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Abstract

This paper presents the initial results of the Algo-

rithm Performance Contest that was organized as part

of the 5th IAPR Workshop on Pattern Recognition in Re-

mote Sensing (PRRS 2008). The focus of the 2008 con-

test was automatic building detection and digital sur-

face model (DSM) extraction. A QuickBird data set

with manual ground truth was used for building de-

tection evaluation, and a stereo Ikonos data set with a

highly accurate reference DSM was used for DSM ex-

traction evaluation. Nine submissions were received for

the building detection task, and three submissions were

received for the DSM extraction task. We provide an

overview of the data sets, the summaries of the methods

used for the submissions, the details of the evaluation

criteria, and the results of the initial evaluation.
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1. Introduction

The goal of the algorithm performance contest that

was organized as part of the 5th IAPR Workshop on

Pattern Recognition in Remote Sensing (PRRS 2008,

http://www.iapr-tc7.org/prrs08) was the evaluation of

pattern recognition techniques on different remote sens-

ing data sets with known ground truth. The contest was

coordinated jointly by the International Association for

Pattern Recognition (IAPR) Technical Committee 7 on

Remote Sensing (http://www.iapr-tc7.org) and the IS-

FEREA Action of the European Commission, Joint Re-

search Centre, Institute for the Protection and Security

of the Citizen (http://isferea.jrc.ec.europa.eu).

The focus of the 2008 contest was automatic building

detection and building height extraction. The precise

identification and localization of settlement features is

one of the key information sets needed for territorial

planning and in any assessment related to human secu-

rity and safety decision process, from the preparedness

to natural hazards and to post-disaster evaluation. Since

buildings are one of the most salient settlement features,

their detection from satellite imagery has long been an

important research topic in remote sensing image anal-

ysis.

Despite the fact that current generation Earth Obser-

vation (EO) data can provide an updated and detailed

source of information related to human settlements,

the available geo-information layers derived from these

data are often too outdated and/or not enough for the

user needs. Furthermore, accurate automatic interpre-

tation using traditional techniques that are based on

spectral properties is only possible for low-resolution

EO data, while new methods are not stable and mature

enough for supporting high- and very high-resolution

(VHR) satellite data.

In this perspective, optimization of the automatic in-

formation extraction from human settlements using new

generation satellite data is particularly important, and

978-1-4244-2653-9/08/$25.00 ©2008 IEEE



the present contest offers an important contribution to-

ward this direction. This paper presents the initial re-

sults of the performance evaluation of building detec-

tion and digital surface model (DSM) extraction tasks in

the PRRS 2008 Algorithm Performance Contest. Sec-

tion 2 presents the QuickBird data used for building

detection, the summaries of nine methods contributed

by six groups, the evaluation criteria used, and the re-

sults of initial evaluation. Section 3 presents the stereo

Ikonos data used for DSM extraction, the summaries of

three methods contributed by one group, the evaluation

criteria used, and the results of initial evaluation.

2. Task 1: Building detection from monocu-

lar data

2.1. Background and data set

Legaspi City, the capital of the Albay province in Bi-

col, the Philippines, is a multi-hazard hot-spot with cy-

clone, volcano eruption, earthquake, tsunami and flood

risks. Therefore, the city of Legaspi was selected in the

context of a cooperation research project of the World

Bank and JRC/ISFEREA to perform a multi-hazard risk

analysis based on VHR remote sensing data.

A cloud-free QuickBird scene covering the city of

Legaspi was acquired on November 7, 2005, and field

data such as differential GPS measurements, building

structure and infrastructure information were collected.

In order to perform a detailed risk analysis based on

geospatial data, it is necessary to know the quality of

building structure and infrastructure as well as social

discrepancies and their geospatial distribution. One of

the most required data layers is a building layer prefer-

ably available as vector layer. Therefore, all buildings

in Legaspi were digitized manually; a time demanding

and very tedious work.

An automatic or semi-automatic approach to detect

and extract buildings would very much simplify the ini-

tial step of building information gathering before per-

forming any kind of built-up structure related hazard

vulnerability and risk analysis. Consequently, the de-

velopment of such an algorithm was decided to be a

task advertised in this contest. The data provided to

the participants consisted of a panchromatic band with

0.6m spatial resolution and 1668 × 1668 pixels, and

four multispectral bands with 2.4m spatial resolution

and 418×418 pixels (Figure 1). The manually digitized

ground truth was used for evaluation (Figure 2(a)).

(a) Panchromatic band

(b) Visible multispectral bands

Figure 1. QuickBird image of Legaspi, the

Philippines. (QuickBird c© DigitalGlobe

2005, Distributed by Eurimage.)

2.2. Participating methods

Nine results were submitted by six groups for the

building detection tasks. The methods used for obtain-

ing these results are described below.

Orfeo Two submissions were made by Emmanuel

Christophe and Jordi Inglada using the open source Or-

feo Toolbox Library [19]. First, pan-sharpening was

used to combine the panchromatic and multi-spectral

data to get a high-resolution 4-band data set. Usually

there is some important contextual information to use

to avoid obvious mistakes. It is unlikely to find a house

in the middle of the water unless the goal is specifi-



cally to count houses flooded during a natural disas-

ter. This basic level information can be exploited by

first creating a rough land cover classification. Classes

such as water, vegetation, roads, shadows, bare soil

and few ad-hoc classes provide a good starting point.

To obtain this classification, a Support Vector Machine

(SVM) classifier was used on a specific set of features

such as the four spectral bands, the NDVI index, a local

variance, and morphological profiles. This classifica-

tion was used as a mask to remove some obvious false

alarms in the following steps.

The next step was to segment the pan-sharpened im-

age in order to lower the complexity of the input data.

The level of details available in high-resolution images

can have a strong negative effect at some stages of the

processing: roof superstructures are irrelevant when try-

ing to extract the whole building for example. The mean

shift algorithm [6] was used as an efficient way to sim-

plify such images. The segmented image was combined

with the classification to remove irrelevant segments.

This was the main step where some simple high level

information concerning the object was introduced.

Segments were vectorized to enable higher level

processing. Finally, some adjustments of the de-

tected objects were made according to the original pan-

sharpened data (precise edge adjustment). This steps

fitted the obtained polygons to the input data by intro-

ducing shifts to the position of the vertices in order to

maximize the overlap with respect to the edges of the

original image.

The two submissions (namely, Orfeo1 and Orfeo2 in

the experiments) used the same process but differed in

two points:

• The land cover classification used was different.

Same classes were used but different samples were

given for the learning step.

• Parameter for the mean shift clustering was differ-

ent, thus, leading to different objects.

The results for Orfeo1 and Orfeo2 are shown in Figures

2(b) and 2(c), respectively.

METU Two submissions were made by researchers

from Middle East Technical University (METU). First,

the multispectral and panchromatic images were fused

by using the PANSHARP algorithm of PCI Geomatica.

To determine man-made regions, it was needed to mask

vegetation, shadow and water regions. The NDVI was

calculated by using the NIR and red bands of the pan-

sharpened image. A threshold was determined depend-

ing on the intensity values to mask the vegetated regions

from the pan-sharpened image. The water and shadow

areas were masked by applying a suitable threshold to

the NIR band. After masking out water, shadow and

vegetation regions from the pan-sharpened image, the

mean-shift segmentation method [6] was used to obtain

man-made regions. To mask the roads, the segmented

image was classified by using the maximum likelihood

classifier.

The resultant image included only the building

patches and some erroneous regions because of the

masking processes. To remove these erroneous re-

gions, the data were converted to vector by using the

RAS2POLY algorithm of PCI Geomatica. The mean

intensity values were assigned to each vector data and

some threshold values depending on the intensity val-

ues were determined to remove these erroneous regions.

The cleaned building patches were converted to raster

in the ArcGIS environment. In this way the buildings

with unique values were obtained. To merge the over-

segmented building patches, hue image, which is invari-

ant to illumination direction and highlights, was gener-

ated. The mean hue values were calculated and the hue

image was divided into two classes by using the areas

of building patches as small and large, where 170m2

of area was considered to be the threshold. The neigh-

boring building patches that had close mean hue val-

ues were merged for both small and large building data

with different closeness thresholds. Finally, the small

and large building data were combined to get the final

building patches. The results of this step are referred to

as METU1 in the experiments and are shown in Figure

2(d).

Since some building patches might not have valid

shapes such as long, line artifacts, principle component

analysis was used to eliminate non-building patches. A

high ratio of the eigenvalues of long and line shaped ar-

tifacts was used as an evidence of being non-building

patches. After eliminating the artifacts, the candidate

building patches were obtained. The results of this step

are referred to as METU2 in the experiments and are

shown in Figure 2(e).

Soman One submission was made by Jyothish Soman

using a fast unsupervised algorithm involving intuitive

definitions to find artificial objects in a satellite image.

The algorithm used the definition of an isolated artifi-

cial object as a section of the image that had a vari-

ance lower than its immediate surroundings [17]. Mul-

tispectral image was stretched to the size of the pan im-

age by resizing the image using a bi-cubic interpolation.

The pre-processing removed water bodies, shadows and

vegetation from the image, using derived information

from the multispectral data.

The algorithm started by finding points such that the



number of its neighboring pixels with relative differ-

ence less than the variance of the image was greater

than 5, i.e., the point had a nearly uniform surround-

ing. Thus the most probable seed points were found

for region growing. The generated points formed clus-

ters, which were joined to form regions. These regions

were then used as starting zones for a variance based

region growing. The mask for region growing was kept

such that edges were maintained and the regions did not

grow into areas containing natural bodies and shadows.

Pixels were added to the regions if their values did not

exceed the sum of the mean of the current region and

the variance of the initial region. A final thresholding

was done so that regions with an area within a range

was kept. This submission is referred to as Soman in

the experiments and is shown in Figure 2(f).

Borel One submission was made by Christoph Borel

using a series of IDL programs. First, the multispec-

tral data were pan-sharpened to the pan band resolution.

Then, a mask generation step was performed to find col-

ored building roofs. The operations in this step included

performing a 2% histogram stretch on each band, per-

forming a hue-saturation-value (HSV) transformation

on the true color byte image cube, finding the red roofs

if the red band’s values were greater than a weight mul-

tiplied with the sum of green, blue and NIR bands (re-

droof), finding the green roofs if hue was between two

limits and the value above a threshold (greenroof), find-

ing the blue roofs if hue was between two limits and

the value above a threshold (blueroof), and finding the

bright roofs by thresholding the value (brightroof). The

mask generation step was followed by size filtering and

shape analysis. The operations in this step included ap-

plying a median filter to remove very small regions from

all mask images, and labeling all regions and keeping

the ones with a size greater than a threshold. Since the

brightroof image contained some road features, every

region was analyzed for its aspect ratio (length/width)

and fill factor (area of minimum enclosing rectangle

over actual area). Only regions with an aspect ratio

greater than a threshold and a filling factor greater than

a threshold were considered buildings. Finally, build-

ings were found by logical OR operation on the masks

redroof, greenroof, blueroof and brightroof. This sub-

mission is referred to as Borel in the experiments and is

shown in Figure 2(g).

LSIIT Two submissions were made by Sébastien

Lefèvre and Régis Witz using a recent segmentation

method described in [15] that is not specific to the prob-

lem under consideration. This method improves the

widely used marker-based watershed segmentation by

making use of the markers’ content (and not only the

markers’ location) to guide the segmentation process.

To do so, this supervised segmentation technique asso-

ciates each marker to a class (a class may contain sev-

eral markers). These markers are then considered as a

learning set in a fuzzy classification procedure (e.g., 5-

nearest neighbours) which returns a membership map

per class. These maps are inverted and combined with

a multispectral gradient (e.g., the Euclidean norm of a

marginal morphological gradient) to produce as many

topographic surfaces as classes. Finally, the segmenta-

tion is obtained following the flooding procedure which

has been adapted to the case of several surfaces: wa-

ter is flooding simultaneously on the different surfaces,

and each pixel is given the label of the marker which

reaches it first (i.e., before the other markers).

The direct application of this algorithm required to

set a marker per building to be detected. Thus a second

algorithm was designed as a semi-supervised solution to

the problem of building detection. To limit the user in-

tervention, a marker identification procedure was added

as a pre-processing step. It was based on the mark-

ers defined by the user and aimed to find new markers.

To do so it relied on a pixel classification step using

user markers as a learning set. To ensure a minimum

robustness to noise, the classification map was filtered

with morphological opening (i.e., the minimum size of

a building). To avoid border effects between close com-

ponents, each connected component was also eroded us-

ing a small square structuring element. This additional

procedure was designed especially for the contest (or

for images where it was not relevant to manually mark

each object).

The experimental setup for processing the Legaspi

image started with a fusion of panchromatic and

multispectral bands. Then, the markers were de-

fined manually over the image by a computer

scientist (novice in remote sensing), using a web

interface such as the one available at http://dpt-info.u-

strasbg.fr/∼lefevre/demos/supervisedWatershedApplet.

For the first experiment (supervised watershed), the

markers were defined using 10 classes (6 for buildings

with different roofs, water, vegetation, road, boats). Al-

most each visible object was marked with the relevant

class using a square of 5× 5 pixels (smaller if needed).

The manual labeling resulted in around 2460 objects

identified by the user in 90 minutes. The segmentation

procedure was much faster and required between

100 and 180 seconds depending on the optimizations

considered. The results of this step are referred to as

LSIIT1 in the experiments and are shown in Figure

2(h).

For the second experiment (semi-supervised water-



shed), the markers were defined using 2 classes (build-

ing and non-building), with a total of markers as small

as 14 markers (7 for the buildings, 7 for the other ob-

jects). Hence, the goal was to produce some markers

required by the semi-supervised method very quickly

(setting 14 markers on the contest image was achieved

in only a few seconds). The minimum size of objects

was assumed to be 11 × 11 pixels (6 × 6 meters) and

was used as the structuring element size in the morpho-

logical filtering step. The segmentation procedure re-

quired between 60 and 150 seconds depending on the

optimizations considered. Since the computation time

was rather low and the user intervention was rather in-

tuitive, it would be possible to consider an interactive

segmentation strategy (e.g., by adding markers where

the segmentation fails). The results of this step are re-

ferred to as LSIIT2 in the experiments and are shown in

Figure 2(i).

Purdue One submission was made by Ejaz Hussein

and Jie Shan using an object-based image classification

technique. The method mainly consisted of three steps:

pan-sharpening, image segmentation, and object classi-

fication. The segmentation and classification were per-

formed in an iterative manner.

In the data pre-processing step, the four-band mul-

tispectral image was sharpened with the panchromatic

image using the Gram-Schmidt method. The resultant

pan-sharpened multispectral image was then segmented

to form image objects. Using NDVI, band ratio of

IR to green, and brightness as features, the segmented

objects were classified to two classes: vegetation and

water/shadow. After performing histogram stretching

on the panchromatic image, it was segmented with the

vegetation and water/shadow classes being the mask.

By selecting the brightness, area, and rectangular fit as

features, the last segmented results were classified to

find bright buildings in the panchromatic image. For

other buildings, the pan-sharpened multispectral image

was classified with the pre-classified vegetation, wa-

ter/shadow, and bright building classes being the mask.

This was carried out sequentially for green, magenta,

dark, and cyan buildings. Once the buildings of one

color were classified, they were used as an additional

mask for the next classification. When this was com-

pleted, all building object classes were combined into

one image, which was then segmented to form individ-

ual buildings. In this way, a building with several roof

colors, which were initially classified as different build-

ing classes, could be combined and identified as one

building. Finally, building objects of small size were

filtered out. ENVI, ArcGIS and Definiens Developer

were used in this submission that is referred to as Pur-

due in the experiments and is shown in Figure 2(j).

2.3. Evaluation criteria

In [21], it is stated that “there is no single method

which can be considered good for all images, nor are

all methods equally good for a particular type of im-

age”. Therefore, several error measures were used in

this contest for the comparison of the algorithms.

In the building detection task, the outputs of the al-

gorithms are images where the pixels corresponding to

each detected building are labeled with a unique integer

value. These outputs can be considered as segmenta-

tions of the image data. Therefore, all of the measures in

this contest were adapted from different studies on the

evaluation of image segmentation algorithms. Adapta-

tion of these measures involved handling of the objects

and the background separately.

The overlapping area matrix (OAM) introduced in

[1] makes computation of performance measures eas-

ier. All object-based measures given below can be com-

puted from the OAM. Let Cij be the number of pix-

els in the i’th object in a reference map that overlap

with the j’th object in an output map produced by an

algorithm. Ortiz and Oliver [20] formulated some of

the performance measures used in the contest using the

OAM. A similar notation is used in this paper. The i’th
reference object is denoted as Oi while the j’th out-

put object is shown as Ôj . The objects of interest in

the contest include the buildings and the background.

The set of objects in the reference map are denoted as

Or = {O0, O1, . . . , ONr
} and the output objects are

denoted as Oo = {Ô0, Ô1, . . . , ÔNo
}. O0 and Ô0 cor-

respond to the backgrounds in the reference and the out-

put maps, respectively. Nr and No are the number of

objects in the reference and the output maps, respec-

tively. The sizes of the objects Oi and Ôj and the whole

image I can be calculated from the OAM as

n(Oi) =

No∑

j=0

Cij , (1)

n(Ôj) =

Nr∑

i=0

Cij , (2)

n(I) =

Nr∑

i=0

n(Oi) =

No∑

j=0

n(Ôj). (3)

Correct detection, over-detection, under-detection,

missed detection, false alarm rates Hoover et al.

[12] classify every pair of reference Oi and output Ôj

objects as correct detections, over-detections, under-

detections, missed detections or false alarms with re-



(a) Ground truth (b) Orfeo1 (c) Orfeo2 (d) METU1 (e) METU2

(f) Soman (g) Borel (h) LSIIT1 (i) LSIIT2 (j) Purdue

Figure 2. Ground truth (3065 buildings) and submissions for the building detection task dis-
played in pseudocolor.

spect to a given threshold T , where 0.5 < T ≤ 1, as

follows:

1. A pair of objects Oi and Ôj is classified as an in-

stance of correct detection if

• Cij ≥ T × n(Ôj),

• Cij ≥ T × n(Oi).

2. An object Oi and a set of objects Ôj1 , . . . , Ôjk
,

2 ≤ k ≤ No, are classified as an instance of over-

detection if

• Cijt
≥ T × n(Ôjt

),∀t ∈ {1, . . . k}, and

•
∑k

t=1 Cijt
≥ T × n(Oi).

3. A set of objects Oi1 , . . . , Oik
, 2 ≤ k ≤ Nr, and

an object Ôj are classified as an instance of under-

detection if

•
∑k

t=1 Citj ≥ T × n(Ôj), and

• Citj ≥ T × n(Oit
),∀t ∈ {1, . . . k}.

4. A reference object Oi is classified as a missed de-

tection if it does not participate in any instance

of correct detection, over-detection or under-

detection.

5. An output object Ôj is classified as a false alarm

if it does not participate in any instance of correct

detection, over-detection or under-detection.

For 0.5 < T < 1, an object can contribute to at most

three classifications, namely, one correct detection, one

over-detection and one under-detection [12]. When

an object participates in two or three classification in-

stances, the instance with the highest overlap score is

selected for that object. For equal scores, we bias to-

ward selecting correct detection, then over-detection,

then under-detection to obtain unique classifications.

Maximum-weight bipartite graph matching The

next measure is adapted from [14] where a bipartite

graph matching algorithm is used for evaluating image

segmentation results. First, Or and Oo are represented

as one common set of nodes {O0, O1, . . . , ONr
} ∪

{Ô0, Ô1, . . . , ÔNo
} of a graph. Then, this graph is set

up as a complete bipartite graph by inserting edges be-

tween each pair of nodes where the weight of the edge

between (Oi, Ôj) is equal to Cij . Given this graph, the

match between the reference object map and the output

object map can be found by determining a maximum-

weight bipartite graph matching that is defined by a sub-

set {(Oi1 , Ôj1), . . . , (Oik
, Ôjk

)} such that each of the

nodes Oi and Ôj has at most one incident edge, and the

total sum of the weights is maximized over all possible

subsets of edges.

The problem of computing maximum-weight bipar-

tite graph matching is known as an assignment problem,

and one of the solutions for this problem is the Munkres

Assignment Algorithm (also known as the Hungarian

Algorithm) [18]. In the Munkres algorithm, the min-



imum cost is aimed instead of the maximum weight.

Consequently, by negating the overlapping area matrix,

we obtain the cost matrix that can be used for the al-

gorithm. Finally, a modified version of the maximum-

weight bipartite graph matching measure is defined as

BGM(Oo,Or) = 1−
w

n(I)− C00

(4)

where w is the sum of the weights. In [14], the sum of

the weights is divided by image size. In this version,

w is divided by the size of the union of the objects in

the reference and output object maps. The measure in

(4) represents the error so smaller values correspond to

a better performance.

Normalized Hamming distance Huang and Dom

[13] proposed a single overall performance measure de-

pending on region matching according to the maximum

overlapping area. In the contest, we are interested in

how successfully the algorithms can detect the fore-

ground object regions, so we discard the background

from the original formula. The directional Hamming

distance from the output object map to the reference ob-

ject map is defined as

DH(Oo ⇒ Or) =

Nr∑

i=1

∑

j 6= arg max
k=1,...,No

{Cik}

Cij . (5)

Similarly, the directional Hamming distance from the

reference map to the output map is defined as

DH(Or ⇒ Oo) =

No∑

j=1

∑

i 6= arg max
k=1,...,Nr

{Ckj}

Cij . (6)

Finally, these two distances are averaged and normal-

ized in order to obtain a modified version of the nor-

malized Hamming distance

DNH(Or,Oo) =
1

2

 
DH(Oo ⇒ Or)

n(I)− n(O0)
+

DH(Or ⇒ Oo)

n(I)− n( bO0)

!

(7)

where DNH(Or,Oo) ∈ [0, 1]. The value of one in-

dicates a total mismatch and zero indicates a perfect

match.

Clustering indices Each object map can be consid-

ered as a clustering of pixels [14]. As a result, mea-

sures that compare two different clustering outputs can

be used for object detection evaluation. Object pairing

is one of the methods used for cluster comparison. Each

pair of pixels (pa, pb) in the image is a member of one

of the following groups

• pa and pb belong to the same object both in the

reference map and the output map (N11),

• pa and pb belong to the same object in the refer-

ence map but belong to different objects in the out-

put map (N10),

• pa and pb belong to the same object in the output

map but belong to different objects in the reference

map (N01),

• pa and pb belong to different objects both in the

reference map and the output map (N00).

The number of pixel pairs in each group can be com-

puted from the OAM.

The Rand Index given in [23] can be computed as

R(Or,Oo) = 1−
N11 + N00

n(I)× (n(I)− 1)/2
. (8)

Another measure using pixel pairing is introduced by

Fowlkes and Mallows in [8], and can be computed as

F (Or,Oo) = 1−
√

W1(Or,Oo)×W2(Or,Oo) (9)

where

W1(Or,Oo) =
N11∑Nr

i=0 n(Oi)(n(Oi)− 1)/2
, and

(10)

W2(Or,Oo) =
N11∑No

j=0 n(Ôj)(n(Ôj)− 1)/2
. (11)

Yet another measure that uses pixel pairings for cluster

comparison is the Jaccard index [2], and is defined as

J(Or,Oo) = 1−
N11

N11 + N10 + N01

. (12)

All three measures are in the [0, 1] range and are mod-

ified to represent the error (by subtracting the original

index from 1) so smaller values correspond to a better

performance.

2.4. Results

The measures described in Section 2.3 were com-

puted for all nine submissions. Figure 3 shows the

object-based correct detection, over-detection, under-

detection, missed detection, and false alarm rates. Fig-

ure 4 shows the graph matching measure, normalized

Hamming distance, and clustering indices. Higher val-

ues for correct detection, over-detection, and under-

detection represent better performance. Lower values

indicate better performance for the rest of the measures.
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(a) Correct detection
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(b) Over-detection
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(c) Under-detection
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(d) Missed detection

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

1000

2000

3000

4000

5000

6000

7000

8000

T

F
a

ls
e

 a
la

rm
s

Orfeo1

Orfeo2

METU1

METU2

Soman

Borel

LSIIT1

LSIIT2

Purdue

(e) False alarm

Figure 3. Object-based correct detection, over-detection, under-detection, missed detection,

and false alarm rates for the nine submission for the building detection task (Task 1).
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(b) Normalized Hamming distance
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(d) Fowlkes and Mallows index
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Figure 4. Graph matching measure, normalized Hamming distance, and clustering indices for

the nine submissions for the building detection task (Task 1).



The nine submissions shared many steps such as

pan-sharpening, spectral feature extraction (e.g., NDVI

or other band combinations), mask generation using

thresholding or classification, segmentation, and filter-

ing based on shape (e.g., area or aspect ratio). The

amount of supervision differed among different meth-

ods, ranging from only setting several thresholds to

manually placing a marker on every building. As can

be seen in Figures 3 and 4, no single method stood out

as the best performer with respect to all performance

measures. Similarly, different criteria favored differ-

ent methods. New criteria for measuring performance

based on boundary errors and fragmentation errors will

be added, and all performance measures will be com-

bined to provide a ranking of the submissions using

methods such as Hasse diagrams [22] or multi-objective

optimization [3] in future work.

3. Task 2: Digital surface model extraction

from stereo data

3.1. Background and data set

The objective of this task was to extract a digital sur-

face model (DSM) for buildings from stereo Ikonos data

of Graz, Austria. The data provided to the participants

consisted of a pair of stereo images where each image

had a panchromatic band with 1m spatial resolution and

2974 × 2918 pixels, and four multispectral bands with

4m spatial resolution and 792 × 749 pixels (Figure 5).

Together with the data the rational polynomials were

delivered to orthorectify the stereo images.

A highly accurate reference DSM was made avail-

able by the city of Graz (Figure 6). The reference DSM

covered an area of 2km by 1km, and represented build-

ings typically found in European cities such as multi-

storey buildings with center courtyards, large industrial

buildings, residential row houses, and single residential

houses. The elevation in the Graz study area ranged

from 390m to 480m above sea level, rising from West

to East.

3.2. Participating methods

Three submissions were made by Jan Čech and

Radim Šára. The first submission used a matching algo-

rithm called Growing Correspondence Seeds (GCS) by

Jan Čech. The second submission used a matching al-

gorithm called 3-Label Dynamic Programming (3LDP)

by Radim Šára. The submissions differed in putative

correspondence pre-selection, and shared the match-

ing procedure and disparity map post-processing. The

third submission was a fusion of the GCS and 3LDP

(a) Panchromatic band

(b) Visible multispectral bands

Figure 5. One of the Ikonos images of

Graz, Austria. (Copyright c©2007 GeoEye)

algorithms. These submissions are referred to as GCS,

3LDP, and Fusion, respectively in the experiments.

The putative correspondence stage of the GCS algo-

rithm [5] was based on growing disparity patches (com-

ponents) from sparse seed correspondences. The seed

matches were found automatically. The normalized

cross-correlation (MNCC) [16] was used for computing

image similarity in a 5×5 neighborhood. This stage was

followed by Confidently Stable Matching (CSM) [24]

which performed pixel-wise selection from the grown

components in a process of their mutual competition.

The matching used a modified inhibition zone as de-

scribed in [4]. Efficiency of this algorithm was achieved

by avoiding aggregation over all possible correspon-

dences in the disparity space. Usually, less than 1%

of the disparity space was visited. The GCS algorithm



Figure 6. Part of the reference DSM used

for task 2. (Kindly made available by Dr.

Karlheinz Gutjahr, Joanneum Research,

Institute of Digital Image Processing, A-

8010 Graz, Austria, Wastiangasse 6, for in-

ternal use only.)

produced semi-dense disparity maps with explicitly la-

beled occlusions and textureless regions. A mixed Mat-

lab/C implementation of the GCS algorithm is available

at [4]. This implementation processed the test data in

130 sec using a single core of 2.2GHz Quad-Core AMD

Opteron Processor 2354.

The 3LDP algorithm was a previously unpublished

three-state dynamic programming stereo. It used all

possible correspondences within a disparity search

range as putative correspondences. The dynamic pro-

gramming was used not to obtain a matching but to ag-

gregate support for a subsequent matching procedure.

The algorithm was similar to four-state dynamic

stereo programming by Criminisi et al. [7] and to an ear-

lier work by Gimelfarb [9]. Unlike in [7], the matched

state was modeled by a single label. Unlike in Gimel-

farb, MNCC was used for image similarity [16]. The

dynamic programming computed the total cost of the

optimum path through every possible correspondence.

This became the cost of a correspondence. Such ag-

gregation was similar to the work of Gong and Yang

[10]. The aggregation process was followed by a robust

matching decision based on CSM, in exactly the same

way as in GCS. The 3LDP algorithm produced semi-

dense disparity maps in the same format as GCS did.

The 3LDP algorithm including aggregation processed

the test data in 323 sec using the same processor as in

GCS but with a C implementation.

A simple fusion of the GCS and 3LDP algorithms

was performed by projecting the resulting disparity

maps into a common disparity space, computing im-

age similarity anew, and re-running the final CSM pro-

cedure, as in GCS. Hereby, better correspondence hy-

potheses, proposed by either algorithm, were selected.

This was an updated version of the disparity map fu-

sion from [25]. The result of fusion was a more dense

disparity map.

Since the disparity maps from the above three algo-

rithms were semi-dense (76% density for GCS and 43%

for 3LDP), a simple heuristic disparity map densifica-

tion was included. The densification was designed ex-

clusively for the purpose of evaluation in this contest

where a 100% disparity map was required. Densifica-

tion received a disparity map and the input images, and

attempted to fill in the textureless and occluded regions.

The result was a fully dense map. A similar procedure

was shown effective for aerial imagery in [11].

The first stage of densification worked by proposing

new disparities as follows. The reference image was

over-segmented by the mean-shift algorithm [6]. Indi-

vidual segments were processed one by one, and the

contents of each segment Si in the disparity map was

subject to the following editing rules (in this order):

1. Small Component Deletion Rule: If the disparity

map density in Si fell below threshold Td, the seg-

ment was deleted.

2. Small Hole Patch Rule: If the disparity map

density in Si raised above threshold Tp and the

standard deviation of disparities in Si was below

threshold Ts, the Si was replaced by its mean

value.

3. Occlusion Boundary Clip Rule: If (1) the disparity

histogram in Si was strongly bimodal, and (2) one

if its modes m2 was significantly more prominent,

and (3) narrow, the Si was replaced by the mode

value m2.

4. Large Hole Patch Rule: The disparities around the

periphery of every contiguous hole in the dispar-

ity map were collected. If their standard deviation

fell below threshold Ts, the entire component was

replaced by the mean value of the periphery. Oth-

erwise, if the lower mode m1 (corresponding to

background disparity) was prominent and narrow,

the segment was replaced by m1.

All parameters were chosen manually to achieve vi-

sually acceptable results on a set of outdoor scenes sim-

ilar to those used in [4]. The procedure removed small

errors by Rule 1, patched small holes by Rule 2, re-

moved occlusion artifacts by Rule 3, and patched the

majority of large holes in textureless areas by Rule 4.

The resulting disparity map was projected to a disparity



space, MNCC image similarities were computed anew,

and the CSM procedure was re-run once again, as in

GCS. The result of this stage was a denser map, albeit

not yet 100% dense since occlusions were preserved.

The purpose of the second densification stage was

to extrapolate the disparity to occluded areas, most im-

portantly, to mutually occluded regions occurring be-

tween tall buildings, where ground disparity should be

assigned but the periphery of the occluded region had

the building roof disparity. The procedure worked as

follows. The image was split to overlapping tiles of

100 × 100 pixels. Lower quartile of disparity in each

tile was computed. This approximated the terrain dis-

parity. All remaining holes in the tile were replaced by

this value. Contributions from multiple tiles covering

the same pixel were averaged. The output from this pro-

cedure was a full-density disparity map.

3.3. Evaluation criteria

The performance of digital surface model extraction

was evaluated using the residuals (difference) between

the reference DSM and the output DSM. The following

statistics were computed from the residuals:

• Bias: mean, standard deviation, and skewness of

the residuals.

• Precision: root-mean-squared error (RMSE) and

frequency of outliers in the residuals.

3.4. Results

The digital surface models produced by the GCS,

3LDP, and Fusion methods without and with densifi-

cation are shown in Figure 7. The statistics described

in Section 3.3 were computed for all three submissions

as shown in Table 1. The 3LDP method produced the

most accurate result compared to the ground truth. This

is also confirmed by visual comparison of the resulting

DSMs.

4. Conclusions

This paper presented the results of the PRRS 2008

Algorithm Performance Contest. The contest tasks con-

sisted of automatic building detection from a single

QuickBird image, and digital surface model extraction

from stereo Ikonos data. Both data sets included ground

truth for performance evaluation. We described the data

sets, the methods used in the contest submissions, the

objective evaluation criteria, and the results of the ini-

tial evaluation.

(a) GCS, no densification (b) GCS, with densification

(c) 3LDP, no densification (d) 3LDP, with densification

(e) Fusion, no densification (f) Fusion, with densification

Figure 7. Submissions for the digital sur-

face model extraction task.

The submissions shared some steps such as pan-

sharpening, thresholding, mask generation, segmenta-

tion, etc., but different in the ways such steps were

combined as well as the amount of supervision used.

The evaluation showed that no single method stood out

as the best performer with respect to all performance

measures. Similarly, different criteria favored different

methods. Future work includes combining these perfor-

mance measures to provide a ranking of the submissions

using methods such as Hasse diagrams [22] or multi-

objective optimization [3].
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