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Lower Bounds on the Error Probability of Turbo
Codes

Ayça Özçelikkale and Tolga M. Duman

Abstract—We present lower bounds on the error probability of
turbo codes under maximum likelihood (ML) decoding. We focus
on additive white Gaussian noise (AWGN) channels, and consider
both ensembles of codes with uniform interleaving and specific
turbo codes with fixed interleavers. To calculate the lower bounds,
instead of using the traditional approach that only makes use of
the distance spectrum, we propose to utilize the exact second
order distance spectrum. This approach together with a proper
restriction of the error events results in promising lower bounds.

I. INTRODUCTION

Bounds on the error probability of error correction coding
is useful for assessing the performance of different coding
solutions since the exact error expressions are often difficult
to find, and performing simulations is not always a viable
approach. Motivated by this observation, we investigate lower
bounds on the error probability of turbo codes under maximum
likelihood decoding. We consider both uniform and fixed
interleaving cases.

One of the main approaches for obtaining lower bounds on
the error probability of coded systems is using sphere packing
arguments [1–3]. Another approach is to use methods based
on Bonferroni type inequalities or the de Caen’s inequality.
To use these inequalities directly in the framework of error
correction coding, one not only requires the distance spectrum
of the code, but a generalized second order distance spec-
trum that gives the “correlation” between the codewords [4].
Nevertheless, Seguin has proposed a relaxation for AWGN
channels under binary phase shift keying (BPSK) through
which it is possible to find bounds that are calculable solely in
terms of the distance spectrum. This approach has been used
successfully for calculating different variants of lower bounds
on the error probability [4–6].

Although Seguin’s relaxation technique is attractive from a
computational point of view, it introduces a possible looseness
in the bounds. In this paper, we illustrate that significant
performance improvements can be obtained by calculating
the second order distance spectrum exactly, and compute
tight lower bounds on the error probability of turbo codes
based on this observation. We consider both code ensembles
with uniform interleaving and specific turbo codes with fixed
interleavers. To accomplish this, we develop a technique for
calculating the average second order distance spectrum for
ensembles of turbo codes. To further tighten the bounds, we
propose a number of approaches to restrict our attention to
a properly chosen set of error events in the calculations. Our
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results show that these two approaches, using the exact second
order distance spectrum and proper restriction of the error
events, result in promising lower bounds. In both uniform and
fixed interleaving cases, our approach is shown to offer tighter
bounds than the ones obtained by sphere packing bounds for
moderate to high signal-to-noise ratios (SNRs) for the block
lengths considered. Moreover, for the ensemble of turbo codes,
the derived bounds tightly agree with the union bound in the
high SNR region for the codes considered in this paper.

In the context of turbo codes, it is often desirable to asses the
performance of ensemble of codes rather than specific codes.
However, although the approaches based on the de Caen’s
bound are shown to be very successful for specific codes,
they are not directly applicable to ensembles of codes [7]. On
the other hand, the bounds that use sphere packing arguments
typically show loose performance as SNR increases. Our
approach here offers a promising solution to this issue in the
case of turbo code ensembles.

The article is organized as follows: In Sec. II, the system
model is described, and different lower bounding techniques
are explained. The improvements that make them tight and
calculable for the error correction coding scenarios considered
here are discussed in Sec. III. We develop techniques for
calculation of the second order distance spectrum for turbo
code ensembles in Sec. IV. In Sec. V, examples of the
proposed lower bounds are reported. Finally, the paper is
concluded in Sec. VI.

II. SYSTEM MODEL

A. The AWGN Channel

We consider transmission over an AWGN channel using
an (L,N) linear block code. The received signal y when
the length L codeword ci is transmitted can be expressed as
follows

y = xi + n, (1)

where n denotes the length L Gaussian noise vector with
independently and identically distributed (i.i.d.) components
with variance N0/2. The channel input xi is obtained by
mapping the codeword ci to xi with BPSK modulation where
the bit 0/1 is mapped to

√
E/−

√
E. Energy per bit is given

as Eb = E/R, where R is the rate of the code.

Since we are focusing on geometrically uniform codes, the
average frame error probability can be expressed as follows

Pe = P(ε|c0) = P





⋃

i!=0

εi



, (2)

where c0 denotes the all zero codeword. Here ε represents
the error event and εi represents the pairwise error event
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that the decoder decides on the codeword ci while c0 has
been actually sent. For ML decoder, εi may be expressed
as εi={||y− xi|| ≤ ||y − x0||}, where ||.|| represents the
Euclidean norm.

B. Lower Bounds on the Error Probability

We consider Kounias bound, a Bonferroni type bound which
lower bounds the probability of union of a given a set of events
[8]. Using the Kounias bound, the probability of error over an
AWGN channel can be lower bounded as follows

P (ε|c0) ≥ max
J





∑

i∈J

P (εi)−
∑

i,j∈J , i<j

P (εi ∩ εj)



, (3)

where J ⊆ I = {1, 2, . . . ,M − 1} with M = 2N for
an (L,N) linear code. The individual probabilities in this
bound can be expressed as P (εi) = Q(

√

sw(ci)) and

P (εi∩εj) = Ψ(ρij ,
√

sw(ci),
√

sw(cj)) where s = 2E/N0,
w(ci) denotes the weight of the codeword ci [4], [5], [9]. 1

We have

Ψ(ρ,u′, v′)

=
1

2π
√

1− ρ2

∫ ∞

u′

∫ ∞

v′

exp

{

−
u2 − 2ρuv + v2

2(1− ρ2)

}

du dv,

ρij =
w(ci ◦ cj)

√

w(ci)w(cj)
, (4)

where ci ◦ cj denotes the elementwise product of the two
vectors ci and cj. Hence w(ci ◦ cj) gives the number of
indices that both of the codewords are 1. In this respect, ρij
can be interpreted as a measure of correlation between the
codewords ci and cj. Thus, enumeration of the number of
pairs of codewords with a given ρij can be interpreted as a
second order distance spectrum.

We note that lower bounds based on the Kounias bound can
be calculated for ensembles of codes, since it is possible to
take averages in this case. This is in contrast with the bounds
that are based on the de Caen’s inequality [10]

P (ε|c0) ≥
∑

i∈I

(

P(εi)2
∑

j∈I P(εi ∩ εj)

)

(5)

such as [4], [5]. We recall that it is not straightforward to apply
these bounds to turbo code ensembles, since it is not clear how
to process these terms under the expectation operation imposed
by the ensemble average [7].

III. COMPUTATION OF THE LOWER BOUND

A. Second Order Distance Spectrum

Direct calculation of the bounds presented in Sec. II-B
requires calculation of Ψ(ρij , u′, v′), hence calculation of ρij
for all codeword pairs of interest. To overcome this difficulty,
Seguin has proposed a bounding technique that only uses
the distance spectrum of the code. In particular, it is shown
that Ψ(ρij , u′, v′) is a monotonically increasing function of
ρij , and ρij can be upper bounded by using the weights of

1Q(u′) = 1√
2π

∫∞
u
′ exp(−u2/2) du.
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Fig. 1: Effect of using exact ρ values and subset selection
on the tightness of the bounds for a Golay code (L = 23,
N=12). CMB: norm bound in [5], SB: bound in [4]. Cs/ Ca:
Set of codewords used for calculating the bounds. e/u: strategy
adopted regarding ρ values: exact or upper-bounded.

the codewords ci and cj [4]. Hence it is possible to find an
expression that is still a valid lower bound by only using the
distance spectrum of the code. This approach is adopted in a
number of works to find promising lower bounds [4–6] that
only use the distance spectrum.

Although this technique is attractive from a computational
perspective, our investigations suggest that by calculating
ρij one can significantly improve the lower bounds. Fig. 1
illustrates this point for a Golay code (L = 23, N = 12).
Similar observations can be made for other codes, including
turbo codes. In the figure, the norm bound of [5] (CMB) and
the bound in [4] (SB) are presented; both of which are based
on (5). Bounds are calculated over the set of codewords with
the minimum weight (Cs). We note that due to the following

P

(

⋃

i∈I

εi

)

≥ P





⋃

i∈Ir⊆I

εi



 (6)

the bounds calculated over Cs are true lower bounds. For fur-
ther comparison, bounds over the whole code (Ca) with upper
bounded ρ values are also presented. Comparing CMB-Cs-e
with CMB-Cs-u and SB-Cs-e with SB-Cs-u, we observe that
performances of both of these bounds significantly improve
by using exact correlation values.

Hence it is of interest to keep track of ρij values in order
to calculate tight lower bounds despite the computational
difficulty. In Sec. III-B, we propose a number of methods to
reduce the number of codewords for which ρij values will be
calculated. In Sec. IV, we give details on how to systematically
calculate ρij values for convolutional codes, and turbo code
ensembles with uniform interleaving.
B. Subset Restriction

Direct calculation of the bound in (3) constitutes a com-
putational challenge. It requires the complete second order
distance spectrum of the code over all codewords, that is, the
enumeration of ρij for all possible codeword pairs ci and cj.
Moreover, in order to tighten the bound, one has to perform an
optimization over all subsets of I, where the total number of

subsets is 2M−1 = 22
N−1. We observe that the optimization
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can be done only over a restricted family of subsets of I, and
the result will still be a valid lower bound. By this restriction,
one may also ease the computational burden related to the
calculation of the second order weight enumeration by only
calculating ρij for the codewords in these subsets. Hence it
is of interest to restrict ourselves a priori to properly chosen
certain subsets of I, and only optimize over these. For this
purpose, we consider two approaches. In the first one, we
directly restrict I to a subset Ir as shown in (6). We then
apply the Kounias bound to the right hand side with J ⊆ Ir.
In the second approach, we impose a certain structure on the
subsets allowed. In the remainder of this section, we present
details for these two approaches.

To choose a proper Ir, we propose to restrict our analysis
only to the codewords with low input and/or output weights.
It is expected that the error events that account for most of
the errors are the ones with the codewords that are close to
the codeword sent (especially in the high SNR region). The
codewords that are close to c0 will be the ones with low
overall weight. In fact, it is possible to tighten the bounds
by only using codewords with low output weights instead
of calculating the bounds on the whole code. This property
is illustrated in Fig. 1 for a Golay code (L=23, N =12).
Comparing CMB-Cs-u with CMB-Ca-u and SB-Cs-u with
SB-Ca-u, we observe that performances of both of these
bounds significantly improve by using the set of codewords
with minimum weight (Cs) instead of all the codewords (Ca).

In the case of turbo codes, using codewords with low input
weights (in particular weight-two input sequences) and specific
input patterns is a method succesfully adopted in a number of
scenarios, including assessing code performance and design
of turbo codes [11], [12]. We note that due to the nature
of the lower bounds we consider (and the property in (6)),
we can directly consider subsets of the codewords, and the
bounds calculated with these thresholding methods are true
lower bounds. This is in contrast with the scenarios where
similar approaches used for calculation of upper bounds result
in only approximate bounds (although they show satisfactory
performance for proper threshold values.) We present further
details on this method in Sec. V.

For the uniform interleaving case, we also consider the
following restriction: the set J is chosen such that if a
codeword with a given weight is in the set, then all the
other codewords of that weight are also in the set. Under this
restriction, the probability of error for a given interleaver can
be lower bounded as

P(ε|c0) ≥
∑

k∈J̄

mkQ(
√
sk ) (7)

−
∑

k ,t∈J̄ , k <t

∑

ρ̄ :ρ̄ !=1

nρ̄ ,k ,tΨ(ρ̄ ,
√
sk ,

√
st )

−
1

2

∑

ρ̄ :ρ̄ !=1

nρ̄ ,k ,kΨ(ρ̄ ,
√
sk ,

√
sk ),

where J̄ is a subset of the set of possible nonzero codeword
weights, i.e. {1, . . . , L}. Here mk is the number of codewords
with weight k, and nρ̄ ,k ,t is the number of codeword pairs
with correlation coefficient ρ̄ , 1st codeword weight k, and the

2nd codeword weight t. Therefore, the bound for the uniform
interleaving case is found by taking the expectation of both
sides with respect to the interleaver, and maximizing over J̄ .

C. Subset Optimization with Other Bounds

The property depicted in (6) can be also used for improving
the computational efficiency and tightness of some of the other
lower bounds for error probability, namely Seguin’s bound in
[4] and Cohen-Merhav bounds in [5]. In particular, Seguin’s
bound can be tightened as follows:

P (ε|c0) ≥ max
J∈Ir

∑

i∈J

(

P(εi)2
∑

j∈J P(εi ∩ εj)

)

, (8)

where the related probabilities can be calculated as before.

IV. SECOND ORDER DISTANCE SPECTRUM FOR

ENSEMBLES OF TURBO CODES

As discussed in Sec. III in order to calculate tight lower
bounds on error probability, one needs to find the second order
distance spectrum of the code. We now propose a technique to
this end for turbo code ensembles. We first discuss how this
calculation can be done for convolutional codes, and then show
how these results can be used to find average second order
distance spectrum for turbo code ensembles with uniform
interleaving.

A. Convolutional Codes

Let N be the length of the input bit sequence. Let us denote
the state transition matrix of the code with S. Using S, one can
calculate the number of paths with input weight i, and output
weight o. Let us denote this number with t(i, o). We now
consider a pair of information bit sequences and the resulting
codeword pair. For a pair of information bit sequences, let
ib1b2 denote the number of places where the first information
sequence’s bits are b1 and the second information sequence’s
bits are b2, with bj ∈ {0, 1}. Clearly, i00 + i01 + i10 + i11 =
N . For output sequences, we define ob1b2 similarly. Let ī =
[i00 i01 i10 i11] denote the cross information weight vector, and
ō = [o00 o01 o10 o11] denote the cross output weight vector. We
note that ō is defined like this for the sake of completeness. For
finding the second order distance spectrum of a convolutional
code, it is enough to include o11, d1, d2 in ō, where d1/d2
is the weight of the first/second codeword in the pair in the
output sequence.

Associated with S, one can find a joint state transition ma-
trix S̄ that governs the evaluation of two codewords together.
S̄ is the state transition matrix corresponding to the product of
two independent trellises associated with S. The states in this
product trellis are in the form (s1, s2), where s1/s2 denotes the
state of the path for the first/second codeword. The entries of S̄
are either zero corresponding to the case where transition is not
allowed or in the form Ip00

00 Ip01

01 Ip10

10 Ip11

11 Oq00
00 Oq01

01 Oq10
10 Oq11

11 .
Here pij or qij values are either 0 or 1 depending on whether
the corresponding quantities are 0 or 1. For instance, when
both of the input bits are 0, p00 = 1. To illustrate the idea,
the code trellis for the two-state code with the polynomial
description 1 + D and the corresponding product trellis for
codeword pairs are shown in Fig. 2 and Fig. 3, respectively.
We note that elimination in some of the terms included in the
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Fig. 2: Trellis of the rate R = 1 code with the polynomial
description 1 +D.
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Fig. 3: Product trellis of the rate R = 1 code with the
polynomial description 1 +D. Branch labels are in the form
ī /ō.

entries of S̄ (and also the branch labels) in order to carry only
the relevant information is possible.

By calculating the N th power of S̄, (and by accounting
for trellis termination) one can associate the input cross
information weight vector ī with the cross output weight
vector ō. Hence one can find t̄(̄i , ō), the number of codeword
pairs with cross information weights given by ī , and cross
output weights given by ō. We note that using ō, one can
calculate the correlation between the two codewords.

B. Turbo Code Ensembles

We now present a technique to calculate the second-order
distance spectrum for turbo codes with uniform interleaving.
We illustrate the technique for R = 1/3 parallel-concatenated
codes. We assume that the information bit sequence goes
through the first encoder without alteration, and is interleaved
before it goes through the second encoder. We discuss the case
of serially-concatenated codes at the end of the section.

Distance spectrum of uniformly interleaved turbo codes
can be calculated by using the method proposed in [13]. To
calculate the second order distance spectrum, we adopt the
idea used for calculating the distance spectrum, but instead
of considering a single codeword at a time, we propose to
consider a codeword pair and make use of the calculations for
convolutional codes above.

Let us consider a pair of information bit sequences with
cross information weight vector ī entering the turbo encoder.
This pair goes to the first encoder without any alteration,
whereas both of the bit sequences are interleaved by the same
interleaver before going through the second encoder. We note
that despite the interleaving operation, for a given interleaver, ī
does not change for the information bit sequence pairs entering
the first encoder or the second encoder. Let t̄j (̄i , ō) denote the
number of codewords with cross information weights given
by ī , and cross parity weights given by ō for the encoder
j. Let m̄p(̄i , ō1, ō2) denote the average number of codeword
pairs with information weight vector ī , first parity cross output
weight vector ō1, and second parity cross output weight vector

ō2, where entries of ōj = [oj00 o
j
01 o

j
10 o

j
11], j = 1, 2. Similar

to the scenario where the average distance spectrum under
uniform interleaving is determined by considering only one
codeword, m̄p(̄i , ō1, ō2) can be computed as follows

m̄p(̄i , ō1, ō2) =
t̄1(̄i , ō1) t̄2(̄i , ō2)

(

N
ī

) , (9)

where
(

N
ī

)

denotes the multinomial coefficient
(

N
i00 i01 i10 i11

)

.

By using ī, ō1, ō2, one can calculate the correlation co-
efficient values associated with code pairs. To obtain the
average number of codeword pairs with a given correlation
coefficient ρ̄, and the output weights w1 and w2, we iterate
over m̄p(̄i , ō1, ō2) as follows

E[nρ̄,w1,w2
] =

∑

[̄i ,ō1,ō2]: d1(̄i ,ō1,ō2)=w1

d2(̄i ,ō1,ō2)=w2

fρ(̄i ,ō1,ō2)=ρ̄

m̄p(̄i , ō1, ō2),

where dj(.) is the function that gives the weight of the jth

codeword in the pair

d1 (̄i, ō1, ō2)
.
= i10 + i11 + o110 + o111 + o210 + o211 (10)

d2 (̄i, ō1, ō2)
.
= i01 + i11 + o101 + o111 + o201 + o211 (11)

and fρ(.) gives the correlation coefficient value

fρ(̄i, ō1, ō2)
.
=

i11 + o111 + o211
d1(i11, ō1, ō2) d2(i11, ō1, ō2)

. (12)

We now discuss how the second order distance spectrum can
be found for the case of serially-concatenated convolutional
codes. Here the information sequence first goes through first
encoder, then the output of this encoder is interleaved, and the
interleaved sequence is fed into the second encoder. To find
the second order distance spectrum, once again we consider
two codewords at a time, and cross weights of the sequences
entering the interleaver. In particular, let m̄s(̄i , w̄) the average
number of codeword pairs with cross information weights ī ,
and cross output weights w̄. Then for a serially-concatenated
code with interleaver length N, m̄s(̄i , w̄) can be found as

m̄s(̄i , w̄) =
∑

ō

t1(̄i, ō) t2(ō, w̄)
(

N
ō

) . (13)

The average number of output sequence pairs with given w̄
and ρ values can be found by summing over the other variables
of interest as before.

V. NUMERICAL RESULTS

We now present the bounds obtained by the proposed
approach and compare them with the available bounds in the
literature. One of the bounds we consider is the sphere packing
bound in [1], which we refer as SP59. For calculation of the
SP59 bound, we use the log domain approach proposed in [2].
The spherical bound proposed in [2] is not presented, since this
bound is shown to be inferior to SP59 in the block lengths and
rates considered here for target error probabilities in the order
of 10−4 [2]. To calculate the proposed bound, we choose the
restricted set Ir according to the discussion in Sec. III. After
fixing the set Ir, a proper subset J is determined using the
algorithms proposed in [6], [9].
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Fig. 4: Comparison of the proposed bounds with other bounds
on the error probability, N = 100. UB: union bound, uniform
interleaving. LB: Proposed lower bound, uniform interleaving.
SP59: Shannon’s sphere packing bound in [1]. LB-f: Proposed
lower bound, fixed interleaver. CMB-f: Norm bound in [5] im-
proved with exact ρ values and the subset selection approach,
fixed interleaver.

In our numerical results, we consider the R = 1/3 par-
allel turbo code with (5/7)octal convolutional code as the
component code at both encoders. The calculated bounds are
presented in Fig. 4 for N = 100. We note that SP59 is
calculated for a code with R = 1/3 without accounting for the
change in rate due to terminating zeros. If we had accounted
for termination, the SP59 bound would have been even worse.

For the uniform interleaving case, the set Ir consists of
codewords with input weights ≤ 3, and parity weights ≤ 20.
We observe that the proposed approach (LB) provides a
significantly better performance than SP59 for moderate to
high SNRs. Furthermore, the proposed bound shows a tight
agreement with the union bound in the high SNR region for
the codes considered here. We recall that bounds in [4], [5]
are not directly applicable to the case of ensemble of codes
[7], hence these comparisons cannot be made.

We now consider the fixed interleaver case. The interleaver
is chosen arbitrarily. The set Ir consists of codewords with
input weight 2 with the pattern 1001 or the pattern 11. For
the codewords with the pattern 11, we have only included
the sequences where nonzero bits appear at the end of the
input data sequence. Here first 1 appears as the (N− t)th bit
where t is chosen as 5, which is the minimum distance of the
component code. Both of these input sequences are chosen
because they are low weight and generate low weight parity
sequences at the output of the 1st encoder. Hence both patterns
are likely to create low weight codewords if the interleaver
does not properly permute these sequences. In particular, the
first input sequence pattern, in general, will create a long
sequence of 1’s, which continues until trellis termination. Here,
due to placement of the pattern at the end of the sequence,
these sequences of ones will be short. The pattern 1001 is
chosen due to its self-termination property. Since the feedback
polynomial of the component code is a divisor of 1+D3, any
input sequence of the form 10 . . . 01 where the number of 0’s
are 3× k− 1, k ≥ 1 ∈ Z+ generates an output with 3× k+1
ones. Hence such an input sequence creates a low weight parity

sequence at the output of the first encoder.
We observe that the lower bounds for the fixed interleaver

case (LB-f and CMB-f) provide significantly tighter perfor-
mance than SP59 for moderate to high SNRs. The union (up-
per) bound is calculated for the case of uniform interleaving,
hence it is not a true upper bound for the case with a fixed
interleaver. Nevertheless, lower bounds are consistent with the
union bound in terms of their high SNR behavior. We also
observe that lower bounds give very close values. There is
no known strict ordering between these bounds that holds in
general (see for instance [10]), and this close performance is
consistent with the fact that calculations are done over a very
low number of codewords: the set Ir has small cardinality,
and some of these codewords are further eliminated from the
set through optimization. Hence the error term with respect
to the set Ir that could be associated with each bound gets
smaller.

VI. CONCLUSIONS

We have investigated lower bounds on the error probability
of turbo codes under ML decoding. To improve the existing
bounds, we have proposed to use the exact second order
distance spectrum and identification of a proper subset of
error events. We have calculated lower bounds for turbo code
ensembles with uniform interleaving, and specific turbo codes.
The presented bounds show promising performance in both
cases, and are illustrated to be significantly tighter than the
sphere packing bounds for moderate to high SNRs for the
block lengths considered.
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