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Abstract. Ants, bees and wasps are central place foragers. They leave
their nests to forage and routinely return to their home-base. Most are
guided by memories of the visual panorama and the visual appearance of
the local nest environment when pinpointing their nest. These memories
are acquired during highly structured learning walks or flights that are
performed when leaving the nest for the first time or whenever the insects
had difficulties finding the nest during their previous return. Ground-
nesting bees and wasps perform such learning flights daily when they
depart for the first time. During these flights, the insects turn back to
face the nest entrance and subsequently back away from the nest while
flying along ever increasing arcs that are centred on the nest. Flying
along these arcs, the insects counter-turn in such a way that the nest
entrance is always seen in the frontal visual field at slightly lateral po-
sitions. Here we asked how the insects may achieve keeping track of the
nest entrance location given that it is a small, inconspicuous hole in the
ground, surrounded by complex natural structures that undergo unpre-
dictable perspective transformations as the insect pivots around the area
and gains distance from it. We reconstructed the natural visual scene ex-
perienced by wasps and bees during their learning flights and applied a
number of template-based tracking methods to these image sequences.
We find that tracking with a fixed template fails very quickly in the
course of a learning flight, but that continuously updating the template
allowed us to reliably estimate nest direction in reconstructed image se-
quences. This is true even for later sections of learning flights when the
insects are so far away from the nest that they cannot resolve the nest en-
trance as a visual feature. We discuss why visual goal-anchoring is likely
to be important during the acquisition of visual-spatial memories and
describe experiments to test whether insects indeed update nest-related
templates during their learning flights.
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1 Introduction

Many insects, in particular ants, bees and wasps, are competent navigators and
are known to heavily rely on vision to memorize places and routes (reviewed in
[1,2]). The landmark panorama [3,4], the sun, the pattern of polarized skylight [5]
and even the Milky Way [6] provide them with an external compass reference.
For visual homing, insects acquire scene memories at their nest or at newly
discovered feeding sites during highly structured learning flights or learning walks
[7,8]. There is evidence that insects acquire locale memory during this learning
process, in particular visual information that allows them to subsequently return
to the goal [9,10,1]. A common feature of learning flights and learning walks is
the way, in which the insects carefully control where they see the nest entrance
as they pivot around and back away from the nest (see references in [1]). This
appears to be a crucial element of acquiring views for homing, most probably
because it allows insects to memorize the visual panorama always in association
with the goal direction. In ground-nesting wasps, the nest entrance position is
clearly under visual control, because the insects track a small patterned disk
when it is moved away from the nest entrance [10]. In contrast, ants use path
integration information when they turn back and look across the nest during
their learning walks [8].

For flying insects, there are several options to keep track of the nest entrance
position: they may continuously update their position relative to the nest, based
on estimates of their own movements, that is, use path integration information,
like ants do [8]. However, it is not clear how accurately flying insects could employ
path integration in this task, considering that they operate in three dimensions
and at high speed. Learning flights have also been considered and modelled as a
procedure akin to SLAM (simultaneous localization and mapping) [11], which,
however, would appear to be quite computationally demanding.

Our aim here is to explore the possibility that insects visually track the nest
entrance and its immediate visual environment (see [9,10,12]). We pay particular
attention to the problem of tracking a location in the natural environment of
ground-nesting wasps and bees that undergoes complex visual transformations as
the insects pivot around it and gain distance from it. We will show that the nest
direction can be estimated by means of a dynamic template update procedure,
even in situations in which the nest entrance itself cannot be resolved due the
limited resolution of the insect eye.

We proceeded in two steps: First, we used an existing data bank of recon-
structed views during the learning flights of bees and wasps (e.g. [13,14,15]) and
remapped these images according to an equidistant fisheye projection. In the
second step, we developed and tested seven different template tracking meth-
ods and analysed how well each kept track of the nest location in these image
sequences. We find that tracking is robust, provided templates are dynamically
updated and suggest that the comparison of nest-registered snapshots with what
a homing insect currently sees can in principle be used to predict the movement
direction required to reach the goal position.
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Fig. 1. a) The trajectory (blue curve) of a ground-nesting bee’s learning flight, over-
laid on a frame recorded with the downward looking high-speed camera. Black arrows
indicate head orientation, plotted every 5th frame, i.e. every 20ms; red dots highlight
positions where the nest is ”head-on”, i.e. at 0◦ azimuth in the bee’s visual field). The
red cross indicates the nest position. The green dots highlight metal pins in the ground
that were used to determine the transformation between the high-speed stereo system
and the computer model of the environment. b) Head orientation (black curve) and
azimuth angle of the nest in the visual field (green). The red dots (as in a) and the
dashed vertical lines indicate 0◦ nest azimuth angle.

2 Reconstruction of the Visual Input Perceived by
Insects

For this study we used existing learning flight data of three ground-nesting wasps
(Cerceris australis) and of one ground-nesting bee (species not identified). In the
following we describe briefly our approach for reconstructing the visual input the
insects perceived during these flights, which forms the basis for the evaluation
of our nest tracking hypothesis.

2.1 Recording and Path Reconstruction of Learning Flights

Wasps and bees were filmed with high-speed stereo cameras at 250 fps. The
angle between the two cameras was about 90◦: while one camera was viewing
the recording area from above, the second camera was positioned close to the
ground, viewing the scene from the side. The 3D flight path and the head yaw
orientation were determined frame-by-frame using custom-made software (see
[13,16] for details).

As example we show in figure 1 the flight path and the head orientation for the
learning flight of a ground-nest bee. Interestingly, the nest is rarely seen directly
in front (at 0◦ azimuth in the visual field) but is kept most of the time at 20◦-
50◦ in the lateral visual field. Furthermore, head orientation does not change
smoothly but abruptly. Between these fast turns, which are called “saccades”,
the head orientation is kept virtually constant.
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Fig. 2. a) Rendered image showing the part of scene that is seen by the downward
looking high-speed camera (see figure 1 a). b) Panoramic image (covering 360◦ × 180◦

in equi-rectangular projection) rendered with 2 pixels/degree at a position of the learn-
ing flight (frame 216, see figure 1 b), where the bee faces the nest entrance, which is
highlighted by a red arrow.

2.2 Generating Computer Models of the Local Environment

We generated 3D models of the environments in which we had recorded the
learning flights of insects. For the bee environment (Mount Majura Nature Park,
Canberra, Australia; flight recorded January 2012) we used a combination of 3D
reconstruction tools [14]. An area around the nest entrance covering about 1m2

was reconstructed using bundle adjustment with sub-sequential dense pairwise
stereo processing on a set of 40 photos that were taken with a 10 mega-pixel
camera with ”locked focus” setting. This high resolution local model was com-
plemented with point clouds acquired with a laser-range finder colour camera
combination (Z+F IMAGER 5006). The different parts of the model were aligned
using a set of large metal pins (some of them are visible in figure 1 a). Examples
of rendered images are shown in figure 2.

The wasp learning flights were recorded in 2006, when we had no reconstruc-
tion equipment available. We thus modified our approach for generating a 3D
model of that environment. Local models covering the nest entrances and their
neighborhood (in an area of about 35 cm×45 cm) were created by manually iden-
tifying about 270 corresponding points in stereo images and determining their
3D coordinates. The resulting 3D points were then triangulated and a video
frame of the downward looking camera was mapped to the resulting wire-frame.
In addition a 3D model of the surrounding scene was generated using the Z+F
IMAGER 5006 in 2011. While the fine structure of the local scene had changed
noticeably, the overall depth structure of scene remained, even after 5 years,
basically the same. The model acquired with the laser-range finder and the lo-
cal model were registered using nails hammered into the ground (which had
remained there for more than 5 years).

2.3 Rendering Insect Views

After determining the transformation between the stereo camera system and
the computer model by means of markers in the ground, images can be rendered
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along insect flight paths. We use six virtual cameras oriented along the six nor-
mal vectors of a cube to cover the large field of view of insect eyes. The rendered
views were converted to grey-level images and then remapped to a single pla-
nar image according to an equidistant fisheye projection (“f-theta lens”) with
radial resolution of either 1◦/pixel or 2◦/pixel (see examples in figure 3). The
optical axis of this virtual fisheye lens was pitched by −45◦ with respect to the
horizontal, which helped to reduce distortions in the image regions relevant for
tracking. For the learning flight of the ground-nesting bee we used in addition
also a pixel mapping that resembles the spatial sampling of the eyes of a worker
honeybee [17]. Although not necessarily an exact eye model for that particular
species, this representation allowed us to study the “hand-over” of the tracked
region between the two eyes (see figure 6).

3 Methods for Nest Tracking

In this section we introduce our methods for testing the nest tracking hypothesis.
We use a comparatively simple template-based approach, which we consider bio-
logically plausible because it shares similarities with current view-based models
of insect navigation [2,18].

Suppose that we have the image sequence of a learning flight {In} where
n = 1, 2, 3, ... is the frame number. We attempt to track the nest through the
learning flight sequence by extracting an initial square template T from the first
frame I1 with the nest in the centre. We then search for the region in the following
frame(s) that matches the current template best. Assuming a reasonably high
frame rate, the nest cannot change its location much from frame to frame and
the search can be restricted to an area centred around the best matching region
in the previous frame.

We used two different similarity functions for determining the best match
between the template and image regions within the search area. We select the
position (xopt

n , yoptn ) either of the minimum of the Sum of Squared Differences
(SSD),

SSDn(x, y) =
∑

x′,y′
(Tn(x

′, y′)− In(x+ x′, y + y′))2 ,

or of the maximum of the Normalized Correlation Coefficient (NCC),

NCCn(x, y) =

∑
x′,y′(Tn(x

′, y′)− T̄n) · (In(x+ x′, y + y′)− Īn(x, y))√∑
x′,y′(Tn(x′, y′)− T̄n)2 ·

∑
x′,y′(In(x + x′, y + y′)− Īn(x, y))2

.

With n indicating the frame number and T̄n, Īn(x, y) the mean pixel value of
template and image region.

We tested seven variants of template-based methods (M1-M7) for nest track-
ing that differ in the way the template is updated:

M1: No Template Update.We use the template extracted from the first frame
of the learning flight to find matches in all the subsequent frames: Tn+1 = T1

for all n ≥ 1.
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M2: Template Update (in each frame). M1 is likely to fail when the insect’s
distance to the nest entrance increases. As a simple solution to this problem we
update the template continuously in order to keep the similarity high between
the template and the current nest region: Tn+1 = crop(In, x

opt
n , yoptn ) for all

n ≥ 1, where ’crop(I, x, y)’ describes the extraction of the template from image
I at position (x, y).

M3: Template Update on Rotated Image. Due to the rapid changes in
head orientation (see figure 1 b), even a template that is updated in each frame
can give a poor match after a saccade and can cause significant deviation of
the best matching image region from the image part containing the nest. How-
ever, saccadic head movements are initiated by the insects themselves and pure
rotations, so that the image shifts they generate are predictable and can be ac-
counted for by, for instance, an efference copy command. M3 is an extension of
M2: It compensates for turns by counter-rotating both the previously updated
template (as described for M2) and the centre of the search region.

M4: Template Update on Rotated Image with Contour Detection. A
problem with M2 and M3 is that the area of best match tends to drift away
from the nest region due to the accumulation of small errors with each update.
In order to remove this template drift, at least as long as the nest is visible in
the image, we added, as an extension of M3, a contour detection stage. Contours
are determined around the position of the best match. Then, assuming that the
contour closest to the position of the best match belongs to the nest, the tem-
plate is updated with the image region centred at this contour.

M5: Template Update on Rotated Image with Rotation Angle Thresh-
old. An alternative approach, in particular in case the nest entrance is not
detectable at later stages of the learning flight, is to try to limit the number of
template updates. M5 is a variation of M3: we compensate for rotations but keep
the current template unless the rotation angle is larger than a defined threshold
value.

M6: Template Update on Rotated Image with Cumulative Angle
Threshold. Instead of considering just the turn angle between consecutive
frames as in M5, we now update the template only if the cumulative turning
angle, i.e. the change of head orientation since the last update, exceeds a certain
threshold.

M7: Template Update on Rotated Image with Matching Score Thresh-
old. This method is similar to M5 and M6. However, instead of the rotation
angle we consider the matching score. The template is updated only if the sim-
ilarity between the current template and the current best match falls below a
certain threshold (for the dis-similarity measure SSD we update the template
only if the matching score raises above a certain threshold).

Each of these tracking algorithms was implemented in C++ using the tem-
plate matching methods provided by the OpenCV library (http://opencv.org).
The implementation uses 40 by 40 pixel templates and the search area was re-
stricted to a 70 × 70 pixel region. For M5 and M6, threshold angles for head
rotation were fixed to 5◦ and 10◦ (cumulative angle), respectively. The matching
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1 130 261

Fig. 3. The first, an intermediate and the last frame of wasp learning flight 1. The
dashed rectangle overlaid on frame 1 depicts the central part of the image used to
display the tracking sequences in figure 4. Red arrows point to the nest position.

score threshold of M7 was set empirically to 3 × 106 for SSD and to 0.70 for
NCC.

4 Experiments and Results

In this section, we will first show detailed results for the different tracking meth-
ods focusing on wasp learning flight 1. We will then present results of the tracking
methods for different learning flights and investigate the effects caused by reduc-
ing the resolution of the images and the precision with which the rotation angle
is known.

Figure 3 shows three example frames from wasp learning flight 1 which con-
sists of 261 frames reconstructed at 50 fps (i.e. at every 5th position of the
recorded flight path that was filmed at 250 fps). The red box in the first frame
highlights the image region centred around the nest entrance that is used as
initial template. The green square depicts the search area for the next frame. As
can be seen from figure 3, apparent size of the nest entrance becomes smaller
and eventually invisible. Images were rendered with 1◦/pixel, which is still higher
than the resolution of most insect eyes, including those of wasps and bees [19].

As illustrated in figure 4, the performance of individual tracking methods is
quite different. We defined a tracking method to fail when the true nest position
is located outside the best matching image region (depicted by the red box).
The frames where this happened first are marked by a red cross in the lower
right corner. For the results presented in figure 4 SSD was used as similarity
measure. M1 has no template update and fails, as expected earlier than all other
methods, at frame 56. The continuously updating template method M2 can
track the nest region more than twice as long as M1, but fails at frame 138 due
to drifts because of rotation induced template mismatches. M3 and M4, which
both compensate for rotations, are successfully tracking the nest region for the
entire learning flight. M4 has almost perfect tracking performance until about
frame 150 after which the nest entrance is too small to be detected by the contour
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M1 ×

M2 ×

M3

M4

M5 ×

M6 ×

M7 ×
56 115 138 220 236 261

Fig. 4. Frames were some tracking methods fail while others succeed for wasp learning
flight 1. Each row shows results for a different method, indicated by labels M1-M7 on
the left. Frame numbers are given below. Insets in the upper right corner of each frame
show the respective template. Red crosses in the lower right corners mark frames were
individual tracking methods failed first. Blue dots mark the true nest position. Red
boxes with a red dot in their centre show the best matching image regions. The green
rectangle defines the search area.
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finding algorithm. M5, M6 and M7 fail earlier because of the accumulating error
between updates, which causes the best matching region to drift over time.

In figure 5 a we plot the pixel error, i.e. the distance (in pixels) of the centre
of the best match from the true nest position in the image, for all methods over
the full duration of the recorded flight. On average, tracking can be slightly
enhanced by using the normalized cross correlation (NCC) instead of the sum of
squared differences (SSD) for calculating the matching score (compare figure 5 a
and b).

The proposed tracking methods were tested with 3 more learning flights in-
cluding a bee learning flight. Wasp learning flight 2 and wasp learning flight 3
consist of 164 and 220 frames, respectively, reconstructed at 50 fps. The bee learn-
ing flight has 610 frames reconstructed at full frame rate of 250 fps. As shown in
figure 5 c, tracking methods that regularly update the template and compensate
for rotations performed also best for wasp learning flight 2 due to the presence
of structures with high contrast close to the nest. On average, tracking methods
had the smallest error for wasp learning flight 3 (figure 5 d), most likely because
the entrance hole presented the only high contrast feature in the vicinity of the
nest (see inset in upper left corner).

Tracking results for the bee learning flight are shown in figure 5 e,f. Most
likely due to the higher frame rate, which reduces the amount of change between
consecutive frames, the simple continuously updating tracking method 2 is per-
forming much better for this flight (see yellow curve and compare with results
for wasp learning flights in figure 5 a-d that were reconstructed with 50 fps).

In order to see the effect of image resolution we also tested the tracking meth-
ods with half resolution images, i.e. 2◦/pixel instead of 1◦/pixel. As shown in
figure 5 f, error does not increase significantly despite the reduced image reso-
lution. The same conclusion can be drawn from the results with half resolution
images for wasp learning flights (data not shown).

Tracking methods M3-M7 compensate for head rotations by counter-rotating
the template and the centre of the search region (see section 3). For the results
presented so far we used the exact value of the turning angle. However, the
insects may not be able to predict saccade-induced image shifts accurately. We
confirmed that turning angles do not have to be known exactly, because adding
10% noise to the turning angles did not significantly affect performance (data
not shown).
Nest Tracking on Bee Eye Views. So far we considered images with a fisheye
projection that covered the full viewing sphere and thus the large field of view of
both insect eyes combined without the discontinuity introduced by having two
eyes. For modeling visual tracking of the nest in a more realistic way we created
views according to a model that resembles the spatial sampling of the eyes of a
worker honeybee [17]. Due to the binocular overlap, the nest, when located in
the frontal visual field, will be visible in both eyes (see left side of figure 6), which
may facilitate switching the tracking of the nest from one eye to the other.1 For

1 Interestingly, the binocular overlap is larger in the lower visual field (the region onto
which the image of the nest will be projected) than in the frontal visual field.
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Fig. 5. Performance of different template tracking methods for three wasp learning
flights (a-d) and one bee learning flight (e,f). SSD was used as similarity with the
exception of b) which shows results for NCC. Insets in the upper left corners show the
central part of the first frame of the respective learning flight; red boxes highlight the
initial tracking template. f) Angular error for half image resolution.

implementing tracking on bee eye views we extended the search area to both
eyes whenever the best match region found in the previous frames is close to the
inner border of an eye. The right side of figure 6 shows six example frames from
tracking method M2. The true nest location is kept within the region of the best
match for the whole sequence of 610 frames.
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1 75 145

310 410 600

Fig. 6. Tracking on bee eye views. Left: First frame of the bee learning flight. The
arrows highlight the nest entrance, which is seen in both eyes. The blue dotted curves
illustrate how the nest position moves across the visual fields of both eyes during the
learning flight, red dots highlight positions where the nest is seen by one eye only. The
dashed rectangle depicts the part of the image used for displaying tracking results on
the right side. Right: Example frames (with frame number below) illustrating tracking
results using method M2.

5 Discussion

Ground-nesting insects acquire a visual representation of their nest environment
during learning flights on departure. As the insects pivot around the nest en-
trance and back away from it, they carefully control where in the visual field they
see the nest. This cannot be achieved by a simple position servo, because the
visual appearance of the nest entrance and its immediate environment changes
as the viewing direction and the distance of the insect changes during these
flights. We have shown here, that we could track the image location of the nest
in the reconstructed views that insects experience during learning flights, using
updated template matching and a version of predictive tracking that accounts
for the image shifts generated by the saccadic head movements of insects.

The possibility that wasps and bees use template matching when keeping track
of the nest location can be tested by modifying high-contrast, artificial patterns
around the nest entrance during learning flights. It is already known that the
insects track such patterns when they are shifted [10] and a break-down of nest
position control in the visual field in the presence of rapid pattern changes (not
shifts) would indicate that the insects do employ template matching during their
learning flights.

Why is visual goal-anchoring so important during the acquisition of visual-
spatial memories? We suggest that it allows the insects to continuously form
a strong association between changing views and the direction to the nest. Af-
ter all, the purpose of this learning process is to ensure that sufficient information
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has been acquired to allow the insect to pinpoint its nest on subsequent returns.
The systematic, periodic structure of learning flights (in terms of the temporal
sequence of bearing and orientation changes) indicates that the insects have
several opportunities during these flights to check and re-check what they have
learnt for consistency.
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