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ABSTRACT 
Traditionally, information retrieval systems rank documents 
according to the query terms they contain. However, even if a 
document may contain all query terms, this does not guarantee 
that it is relevant to the query. The query terms can occur together 
in the same document, but may have been used in different 
contexts, expressing separate topics. Lexical cohesion is a 
characteristic of natural language texts, which can be used to 
determine whether the query terms are used in the same context in 
the document. In this paper we make use of a graph-based 
approach to capture term contexts and estimate the level of lexical 
cohesion in a document. To evaluate the performance of our 
system, we compare it against two benchmark systems using three 
TREC document collections. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval] 

General Terms 
Algorithms, Experimentation, Measurement, Performance 

Keywords 
Contextual information retrieval, Lexical cohesion, Term 
proximity 

1. INTRODUCTION 
A word’s meaning is realized depending on the other words that 
surround it in text. The lexical-semantic dependencies, or lexical 
cohesive relationships, between words in a text form a common 
context that “makes text hang together” [6]. In any well-formed 
natural language text we expect the sentences and larger units of 
discourse to be semantically related to each other. This makes 
lexical cohesion a characteristic of all well-formed texts. 

Context-awareness is a crucial concern in information retrieval. A 
document and a query having matching words does not 
necessarily imply that the document is relevant to the query. It is 
possible that the words are in the same document but do not share 

a common context. As opposed to traditional “bag of words” 
retrieval methods, lexical cohesion can be used to detect the 
context of query terms and estimate document relevance based on 
this information. It is demonstrated in [18] that there exists 
statistically significant association between lexical cohesion and 
document relevance. 

Various classifications of lexical cohesive relationships were 
proposed by several authors [6, 7, 8]. An important means of 
creating lexical cohesion is through collocation, which is a 
relationship between lexical items that occur in the same 
environment [6]. Collocation can occur due to lexical-
grammatical restrictions (e.g., using the adjective beautiful to 
describe a good-looking woman but the adjective handsome to 
describe such a man), which occur within short spans (proximity) 
as in noun phrases. In addition, if two words are contextually 
related in text, they tend to occur in the stretches of text that share 
large number of same or similar terms. This is known as long-
span collocation, whose effects can extend in text up to 300 words 
[18]. 

In this paper, we present an approach for calculation of document 
cohesion with respect to query terms using a graph based 
approach. Initially, we construct a Lexical Collocation Matrix 
(LCM) for each document in the set to be re-ranked. The cells of 
the matrix record the number of times any given two terms co-
occur within fixed-sized windows in the document. We then 
represent the document as an undirected graph whose nodes 
(vertices) are the terms in the document and the arcs (edges) 
record the collocation frequency between the nodes. 

Performance improvement by ranking a document set using 
lexical cohesion information has been demonstrated before in 
[18]. The approach presented in this paper differs from other 
lexical cohesion based ranking methods reported in the literature 
in the way the context of the query terms is represented, and 
consequently the way document cohesion with respect to query 
terms is calculated. Specifically, instead of simply counting 
common collocates of query terms, thus, capturing only long-span 
transitive relationships between query terms [18], we take 
advantage of the graph representation, and capture both long-span 
and short-span cohesive relationships. In other words in the 
approach presented in this paper both proximity and transitive 
relationships between terms are treated in the same principled 
way. 

We report an evaluation experiment in Section 5, which compares 
the presented methods to two baseline systems, namely, BM25 
[16] and COMB-LCS [18] using TREC collections. The results 
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suggest that the presented methods yield considerable 
performance gains against the baseline systems. 

An additional advantage of the graph based approach is that, the 
cohesion graph that captures the contexts of the terms in the 
document could be used to interactively visualize the content of a 
document. An example of the way the term contexts could be 
visualized is given in Figure A1. We briefly discuss the potential 
of the graph-based approach for interactive document 
visualization in the “Conclusion and Future Work” section at the 
end of the paper. 

In the following section, we present the previous work on 
calculating lexical cohesion. This is followed by the details of 
lexical cohesion based document ranking methods developed. The 
subsequent section describes the experimental setup used in 
evaluation of the methods presented in this paper.  The results of 
the evaluation experiments are given and discussed in Section 5. 
The final section summarizes the experimental results and points 
to future research directions. 

2. RELATED WORK 
The concept of lexical cohesion is introduced for the first time by 
Halliday and Hasan [6], and later elaborated by Hoey [8]. 
Halliday and Hasan demonstrated that one of the basic means of 
achieving cohesion in natural language texts is lexical reiteration. 
In this case, two text segments (e.g., sentence, paragraph, etc.) are 
semantically connected by means of repeating lexical items.  
There can be different kinds of reiteration between two lexical 
items: the second lexical item can be an exact repetition of the 
first one, its synonym or near-synonym, hyponym or hypernym. 
Previous experiments that involved an ad hoc document retrieval 
task showed that exact repetition gives comparable results to other 
types of reiteration [18]. A single instance of a lexical reiteration 
is referred to as a lexical link [8]. Morris and Hirst [14] pointed 
that in well-formed texts, cohesive relationships extend over the 
entire text by means of lexically linked segments of text. These 
sequences of related words are called lexical chains. Hoey [8] 
stated that the text cohesion is realized not only by lexical links 
between arbitrary text snippets, but also by lexical relationships 
between sentences - lexical bonds. A lexical bond exists between 
two sentences when they contain a certain number of lexical links. 

Lexical chains were used in text retrieval by several researchers. 
Stairmand [17] used WordNet database [13] in mapping the 
contents of documents into WordNet synsets, identifying in each 
document lexical chains. At search time, each query term, mapped 
into a WordNet synset, is matched against the weighted synsets 
representing the documents. Ellman and Tait [5] used Roget’s 
thesaurus to identify lexical chains in text and computed the 
similarity between a Web page retrieved and an exemplar text (i.e. 
query). They reported inconsistent results for a limited query set.  

Lexical bonds were also used in text retrieval. Vechtomova et al. 
[18] estimated the cohesiveness of a document with respect to a 
query by counting the number of lexical links between distinct 
query terms’ contexts. The context of a query term is constructed 
by recording all collocates of the query term in fixed-size 
windows around each occurrence of it in the document. All 
collocates of a given query term are then merged to determine the 
context of it in the document. The number of lexical links between 
a pair of query terms is computed by counting the number of 
common collocates in the context lists of the query terms. This 

method captures only long-span cohesive relationships. They 
evaluated their system on TREC collections and reported 
improvements over a baseline system, Okapi BM25. The 
evaluation results establish a benchmark for us to compare our 
approach against, and discussed in Section 5. In this paper, in 
contrast to simply counting common collocates between a pair of 
query terms, we take advantage of graph representation and 
capture both long-span and short-span cohesive relationships. 

Graphs have been used by some standard ranking algorithms like 
HITS [9] or PageRank [4]. Such algorithms represent web pages 
as nodes in a graph and use the connections between them to 
deduce information on the importance of a node (i.e. web page). 
This procedure was applied to the task of keyword/sentence 
extraction from documents by Mihalcea [12]. Mihalcea and Tarau 
generalized this approach, and applied it to other text processing 
tasks [11], such as, word sense disambiguation and text 
summarization. Our approach is similar to this work but different 
in purpose. Instead of ranking the nodes of the graph and using it 
for word sense disambiguation and similar tasks, we obtain a total 
cohesion score for the whole document by representing it as a 
graph and use it to re-rank documents. 

3. SYSTEM DESCRIPTION 
We interpret a document as a collocation graph consisting of 
nodes representing the terms and weighted arcs representing the 
frequency of collocation between terms. By exploring the paths 
between query term pairs, we aim to deduce the level of lexical 
cohesion between query terms, and use this information in 
estimating relevance of a document to a query. The steps of the 
process are described below, and illustrated by means of an 
example in Figures A2 and A3. 

3.1 Document Pre-Processing 
Before we start constructing the collocation graph, we pre-process 
the document to eliminate the stopwords. Stopwords are common 
functional words that do not carry content information on their 
own. In addition, we stem the words to eliminate common 
morphological and inflexional variations so that we can keep 
together the words that mean roughly the same thing. 

Apart from the stopwords, we also eliminated terms which are 
non-stopwords but still so common as to form high number of 
unwanted lexical links with other terms. To do this, we further 
reduce the document in order to include in our calculations only 
the most significant F terms determined using the tf-idf weighting 
scheme [15]. By this way, we hope to keep only the significant 
terms, which contribute to the actual meaning of the document. 

3.2 Creation of Lexical Collocation Matrix 
The calculation of the Lexical Collocation Matrix (LCM) is done 
by processing the reduced document, which contains only the 
most significant stemmed non-stopword terms. We identify fixed-
sized windows around every instance of every term in the 
document. A window is defined as S number of stemmed, non-
stopwords to the left and right of a term. We refer to all stemmed, 
non-stopwords extracted from each window surrounding a term as 
its collocates. 

By using the windows identified around each term, we create the 
LCM for the document. LCM = [mij] is an LxL symmetric matrix 
where L is the number of distinct terms (i.e. term types, not 
tokens) in the reduced document, and each element mij represents 
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how many times any instance of termi occurs in the same window 
(i.e., collocates) with any instance of termj. First two steps of 
creating the LCM are illustrated for an example document in 
Figure A2. 

3.3 Conversion of LCM into Lexical Cohesion 
Graph 
In order to estimate the lexical cohesion between query terms, we 
make use of graphs. We construct a weighted, undirected Lexical 
Cohesion Graph, LCG = (V, A) such that; 

V = {distinct terms in the document}, and 

A = {(i, j): wij = collocation strength between termi and termj}. 

In LCG, a direct path between two nodes implies that the two 
terms represented by these nodes co-occur in the same window at 
least once. A multi-hop path implies that the two terms are related 
transitively by means of some other common term(s). It is 
assumed that, as these terms co-occur within a common subset of 
terms, they should also be contextually related. 

To find the degree of this relation, we calculate the collocation 
strength between terms using the LCM created in the previous 
step. We use the collocation frequencies, i.e. mij values, from the 
LCM, as collocation strength. So for an arc (i, j) ε A, wij = mij. 

3.4 Calculation of Lexical Cohesion Graph 
Score 
The Lexical Cohesion Graph Score (LCGS) of query terms for a 
document is derived from the strength of the paths between query 
terms. The algorithm to calculate the score of a document {d} for 
a query term set {query_term_set} is as follows: 

   begin 
    {query_terms} = {d} ∩ {query_term_set}; 
     if |query_terms| < 2 then 
        return 0; 
     else 
        for all query term pair {qi,qj} where qi,qj є {query_terms} do 
           construct P, set of paths between qi and qj with max length 
           of M; 
           for all path pk є P do 
 calculate path score PATH_SC(qi,qj)k; 
           end for 
           calculate pair score PAIR_SC(qi,qj) based on 
           PATH_SC(qi,qj)k values; 
         end for 
         calculate document score DOC_SC based on 
         PAIR_SC(qi,qj) values; 
         return DOC_SC;  //i.e. LCGS 
     end if 
    end 
 
Calculation of the Path Score. We tested the following methods in 
computing the path score: average of the weights of the arcs in the 
path (Av), minimum weighted arc in the path (Mn), maximum 
weighted arc in the path (Mx). The minimum and maximum 
values identify the weakest and strongest chains in the path. 
Averaging assume that the overall path strength lies somewhere 

between these extreme values. Trivially, any of the path score 
calculation methods described above reduces to the same value 
for direct links (i.e. paths without any intermediate node). 
Calculation of the Pair Score. Usually there are several paths 
between query term pairs. Similar to the path score calculation, 
we calculated the pair scores by taking either the minimum (Mn) 
or the maximum (Mx) path score between a query term pair as the 
overall pair score. In order to investigate the effect of the number 
of distinct paths between query term pairs we also experimented 
with taking the sum (Sm) and average (Av) of path scores. 

Calculation of the Document Score (LCGS). To calculate the final 
score of the document we evaluated three different methods: 
summing all pair scores (Sm), taking the average of pair scores 
(Av), and multiplying pair scores (Ml). The last method is 
particularly useful in penalizing documents where one or more of 
the query term pairs are weakly linked. A non-existing query term 
in the document is ignored in the calculations. 

The final LCGS for a document is arrived at by following the 
procedure described above. For each of the three scores there are a 
number of alternative methods of calculation. These are 
summarized in Table 1. We evaluated the performance of our 
system for all possible combinations of each of the alternative 
methods of calculating the above three types of scores. For 
example, Ml-Av-Mn means that multiplication (Ml), average 
(Av), and minimum (Mn) are used in the calculation of document 
score, pair score and path score, respectively. 

The score calculation method as described above enables us to 
observe the factors that affect the level of lexical cohesion in a 
document. By analyzing the three different scores that make up 
the LCGS a document gets, it is possible to deduce certain 
conclusions about the effect of collocation patterns in text on 
lexical cohesion (see Section 5.2). 

3.5 Re-Ranking of Documents 
We re-rank the documents according to their LCGS scores. We 
also experimented with combining the LCGS with BM25 scores 
returned by the Okapi retrieval system. For this purpose, we 
adopted the COMB-LCS method described in [18], and applied it 
to each of the top T documents retrieved by Okapi as follows: 

COMB-LCGS = MS + x*LCGS (1) 

where MS is the matching score returned by Okapi (BM25) and x 
is a tuning constant to regulate the final score. 

4. EXPERIMENTAL DESIGN 
We conducted experiments to re-rank the set of top 1000 BM25-
retrieved documents by their LCGS scores. In our experiments, 
we used the weak stemming feature of the Okapi IR system to 
reduce the document text and the query terms.  We experimented 
with the most significant 50, 100 and 1000 terms selected 
according to the tf-idf weighting scheme, and  window sizes of 5, 
10 and 15 in constructing the document representations. We 
permitted maximum of two hops (i.e., one intermediate term) 
between query term pairs. This is mainly to reduce the processing
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Table 1. Alternative methods to calculate path, pair and document scores 

Document Score Pair Score Path Score 

Method Abbreviation Method Abbreviation Method Abbreviation 

Average Av Average Av Average Av 

Multiplication Ml Minimum Mn Minimum Mn 

Sum Sm Maximum Mx Maximum Mx 

  Average Sm   

 

time in constructing the collocation graph. For the possible 9 
configurations of window size and the number of the most 
significant terms used in document representations, we ran our 
experiments on three datasets: 

1. TREC 2004 HARD track collection (HARD04): 652,710 
documents from 8 newswire corpora. Five of the 50 topics had no 
relevant documents and were excluded from the official HARD 
2004 evaluation [2]. This dataset was also used by [18]. We used 
the same Okapi BM25 parameters as reported in this work to 
make the results comparable. 

2. TREC 2003 HARD track collection (HARD03): 372,219 
documents from 3 newswire corpora and U.S. government 
documents. Two of the 50 topics had no relevant documents and 
were excluded from the official HARD 2003 evaluation [1]. 

3. TREC 2005 HARD track collection (HARD05): 1,033,461 
documents from 3 newswire corpora [3]. 

Short queries were created from all non-stopword terms in the 
“Title” fields of TREC topics. The queries were run in the Okapi 
using the BM25 document ranking function to retrieve top 1000 
documents. We used the default Okapi values k1=1.2 and b=0.75 
in the BM25 method [16]. In CMB- LCGS calculations (Eqn. 1), 
we tried values between 0.005 and 2 for the tuning constant. 

Instead of separating the collections for testing and training, we 
present the best run in one collection in the other two as well 
(Tables 3 and 4). In this way it is possible to cross-validate the 
evaluation results. 

5. EVALUATION AND RESULTS 
5.1 Comparison with Benchmarks 
We compared the retrieval effectiveness of BM25, COMB-LCGS, 
and COMB-LCS [18] by their MAP, P10 and R-PREC 
performances. In assessment of performance we used TREC-
EVAL, a program to evaluate TREC results using the standard 
NIST evaluation procedures (http://trec.nist.gov/trec_eval). 

As Table 2 shows, on HARD04, COMB-LCGS performed better 
than COMB-LCS and BM25 in all measures of performance. 
COMB-LCGS outperformed BM25 also on HARD03 and 
HARD05. 

5.2 Performance analysis of LCGS 
To analyze the effect of the various parameters used in calculating 
LCGS on the retrieval performance, we present performance of 
LCGS on its own (not combined with BM25 scores) in Table 3.  
This makes it possible to see what combinations of LCGS 
parameters yield the best performance scores. The following 
combination of parameters are isolated in Table 3: window size 
(S), number of terms (F) used in document representations, and 
the methods used in calculating path, pair and document scores 
(Av, Ml, Mn, Mx, Sm). The best performing combinations of 
these parameters are given for all three collections in Table 3 (the 
highest scores for a given collection-evaluation measure 
combination are typed in bold). 

We observe in Table 3 that S=15 is the best performing window 
size in all metrics and collections except for P10 on HARD03. 

 

Table 2. The highest performance scores of BM25, COMB-LCS and COMB-LCGS 
(* statistically significant at 0.05, two-tailed paired t-test) 

HARD04 HARD03 HARD05 
METHOD 

MAP P10 R-PREC MAP P10 R-PREC MAP P10 R-PREC 

BM25 0.2196 0.3089 0.2499 0.3249 0.5375 0.3480 0.1674 0.3640 0.2277 

COMB-LCS 0.2322 0.3556 0.2644 Not 
Available 

Not 
Available 

Not 
Available 

Not 
Available 

Not 
Available 

Not 
Available 

COMB-LCGS 0.2413 0.3889 0.2869 0.3264 0.5562 0.3559 0.1930 0.4460 0.2546 

Improvement 
over BM25 9.9% * 25.9% * 14.8% * 0.5% 3.5 % 2.3% 15.3% * 22.5% * 11.8% * 

 

 

38



Table 3. Best Performing LCGS Runs 

Best combinations 
found Sets and metrics tested on 

HARD04 HARD03 HARD05 
F S Method 

MAP P10 R-PREC MAP P10 R-PREC MAP P10 R-PREC 

1000 15 Ml-Sm-Av 0.1764 0.3022 0.2292 0.2418 0.3958 0.2779 0.1685 0.4200 0.2292 

100 15 Ml-Sm-Av 0.1682 0.3200 0.2063 0.2305 0.4250 0.2588 0.1581 0.4400 0.2097 

1000 15 Ml-Sm-Mn 0.1681 0.3022 0.2158 0.2453 0.4104 0.2783 0.1712 0.4220 0.2307 

100 5 Ml-Sm-Mx 0.1644 0.2933 0.2084 0.2230 0.4271 0.2551 0.1574 0.4160 0.2092 

 

F=1000 yields the best results in MAP and R-PREC, while 
F=100 gives the best result in P10 on all collections. It could be 
concluded from these observations that for high precision it is 
best to represent the documents with fewer terms (F). 

In calculating the document score, multiplying (Ml) the pair 
scores performs better than summing (Sm), or averaging (Av) 
them over the number of query pairs. The superiority of the 
multiplication over summing and averaging is likely due to the 
fact that the greater the number of lexically related query term 
pairs in a document the more cohesive the document is with 
respect to query terms. Averaging the pair scores hide the effect 
of weakly linked or missing query term pairs to a large extent. 
The superiority of multiplication over summing suggests that the 
more the pair scores vary across query term pairs in a document 
the less the document is cohesive with respect to query terms, 
hence, the less likely that the document is relevant. Thus, we can 
conclude that in relevant documents there are higher number of 
query term pairs that are lexically connected, and the strength of 
this connection tends to be uniform among all query term pairs.  

It can also be observed from the results that summing path 
scores to arrive pair scores is always better than taking the 
minimum (Mn), maximum (Mx), or average (Av) of the path 

scores. This result indicates that the higher the number of 
distinct paths between a query term pair the more likely the 
document is relevant. Thus, in relevant documents query terms 
tend to have more common collocates than in non-relevant 
documents. In obtaining the path scores different methods yield 
the best performance: averaging the weights of the arcs, taking 
the minimum or maximum of arc weights. 
As described previously, LCGS is calculated using solely intra-
document relationships between terms. Therefore, it does not 
contain any collection-wide term information. This is probably 
why LCGS on its own does not always produce results as good 
as the baseline Okapi BM25 system. However, when the scores 
of the both systems are fused (Equation 1), the results are better 
than the either system on its own, suggesting that BM25 and 
LCGS captures complementary relevance information. 

5.3 Performance analysis of COMB-LCGS 
We investigated how retrieval performance changes with respect 
to different combinations of parameters (F, S, x) and score 
calculation methods (Av, Ml, Mx, Mn Sm) in COMB-LCGS 
runs. The best performing runs are given in Table 4 for three 

 

Table 4. Best Performing COMB-LCGS Runs 

Best combinations found Sets and metrics tested on 

HARD04 HARD03 HARD05 
F S x Method 

MAP P10 R-PREC MAP P10 R-PREC MAP P10 R-PREC 

100 15 0.25 Av-Mx-Av 0.2413 0.3778 0.2822 0.2856 0.4396 0.3263 0.1660 0.3740 0.2302 

50 15 0.25 Sm-Mx-Av 0.2385 0.3889 0.2749 0.2902 0.4667 0.3312 0.1677 0.3780 0.2232 

1000 15 0.125 Ml-Sm-Mx 0.2296 0.3667 0.2869 0.2852 0.4313 0.3238 0.1765 0.4220 0.2400 

50 10 0.008 Ml-Av-Mn 0.2160 0.3267 0.2491 0.3264 0.5479 0.3496 0.1675 0.3660 0.2277 

100 5 0.008 Ml-Mx-Mn 0.2186 0.3311 0.2601 0.3228 0.5562 0.3508 0.1703 0.3940 0.2298 

1000 5 0.25 Sm-Mn-Mn 0.2301 0.3200 0.2619 0.3237 0.5271 0.3559 0.1677 0.3640 0.2286 

1000 5 0.25 Sm-Sm-Mn 0.2332 0.3644 0.2657 0.2773 0.4271 0.3239 0.1930 0.4260 0.2532 

100 10 0.25 Ml-Sm-Mn 0.2234 0.3756 0.2640 0.2972 0.4771 0.3345 0.1784 0.4460 0.2336 

1000 5 0.25 Sm-Sm-Av 0.2331 0.3644 0.2689 0.2645 0.3917 0.3174 0.1872 0.4000 0.2546 
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collections (the highest scores for a given collection-evaluation 
measure combination are typed in bold). 

Table 4 shows that there is no unique combination of parameters 
that yields the highest score in all measures in a collection or for 
a given evaluation metric on three collections. In document 
score calculations, Ml and Sm seem to be the most popular 
methods. There is no regular pattern with respect to the 
calculation of the other two types of scores (pair and path). 
Comparison of Table 3 and Table 4 suggests that the selection of 
parameters and methods depends on the document collection 
more in COMB-LCGS runs than in LCGS runs. 

6. CONCLUSION AND FUTURE WORK 
We have investigated different methods for document ranking 
based on lexical cohesion among query terms in a document. 
To.compute the degree of cohesion in a document with respect 
to a query we interpreted a document as a graph whose nodes 
are the terms in the document, and arcs representing the strength 
of association between the terms connected by it. In this way, 
we capture, in contrast to other similar methods reported in the 
literature, not only long-span (transitive) but also short span 
(proximity) lexical cohesion relationships between query terms 
in a principled way in our document representations. 

The associations a term has with other terms in the cohesion 
graph constitute its context in the document. The overall 
strength of the cohesive relationships between all query terms in 
a document is indicator of a common context that makes the 
document relevant to a given query. 

The results of the experiments conducted on three TREC 
collections demonstrate that the proposed methods yield 
performance improvements over the benchmark BM25 
document ranking function and also the previous work by [18]. 
We also found that the retrieval effectiveness of different 
parameters and methods used in COMB-LCGS runs depends on 
the document collection. 

In our future work, we would like to extend the calculation of 
the lexical cohesion score such that the collection distributions 
of the terms are directly incorporated in the document scores. 
This would make the need to combine two complementary 
document ranking functions unnecessary.  

Another future research direction is to extend the use of the 
graph-based method presented in this paper to the visualization 
of document contents. In the Appendix, cohesion graphs for a 
relevant (Fig. A1-a) and a non-relevant document (Fig. A1-b) 
are given. The cohesion graph for a document captures the 
contexts of the terms in the document, and therefore, could be 
used to explore the relationships between them in an interactive 
search scenario. Fig. A1-a suggests that, query terms in relevant 
documents are strongly connected with each other.  In contrast, 
in non-relevant documents they are not directly linked with each 
other (Fig. A1-b). This suggests that by examining the cohesion 
graph for a document, users may be able to infer the context in 
which query terms are used in a document, and make 
preliminary relevance judgment without having to read the 
whole document. 
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APPENDIX 
a. 

 
b. 

 
 
Figure A1 – Visual representation of two documents for the query “Chimpanzee language ability” (HARD-407) drawn using Chisio graph 
visualization tool [10] using the Lexical Cohesion Graph (F50S1). The thickness of arcs represents the strength of association between the 
nodes (i.e. terms). a. A relevant document (NYT20030103.0110) ranked 4th by BM25. b. A non-relevant document (APE20030102.0060) 
ranked 5th by BM25. LCGS demotes document represented in (b), and promotes document represented in (a). 
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Figure A2 – First two iterations of building LCM (S=4) out of a reduced document (F=10). The term under consideration is in bold font. 
Borders of window are marked by “[“ and “]”. Self-collocations are ignored, so the diagonal is always 0. 
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a. 
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c. 

 

 

d. 

 
 
Figure A3 – Transforming a text document into lexical collocation graph. a. An example document, APE20031029.0316, relevant to the 
query “European elections” (HARD-444). b. After stemming and reducing for F=7. c. LCM for S=2 d. LCG derived from LCM (drawn by 
Chisio [10]). 
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