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Abstract— A common technique for wireless positioning is to
estimate time-of-arrivals (TOAs) of signals traveling between
a target node and a number of reference nodes, and then
to determine the position of the target node based on those
TOA parameters. In determining the position of the target node
from TOA parameters, linear or nonlinear least-squares (LS)
estimation techniques can be employed. Although the linear
LS techniques are suboptimal in general, they facilitate low-
complexity position estimation. In this paper, performance of
various linear LS techniques are compared, and suboptimality
of the linear approach is quantified in terms of the Cramer-Rao
lower bound (CRLB). Simulations are performed to compare the
performance of the linear LS approaches versus the CRLBs for
linear and nonlinear techniques.

Index Terms— Wireless positioning, time-of-arrival (TOA),
least-squares (LS) estimation, Cramer-Rao lower bound (CRLB).

I. INTRODUCTION

The subject of positioning in wireless systems has been
drawing considerable attention due to its potential applications
and services for both cellular and short-range systems [1],
[2]. For cellular systems, enhanced-911, improved fraud de-
tection, location sensitive billing, intelligent transport systems
and improved traffic management can become feasible with
accurate positioning [1], [3]. On the other hand, for short-range
networks, position estimation facilitates applications such as
inventory tracking, intruder detection, tracking of fire-fighters
and miners, home automation and patient monitoring [4], [5].
These potential applications of wireless positioning were also
recognized by the IEEE, which approved a new amendment,
IEEE 802.15.4a, that provides a new physical layer for low
data rate communications combined with positioning capabil-
ities [6]-[8]. Also, the Federal Communications Commission
(FCC) in the U.S. required wireless providers to estimate the
position of mobile users within tens of meters for emergency
911 calls [9].

A common approach in wireless positioning systems in-
volves estimation of position in two steps. In the first step,
position related parameters, such as time-of-arrivals (TOAs) of
signals traveling between the target node, i.e. the node to be
located, and a number of reference nodes are estimated. Then,
in the second step, the position is estimated based on the signal

0 This research was supported in part by the EU FP7 Project NEWCOM++
under grant no. 216715.

parameters obtained in the first step [3]. The position related
parameters estimated in the first step are commonly TOA or
received signal strength (RSS) parameters, which provide an
estimate for the distance between two nodes, or angle-of-
arrival (AOA) parameters, which estimate the angles between
the nodes [1]. For distance based positioning algorithms, such
as TOA or RSS based schemes, the maximum likelihood
(ML) solution can be obtained by a nonlinear least-squares
(N-LS) approach, under certain conditions [10]. The N-LS
approach requires the minimization of a cost function that
requires numerical search methods such as the steepest descent
or the Gauss-Newton techniques. Such techniques can have
high computational complexity and they typically require good
initialization in order to avoid converging to the local minima
of the cost function [11].

In order to obtain a closed-form solution and avoid computa-
tional complexity of the N-LS approach, the set of expressions
corresponding to the position related parameter estimates can
be linearized using the Taylor series expansion [12]. How-
ever, such an approach still requires an intermediate position
estimate to obtain the Jacobian matrix, which should be
sufficiently close to the true position of the target node for
the linearity assumption to hold. Alternatively, a linear least-
squares (L-LS) approach based on the measured distances was
initially proposed in [13]. In the L-LS approach, the expression
corresponding to one of the reference nodes is subtracted from
all the other expressions in order to obtain linear relations
in terms of the target node position. Various versions of the
L-LS approach are studied in [14] and [15], which subtract
different expressions or average of them from the remaining
expressions.

The L-LS approach is a suboptimal positioning technique,
which provides a solution with low computational complexity.
Therefore, it can be employed for applications that require low
cost/complexity implementation with reasonable positioning
accuracy. In addition, for applications that require precise
position estimation, L-LS approaches can be used to obtain an
initial position estimate for initializing high-accuracy position-
ing algorithms, such as the N-LS approach and linearization
based on the Taylor series [16]. A good initialization can
significantly decrease the computational complexity and the
final localization error of a high-accuracy technique. There-
fore, performance analysis of the L-LS approaches is important
from multiple perspectives.
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Although theoretical mean square errors (MSEs) of the L-
LS approach are derived for various scenarios in [17], no
studies have considered the theoretical lower bounds that
can be achieved when using linearized measurements. In this
paper, performance of L-LS techniques for position estimation
is investigated. Specifically, a closed-form approximate expres-
sion for the Cramer-Rao lower bound (CRLB) is obtained for
position estimation based on linearized measurements. Then,
it is shown that the bound applies to various L-LS approaches
proposed in the literature. In addition, the performance of
the L-LS algorithms is compared against each other and
the CRLBs for the linear and nonlinear models. Practical
implications of the performance analysis are investigated.

The remainder of the paper is organized as follows. In
Section II, the system model is defined, and measurement
models are introduced. Then, the N-LS estimation and its
CRLB are briefly reviewed in Section III. In Section IV,
the L-LS approaches are studied and their CRLB is derived.
Finally, the simulation results are presented in Section V, and
concluding remarks are made in Section VI.

II. SYSTEM MODEL

Consider a wireless network with N reference nodes, with
the ith node being located at li = [xi yi]T for i = 1, . . . , N .
The aim is to estimate the position of the target node, denoted
by l = [x y]T , based on N TOA measurements between the
target node and the reference nodes1.

Let zi represent the distance estimate obtained from the ith
TOA measurement:

zi = c τi = fi(x, y) + ni, i = 1, . . . , N (1)

where τi represents the TOA estimate for the ith signal, c is
the speed of light, ni is the noise in the ith measurement, and
fi(x, y) is the true distance between the target node and the
ith reference node, given by

fi(x, y) =
√

(x − xi)2 + (y − yi)2 . (2)

Commonly, the noise is modeled by a zero-mean Gaussian
random variable, when the reference node and the target
node has direct line-of-sight (LOS). However, in non-line-of-
sight (NLOS) conditions, the noise distribution can be quite
different from a Gaussian distribution [18], [19].

In the absence of noise in the system, each TOA measure-
ment specifies a circle for the possible positions of the target
node, and the intersection of those circles determines the target
position [1]. This geometric technique called, trilateration,
yields ambiguous solutions in the presence of noise in the sys-
tem, since the circles defined by the TOA measurements may
intersect at multiple points due erroneous TOA estimation, as
shown in Fig. 1.

Due to the limitations of the geometric technique, statistical
approaches are commonly employed in wireless positioning
systems [3]. A popular statistical positioning algorithm is the
N-LS technique studied below.

1In fact, the results can be applied to any systems that estimate distances
between nodes, such as a received signal strength (RSS) based positioning
system, which performs distance estimation based on received signal energy
[1].

Fig. 1. Trilateration yields multiple intersection of circles defined by TOA
measurements in the presence of noise.

III. NONLINEAR LS ESTIMATION

Given a set of distance, or commonly called “range”,
estimates as given by (1), an N-LS estimator calculates the
position of the target node as follows:

l̂ =
[
x̂ ŷ

]
= arg min

(x,y)

N∑
i=1

βi (zi − fi(x, y))2 (3)

where βi represents a weighting coefficient for the i measure-
ment, which commonly reflects the reliability of the measure-
ment (estimation).

It is well-known that the N-LS solution in (3) corresponds
to the ML estimator of the target position for independent
noise components, each distributed as2 ni ∼ N (0 , σ2

i ), and
for the weighting coefficient βi being given by 1/σ2

i for i =
1, . . . , N [3]. Since an ML estimator asymptotically achieves
the Cramer-Rao lower bound (CRLB), the N-LS estimator
provides an asymptotically optimal estimator under the stated
conditions.

For the model in (1) with independent zero-mean Gaussian
noise components, the CRLB for an unbiased N-LS estimator
l̂ can be expressed as [20], [21]

Cov
{
l̂
} ≥ I−1 (4)

with the Fisher information matrix (FIM) being given by

I =


 ∑N

i=1
(x−xi)

2

σ2
i f2

i (x,y)

∑N
i=1

(x−xi)(y−yi)
σ2

i f2
i (x,y)∑N

i=1
(x−xi)(y−yi)

σ2
i f2

i (x,y)

∑N
i=1

(y−yi)
2

σ2
i f2

i (x,y)


 (5)

where σ2
i denotes the variance of the noise in the ith measure-

ment. Then, the lower bound on the mean-square error (MSE)
can be obtained as

MSE = E{‖l̂ − l‖2} ≥ trace
{
I−1

}
=

I11 + I22
I11I22 − I212

(6)

2N (µ , σ2) represents a Gaussian random variable with mean µ and
variance σ2.
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where Iij represents the element of I in the ith row and jth
column. From (5), I11 + I22 can be shown to be equal to∑N

i=1 σ−2
i .

Since the N-LS estimator in (3) can asymptotically achieve
the minimum MSE (MMSE) in (6) under certain conditions, it
provides a benchmark for the performance of other estimators.
The main disadvantage of the N-LS estimator is related to the
nonlinear nature of the optimization problem, which increases
its computational complexity. The common techniques for
obtaining the N-LS estimator in (3) include gradient descent
algorithms and linearization techniques via the Taylor series
expansion [1], [12].

IV. LINEAR LS APPROACH AND CRLB ANALYSIS

A. Linear LS Estimation

An alternative approach to the N-LS estimation is the L-
LS approach [13]-[15], [22]. In an L-LS technique, a new
measurement set is obtained from the measurements in (1) by
certain operations that result in linear relations.

The L-LS approach starts with the following set of equations

z2
i = (x − xi)2 + (y − yi)2, for i = 1, . . . , N , (7)

where each distance measurement is assumed to define a
circle of uncertain region [22]. Then, one of the equations
in (7), say the rth one, is fixed and subtracted from all of the
other equations. After some manipulation, the following linear
relation can be obtained [22]:

A l = p , (8)

where l = [x y]T ,

A = 2




x1 − xr y1 − yr

...
...

xr−1 − xr yr−1 − yr

xr+1 − xr yr+1 − yr

...
...

xN − xr yN − yr




, (9)

and

p =




z2
r − z2

1 − kr + k1

...
z2
r − z2

r−1 − kr + kr−1

z2
r − z2

r+1 − kr + kr+1

...

z2
r − z2

N − kr + kN




, (10)

with

ki = x2
i + y2

i , (11)

for i = 1, 2, . . . , N , and r being the selected reference node
index that is used to obtain linear relations. Note that A is
an (N − 1) × 2 matrix, and p is a vector of size (N − 1),

since the rth measurement is used as a reference for the other
measurements.

From (8), the LS solution can be obtained as

l̂ = (AT A)−1AT p . (12)

This estimator is called the linear LS (L-LS) estimator. Com-
pared to the N-LS estimator in (3), it has low computational
complexity. However, it is suboptimal in general, and the
amount of its suboptimality can be quantified in terms the
CRLB.

B. CRLB Analysis

In order to derive the CRLB for the L-LS approach, we first
make the observation from (8)-(12) that the L-LS algorithm
utilizes the measurements zi, i = 1, . . . , N , only through the
terms z2

r − z2
i , for i = 1, . . . , N and i �= r. Therefore, the

measurement set for the L-LS algorithm effectively becomes

z̃i = z2
r − z2

ĩ
, (13)

for i = 1, . . . , N − 1, where

ĩ =

{
i , i < r

i + 1 , i ≥ r
. (14)

Let r = N without loss of generality and z̃ represent the
vector consisting of z̃i’s in (13); i.e.,

z̃ =
[
z2
N − z2

1 z2
N − z2

2 · · · z2
N − z2

N−1

]
. (15)

In order to calculate the CRLB for any unbiased estimator that
employs the observation (measurement set) z̃, we first need to
obtain the conditional probability density function (PDF) of z̃
given the location of the target node l.

From (1), (2) and (13), z̃i can be expressed as

z̃i = kN − ki + 2(xi − xN )x + 2(yi − yN )y

+ 2nNfN (x, y) − 2nifi(x, y) + (n2
N − n2

i ) , (16)

for i = 1, . . . , N − 1, where ki and fi(x, y) are as in (11)
and (2), respectively. In order to obtain a closed-form CRLB
expression, the last term in (16), namely n2

N −n2
i , is modeled

as a Gaussian random variable. In other words, conditioned
on l = [x y]T , z̃i in (16) is approximated by a Gaussian
distribution. This approximation gets quite accurate when
the noise variance is considerably smaller than the distances
between the nodes. In general, it is expected that the CRLB to
be obtained under this approximate model provides a smaller
bound than the exact model. In other words, a smaller CRLB
is obtained by the Gaussian approximation, but the difference
between the approximate and the exact models diminishes for
small noise terms.

According to the model in (16), the conditional PDF of z̃i

given l = [x y]T can be obtained, after some manipulation, as

z̃i | l ∼ N
(
µi(x, y) , σ̃i(x, y)

)
, (17)

where

µi(x, y) = f2
N (x, y) − f2

i (x, y) + σ2
N − σ2

i , (18)

σ̃i(x, y) = 4
[
σ2

Nf2
N (x, y) + σ2

i f2
i (x, y)

]
+ 2

(
σ4

N + σ4
i

)
.

(19)
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In addition, the covariance terms can be calculated as3

E {(z̃i − µi)(z̃j − µj)} = 4σ2
Nf2

N (x, y) + 2σ4
N , (20)

for i �= j. Then, the conditional distribution of z̃ given l can
be expressed as

z̃ | l ∼ N
(

µ(x, y) , Σ(x, y)
)

, (21)

where

µ(x, y) =




µ1(x, y)
µ2(x, y)

...
µN−1(x, y)


 , (22)

with µi(x, y) being given by (18) for i = 1, . . . , N − 1, and

Σ(x, y) =
(
4σ2

Nf2
N (x, y) + 2σ4

N

)
1N−1

+ 2 diag
{
2σ2

1f2
1 (x, y) + σ4

1 , . . . , 2σ2
N−1f

2
N−1(x, y) + σ4

N−1

}
(23)

with 1N−1 representing an (N −1)× (N −1) matrix of ones,
and diag{a1, . . . , aM} denoting an M × M diagonal matrix
with ai being the ith diagonal.

From the signal model given by (21)-(23), the CRLB can
be obtained as stated in the following proposition.

Proposition 1: The CRLB on the MSE of an unbiased
position estimator l̂ based on the measurements in (21) is
given by

E{‖l̂ − l‖2} ≥ Ĩ11 + Ĩ22
Ĩ11Ĩ22 − Ĩ212

, (24)

where4

Ĩ11 =
(N − 1)

2g2

[
g

∂2g

∂x2
−

(
∂g

∂x

)2
]

+ 4bT
x Σ−1bx

+ 2σ2
Nf2

N

N−1∑
i,j=1

∂2hij

∂x2
+ 2

N−1∑
i=1

σ2
i f2

i

∂2hii

∂x2
(25)

Ĩ22 =
(N − 1)

2g2

[
g

∂2g

∂y2
−

(
∂g

∂y

)2
]

+ 4bT
y Σ−1by

+ 2σ2
Nf2

N

N−1∑
i,j=1

∂2hij

∂y2
+ 2

N−1∑
i=1

σ2
i f2

i

∂2hii

∂y2
(26)

Ĩ12 =
(N − 1)

2g2

[
g

∂2g

∂x∂y
− ∂g

∂x

∂g

∂y

]
+ 4bT

x Σ−1by

+ 2σ2
Nf2

N

N−1∑
i,j=1

∂2hij

∂x∂y
+ 2

N−1∑
i=1

σ2
i f2

i

∂2hii

∂x∂y
(27)

with Σ(x, y) being given by (23), g(x, y) .= |Σ(x, y)|,
hij(x, y) .=

[
Σ−1(x, y)

]
ij

, bx
.= [x1 − xN · · ·xN−1 − xN ]T

and by
.= [y1 − yN · · · yN−1 − yN ]T .

Proof: Please see Appendix A.
Proposition 1 provides generic expressions to evaluate the

CRLB for any positioning system configuration. In Section V,

3(x, y) is dropped from µi(x, y) for convenience.
4(x, y)’s are omitted in order to have simpler expressions.

the expressions in Proposition 1 will be employed to obtain
CRLBs for various scenarios. Although the expressions in
(25)-(27) seem complicated, they provide a closed-form CRLB
expression that can be easily evaluated by using computer
programs, such as Matlab5.

C. Other Linear LS Techniques

The L-LS technique studied in Section IV-A, call it L-LS-
1, selects one of the equations related to one of the reference
nodes, and subtracts it from all the other equations to obtain
N − 1 linear relations, where N is the number of reference

nodes. Another L-LS approach (call it L-LS-2) obtains

(
N
2

)
linear equations by subtracting each equation from all of the
other equations [14], [13]. Similar to L-LS-1, the linear LS
solution is obtained for the position of the target node in the
L-LS-2 technique.

In the L-LS-2 technique, the following observations are
employed for position estimation:

žij = z2
i − z2

j , i, j = 1, 2, . . . , N, i < j . (28)

Comparison of the measurements in (28) with those in (13)
reveals that all the additional measurements in (28) can in
fact be obtained from the ones in (13) by simple subtraction
operations. In other words, there is no independent observation
in the measurement set for the L-LS-2 technique compared to
that for the L-LS-1 technique. Therefore, the CRLB for the
L-LS-1 technique is also valid for the the L-LS-2.

In another L-LS technique (call it L-LS-3), instead of ob-
taining the difference of the equations directly as in the L-LS-
1 and L-LS-2 approaches, the average of the measurements
is obtained first, and this average is subtracted from all the
equations by resulting in N linear relations [15]. Then, the
linear LS solution is obtained for the position of the target
node.

The observation set employed in the L-LS-3 technique can
be expressed as

z̄i = z2
i − 1

N

N∑
j=1

z2
j , i = 1, 2, . . . , N . (29)

Although this observation set seems quite different from the
one in (13), it can be shown that each measurement in one set
is dependent on a number of measurements in the other set.

Proposition 2: The CRLB for estimating the position of a
target node based on measurements in (29) is the same as the
CRLB based on measurements in (13).

Proof: First, it can observed that each measurement in (13)
is simply equal to the difference of two measurements in (29).
In other words, z̃i = z̄r − z̄ĩ for i = 1, . . . , N − 1, where ĩ is
as in (14).

On the other hand, if the average of all the measurements
in (13) is taken, the rth measurement in (29) is obtained; i.e.,

1
N

N−1∑
i=1

z̃i =
1
N

N∑
i=1
i�=r

(
z2
r − z2

i

)
= z2

r − 1
N

N∑
i=1

z2
i = z̄r . (30)

5Especially, the symbolic toolbox facilitates easy evaluation of the CRLB.
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Fig. 2. Simulation environment with 4 reference nodes (RNs), where the
coordinates are in the unit of meters.

Then, the subtraction of each z̃i from (30) yields the remaining
measurements in (29), since z̄i = z̄r − (

z2
r − z2

i

)
for i =

1, . . . , N , i �= r.
Since the measurements in the sets (13) and (29) are

dependent on each other, they carry the same amount of
information, hence result in the same CRLB. �

V. SIMULATION RESULTS

In this section, simulations are performed in order to evalu-
ate the CRLBs and compare the performance of the three L-LS
algorithms studied in the previous section. In the simulation
environment, there are 4 reference nodes involved in position
estimation, which are located on the corners of a square, as
illustrated in Fig. 2. In order to calculate the performance of
the L-LS algorithms, the target node is inserted at various
points in the environment, marked by small dots, and the
average MSE value is calculated. In addition, for each target
position, 1000 estimations are performed in order to average
out the effects of noise. Similarly, average CRLBs are obtained
by averaging the CRLBs at various target positions. It is
assumed that the noise variances are the same at all target
positions and for all reference nodes.

In Fig. 3, the square roots of the MSEs (RMSEs) are
plotted for various noise levels. It is observed that there
is a linear relation between the standard deviation of the
noise and the RMSE, which can also be observed from (5)
and (6) for the CRLB in the nonlinear case. Comparison of
the three L-LS algorithms reveals that L-LS-2 and L-LS-3
have the same performance, which is better than that of L-
LS-1. In other words, L-LS-1 has the highest RMSEs. The
worst performance of L-LS-1 is mainly due to its estimation
technique that uses one of the reference nodes as the reference
for other measurements (c.f. eqn. (13)). In the presence of
large noise in the reference, the estimate can have significant
errors. However, L-LS-2 and L-LS-3 have an averaging effect
in selecting the reference, since not only a single measurement
is used as the reference (c.f. (28) and (29)).

1 2 3 4 5 6
1

2

3

4

5

6

7

8

Standard Deviation of Noise (m.)

R
M

S
E

 (
m

.)

L−LS−1
L−LS−2
L−LS−3
CRLB, Linear
CRLB, Non−linear

Fig. 3. RMSE versus the noise variance (equal noise variances are assumed
for all nodes) for the linear LS algorithms, and the CRLBs.

In addition, there is considerable difference between the
theoretical limits and the L-LS algorithms. For example,
for a noise standard deviation of 6 meters, the performance
difference between L-LS-1 and the CRLB is about 1 meter.
Finally, the CRLBs for the linear and nonlinear cases in
Section IV and Section III, respectively, seem to have close
values, but the CRLB for the nonlinear case is lower than that
for the linear case, as expected. The results seem to indicate
that the linear techniques can have similar performance to
nonlinear ones. However, it should be noted that the CRLB in
Fig. 3 for linear techniques is approximate due to the Gaussian
approximation, and its exact value can be higher, especially
for large noise variances. For small noise variances, it can be
concluded that it is possible to design linear techniques that
have similar performance to nonlinear ones.

VI. CONCLUDING REMARKS

Linear LS estimation has been studied for TOA based
positioning in wireless systems. After a brief review of the
N-LS approach, the L-LS technique has been investigated. A
generic CRLB expression has been obtained for positioning
systems that employ linearized relations. It has been shown
that the CRLB provides a lower bound for the three L-
LS algorithms proposed in the literature. Then, simulation
results have been provided for comparison of various L-LS
approaches and the CRLBs.

APPENDIX

A. Proof of Proposition 1

From (21)-(23), the log-likelihood function of z̃ given l =
[x y]T can be obtained as

ln p(z̃|l) ∝ − (N − 1)
2

ln |Σ(x, y)|

− 1
2

(z̃ − µ(x, y))T Σ−1(x, y) (z̃ − µ(x, y)) . (31)
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In order to obtain the FIM, given by

Ĩ =




−E
{

∂2

∂x2 lnp(z̃|l)
}

−E
{

∂2

∂x∂y lnp(z̃|l)
}

−E
{

∂2

∂x∂y lnp(z̃|l)
}

−E
{

∂2

∂y2 lnp(z̃|l)
}


 , (32)

we first need to obtain the partial derivatives of the log-
likelihood function in (31).

For simplicity of the expressions, drop the (x, y)’s in (31)
and let g = |Σ| and hij = [Σ−1]ij , where |Σ| represent the
determinant of Σ and [Σ−1]ij represent the element of Σ−1

in the ith row and jth column. Then, the first derivative of (31)
with respect to x can be calculated as

∂

∂x
ln p(z̃|l) = − (N − 1)

2g

∂g

∂x
− 1

2

N−1∑
i,j=1

{
− ∂µi

∂x
hij(z̃j − µj)

+ (z̃i − µi)
∂hij

∂x
(z̃j − µj) − (z̃i − µi)hi,j

∂µj

∂x

}
. (33)

For ∂ ln p(z̃|l)/∂y, the same expression as in (33) is obtained,
with only difference being that the derivatives are with respect
to y in that case.

After obtaining the second derivative and taking the expec-
tation, we get

E
{

∂2

∂x2
lnp(z̃|l)

}
= − (N − 1)

2g2

[
g
∂2g

∂x2
−

(
∂g

∂x

)2
]

−
N−1∑
i,j=1

hij
∂µi

∂x

∂µj

∂x
− 2f2

Nσ2
N

N−1∑
i,j=1

∂2hij

∂x2

− 2
N−1∑
i=1

∂2hii

∂x2
f2

i σ2
i . (34)

Similarly, E
{

∂2

∂y2 lnp(z̃|l)
}

can be obtained.

The off-diagonal terms in (32) can be obtained after some
manipulation as

E
{

∂2

∂x∂y
lnp(z̃|l)

}
= − (N − 1)

2g2

[
g

∂2g

∂x∂y
− ∂g

∂x

∂g

∂y

]

−
N−1∑
i,j=1

hij
∂µi

∂x

∂µj

∂y
− 2f2

Nσ2
N

N−1∑
i,j=1

∂2hij

∂x∂y

− 2
N−1∑
i=1

f2
i σ2

i

∂2hii

∂x∂y
. (35)

In addition, it can be shown from (18) and (2) that

∂µi

∂x
= 2(xi − xN ) ,

∂µi

∂y
= 2(yi − yN ) . (36)

Hence,
∑N−1

i,j=1 hij
∂µi

∂x
∂µj

∂x becomes equal to 4bT
x Σ−1bx,

where bx (by) is as given in Proposition 1. Similarly,∑N−1
i,j=1 hij

∂µi

∂y
∂µj

∂y and
∑N−1

i,j=1 hij
∂µi

∂x
∂µj

∂y become equal to
4bT

y Σ−1by and 4bT
x Σ−1by , respectively.

Then, from (34)-(36), the inverse of Ĩ in (32) can be
calculated, and the CRLB given in Proposition 1 can be
obtained. �
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