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Introduction

Various real-life applications, such as radar cross section (RCS) computations of
arbitrarily shaped three-dimensional (3-D) targets and complicated antenna design
calculations, benefit from the accurate solutions of surface integral-equation formu-
lations. Even though integral-equation methods yield dense matrix systems, with
the multilevel fast multipole algorithm (MLFMA), the matrix-vector multiplication
(MVM) can be performed in O(NNp) time using O(NNy) memory, where Ny, is
the number of MLFMA levels [1]. Furthermore, MLFMA has been successfully par-
allelized so that it scales well up to a moderate number of processors [2]. Therefore,
provided that the number of iterations is not too high, it is possible to obtain efficient
and accurate solutions of many real-life problems with low-cost parallel computing
platforms.

For perfect electric conductor objects involving open surfaces, the electric-field in-
tegral equation (EFIE) is the inevitable choice among various integral-equation for-
mulations. The matrices that result from EFIE are symmetric, complex, but not
Hermitian. Even though the conjugate gradients (CG) method can be used with such
systems, it lacks its optimal behavior and requires symmetric preconditioners; this
may be a serious limitation. On the other hand, the combined-field integral equation
(CFIE) is usually preferred for closed-surface problems due to its favorable conver-
gence properties when solved with iterative methods. CFIE yields non-Hermitian
systems, hence nonsymmetric solvers, such as GMRES and BiCGStab [3], are used
as iterative solvers.

When the target object is large in terms of the operating wavelength, the resulting
matrix equations can have millions of unknowns. From the preconditioning per-
spective, solutions of such problems can be challenging because of the following
reasons:

e Condition numbers of the matrices can grow very large as the number of
unknowns increase. This not only the case for EFIE, but also for CFIE when
it is applied to complex 3-D targets.

e Solutions of large problems put more pressure on the memory use. On the
other hand, increasing condition numbers requires more robust methods, such
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as denser preconditioners and optimal solvers, whose advantages also come
with extra memory costs.

e Most of the existing preconditioners are generated from the near-field matrices,
with the assumption that it is a good approximation to the dense system
matrix. On the other hand, near-field matrices become sparser as problem sizes
increase, and this assumption becomes questionable. Actually, in many cases,
we may need more than the near-field matrix for effective preconditioning.

In this paper, we discuss the issues that we face when solving very large integral-
equation problems. We have previously reported three effective preconditioning
techniques, i.e., a sparse approximate inverse (SAI) preconditioner, the iterative
near-field (INF) preconditioner, and the approximate MLFMA (AMLFMA) pre-
conditioner [4]. The SAI preconditioner is a low-cost, but effective preconditioner
generated from the near-field matrix. The INF and AMLFMA preconditioners are
more effective preconditioners that iteratively solve linear systems for precondition-
ing. For these preconditioners, we choose GMRES as the “inner solver” since we
solve the inner systems roughly and GMRES provides rapid decrease in the resid-
ual error during the first few iterations. Since the preconditioning operation is not
fixed with these preconditioners, they have to utilize a flexible solver as the “outer
solver” [5]. As its name suggests, the INF preconditioner solves the near-field system
for preconditioning. The AMLFMA preconditioner, on the other hand, uses a cheap
version of MLFMA for MVM, hence uses more than what is provided by the near-
field interactions. We have already reported the solution of a 22-million-unknown
patch problem and verified its accuracy by comparing the MLFMA solution with
a physical-optics solution [4]. In the next section, we will provide the solutions of
more complex and real-life problems, and discuss the difficulties that arise when the
sizes of matrix equations reach millions of unknowns.

Numerical Results

For the problems reported in this section, solutions are carried out on 32 cores of
an Intel Xeon cluster connected via an Infiniband network. We use GMRES and
FGMRES as the solvers. We note that FGMRES stores two vectors per iteration,
hence its memory cost is twice of that of GMRES. We set the the initial guess to zero
and the stopping criterion as six orders of relative decay in the initial residual norm
or a maximum of 1,000 iterations, unless stated otherwise. The stopping criteria of
inner solvers are set to one order of relative decay or a maximum of five and ten
iterations for the INF and AMLFMA preconditioners, respectively. We can achieve
strong preconditioners with such loose stopping criteria, because the inner solvers
of INF and AMLFMA are accelerated by SAI in a nested manner.

In Fig. 1(a), we show the solutions of a parabolic reflector using SAI, INF, and
AMLFMA preconditioners up to 12 million unknowns. Without a preconditioner,
the smallest problem involving 47,870 unknowns can be solved in 795 iterations with
no-restart GMRES, but larger problems cannot be solved. On the other hand, SAT
succeeds to solve all sizes of this problem. The INF and AMLFMA preconditioners
improve the performance around 25% and 45% with respect to SAI. Moreover,



when SAIT is used with other non-optimal solvers, such as BiCGStab, the required
number of MVMs grows up much faster, and it becomes too costly to solve large
problems. Hence, we also show the GMRES memory cost for these preconditioners
in Fig. 1(b). In addition to providing smallest solution times, by decreasing the
outer iteration counts dramatically, the AMLFMA preconditioner consumes much
less memory compared to the other two preconditioners.
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Figure 1: Comparison of SAI, INF, and AMLFMA preconditioners for the parabolic
reflector with respect to (a) solution times and (b) total GMRES memory.

Next, we analyze the solution of the almond geometry, which is a closed-surface
problem that can be formulated with CFIE. Instead of the INF preconditioner, we
use a block-diagonal preconditioner (BDP), which is commonly used for CFIE. From
Fig. 2, we realize that the solution of large closed-surface problems can also be very
difficult and necessitate strong preconditioners. In particular, for the solution of the
2,140,626-unknown almond problem, BDP cannot decrease the relative residual to
1073 in 2,000 iterations. On the other hand, SAI and AMLFMA solve this problem
in 810 and 142 iterations, respectively.
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Figure 2: (a) Comparison of BDP, SAI, and AMLFMA preconditioners for the
almond geometry with increasing number of unknowns. (b) The residual plot for
the 2,140,626-unknown problem.



Finally, we solve a real-life problem, i.e., a helicopter, which has a complicated
geometry with many details. Fig. 3 shows the solution times up to 5.2 millions
of unknowns. The use of the strong AMLFMA preconditioner helps decrease the
solution times more than two-fold for this problem. The largest helicopter problem
involves 5.2 million unknowns. With the AMLFMA preconditioner, including the
ten-minute SAI setup time, the solution is obtained only in 46 minutes for 1073
residual error, which is usually sufficient for accurate RCS results in practice.
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Figure 3: (a) Comparison of BDP, SAI, and AMLFMA preconditioners for the
helicopter problem with increasing number of unknowns. (b) The residual plot for
the 5,210,640-unknown problem.
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Conclusion

When the target problem is small in terms of the wavelength, simple preconditioners,
such as BDP, may sufficiently accelerate the convergence. On the other hand, for
large-scale problems, the matrix equations become much more difficult to solve,
and therefore, the importance of preconditioning become more evident for both
formulations. In this paper, we demonstrate the use of novel, strong, and efficient
preconditioners for the solutions of large EFIE and CFIE problems.
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