions to be scheduled. We see that the optimal scheme improves
over the static scheme by 33.8% on average. Overall, these results
given in Figure 2 clearly indicate that there is a large potential for
improving the behavior of the static scheduling scheme (as made
evident by the results of the optimal scheme) but the traditional
dynamic loop scheduling schemes fail to achieve this potential.

We now present the results when our scheduling approach is
applied. As noted earlier, our approach can work with any dy-
namic loop scheduling scheme. For a benchmark, the first three
bars in Figure 3 give the results of our approach when it is ap-
plied to Dynamic, Tapering and Factoring; these new versions
are named as Dynamic+, Tapering+, and Factoring+ in the graph.
The fourth bar of this graph on the other hand reproduces the re-
sults of the optimal scheme for ease of comparison. Again, the
results are normalized against the static scheduling scheme. One
can clearly see, when comparing these results with those in Fig-
ure 2, that making these dynamic scheduling schemes SPM aware
has a significant impact on our results. In fact, the new schemes
Dynamic+, Tapering+, and Factoring+ improve over the perfor-
mance of the static scheduler by 26.4%, 27.4%, and 27.4%, re-
spectively, on average. Recalling that the average improvement
brought by the optimal scheme was 33.8%, we can conclude that
our approach performs really well in practice. However, for com-
pleteness, we need to compare these enhanced dynamic schedul-
ing schemes to the previously-proposed locality aware and SPM
conscious scheduling schemes as well. In Figure 3, the last three
bars for each benchmark give the normalized execution laten-
cies of the schemes LA-I, LA-II and SPM aware (static schedul-
ing). The average performance improvements brought by these
schemes are 4.5%, 10.8%, and 22.4% in that order. As men-
tioned earlier, the LA-I scheme relies on the observation that a
given parallel loop can be visited multiple times during the ex-
ecution of the application program. Consequently, if each pro-
cessor gets the same set of iterations in successive invocations of
the parallel loop, we might be able to improve data locality. In
the context of an SPM based architecture, this means reusing the
data in the local SPM rather than in other SPMs in the system.
As can be seen from our results given in Figure 3, this approach

Figure 2. Execution latencies of the conventional
dynamic scheduling schemes normalized with re-

spect to that of the static scheduling scheme. The

last bar, for each benchmark, represents the opti-
mal results.

Figure 3. Execution latencies of the different

scheduling schemes normalized with respect to

that of the static scheduling scheme. The last
bar, for each benchmark, represents the optimal

results.

generates good results for some of our benchmarks such as Track
and Sparrow, where the parallel loops are indeed revisited mul-
tiple times. However, in some other benchmarks such as Shape
and Rod, where this is not the case, this approach does actually
degrade performance, since it is in essence a static scheme and
cannot capture the dynamic workload variances at runtime. In
comparison, LA-II performs better than LA-I, since it is more
general (i.e., not just restricted to the loops that are visited mul-
tiple times during execution), except for one benchmark (Track),
and it captures dynamic variances as well. The SPM aware static
scheduling scheme (denoted as SPM aware in the graph) on the
other hand is generally more successful than both LA-I and LA-
II, except for the benchmark Sparrow. This is because this scheme
takes SPM latencies into account; however, it does not perform as
well as our approach in general, mainly due to the fact that it is
a pure static approach and the contents of the SPMs (as well as
the estimated latencies of loop iterations) can change at runtime
based on the changes in data reuse characteristics.

Figure 4 presents the results of our scalability analysis with
the different loop scheduling schemes implemented in this work.
We varied the number of processors (on the x axis) from 4 to 18,
and measured the percentage performance improvements over the
static scheduling scheme. A negative value in this graph corre-
sponds to a performance degradation. Maybe the most impor-
tant observation to be made about these results is the very poor
scalability of the conventional dynamic schemes, and the signif-
icant improvements obtained when these schemes are operated
under our SPM aware approach. The difference the SPM aware-
ness makes gets magnified as we increase the number of CPUs in
the chip multiprocessor. Thus, these results clearly show the im-
portance of taking into account the SPM when scheduling loop
iterations at runtime.
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Figure 4. Scalability analysis.

Figure 5. Results with the different SPM capaci-

ties.

Figure 5 gives the execution latencies (again, normalized with
respect to the static loop scheduling scheme) with the different
SPM capacities (per CPU). The default SPM capacity used in
the experimental evaluation so far was 8KB per CPU (see Ta-
ble 2) and the results with this are also reproduced in Figure 5
for comparison purposes. Since the trends with the Dynamic+,
Tapering+, and Factoring+ schemes are all similar to each other,
this graph shows only the results with Dynamic+. As can be ob-
served, while our approach performs best with the smallest SPM
capacity (since, as the SPM capacity gets smaller, it is becom-
ing even more important to employ SPM aware scheduling), even
with the 16KB (per CPU) SPM, our approach achieves significant
savings. The average performance improvements with 4KB, 8KB
and 16KB SPMs are 32.6%, 26.4% and 20.6%, respectively.

Our final analysis studies the impact of our loop cost estima-
tion approach. Recall from Section 3.2 that our default cost es-
timation analysis considered only the SPM and off-chip memory
accesses to estimate the overall cost of a loop iteration. We also
implemented a more sophisticated estimator which accounts for
CPU cycles as well. To do this, the compiler counts the number of
operations of different types (such as addition, comparison, etc)
and, taking into account data dependencies (to compute memory
waiting latencies) and issue widths, estimates the cycles that will
be consumed by the CPU. The details of this estimation are be-
yond the scope of this paper, but our overall estimation algorithm
is similar in spirit to the approach explained in [20]. The results
with this more powerful estimator are presented in Figure 6 (the
results with the default estimator are reproduced in this plot for
ease of comparison). We see that the simple cost estimation per-
forms reasonably well (i.e., the results with two estimators are
very close to each other). Given also the fact that this more ac-
curate estimator increased compilation times by 4 to 5 times over
the simple estimator, we believe that the latter is a better choice.

5 Conclusions
Execution time of a loop based application code on a chip mul-

tiprocessor is strongly influenced by the effectiveness of the loop
scheduler, whose main task is to assign loop iterations to CPUs
for execution. In an SPM based execution platform where two
iterations of the same parallel loop can have dramatically differ-

0

10

20

30

40

50

60

70

80

90

Ex
ec

ut
io

n 
La

te
nc

y

Dynamic+ Tapering+ Factoring+ Dynamic+ Tapering+ Factoring+

Default More Detailed

Med-Im04 Radar Shape Track Sparrow Ecode Rod Balls

Figure 6. Comparison of two cost estimation ap-

proaches.

ent execution latencies due to the disparity between data access
latencies of the SPM and the off-chip memory, not taking into
account the memory access latencies can lead to poor scheduling
decisions. In this paper, we present and experimentally evaluate
an SPM aware dynamic loop scheduling scheme in the context
of chip multiprocessors. To test the impact of this new sched-
uler, we implemented it and performed experiments with sev-
eral array/loop-intensive applications. In our experimental eval-
uation, we tested not only how this new scheduler compares to
well-known static and dynamic schedulers, but also how much
additional improvements it brings over three previously proposed
loop schedulers, which are either data locality oriented or SPM
based. These experiments reveal that the proposed scheduler is
very effective in practice and the additional performance gains
it brings over the second best scheduler tested during our ex-
periments are significant. To sum up, our implementation and
evaluation not only shows the practicality of building SPM-aware
dynamic loop schedulers but also demonstrates that being SPM
aware during loop iteration-to-processor mapping can be very im-
portant in scheduling array/loop intensive applications.
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