
Architecture Conformance Analysis Approach within
the Context of Multiple Product Line Engineering

Bedir Tekinerdogan
Department of Computer Engineering
Bilkent University, Ankara, Turkey

e-mail: bedir@cs.bilkent.edu.tr

Evren Çilden, Özgü Özköse Erdoğan, Onur Aktuğ
Aselsan, PO Box. 1, 06172 Yenimahalle,

Ankara, Turkey
e-mail: {ecilden | ozkose | oaktug}@aselsan.com.tr

Abstract— One of the important concerns in software product
line engineering is the conformance of the application
architecture to the product line architecture. Consistency with
the product line architecture is important to ensure that the
business rules and constraints that are defined for the entire
product family are not violated. Usually, the conformance
checking to the product line architecture is a manual and tedious
process. A popular approach for ensuring architecture
conformance is reflexion modeling which has been primarily
used to check the consistency between the architecture and the
code. In this paper we present an approach for product line
conformance analysis based on reflexion modeling. We consider
conformance analysis in product line engineering and extend our
discussion to multiple product line engineering. Our study shows
several important challenges regarding reflexion modeling within
the context of product line engineering.

Keywords—architecture conformance analysis, design structure
matrix, architecture views

I. INTRODUCTION

Unlike earlier software reuse approaches, software product
line engineering (SPLE) aims to provide pro-active, pre-
planned reuse at a large granularity (domain and product
level) to develop applications from a core asset base. In
general the SPLE process consists of the two basic activities
domain engineering and application engineering. The domain
engineering process is responsible for establishing the
reusable platform and thus for defining the commonality and
the variability of the product line. In the application
engineering process the applications of the product line are
built by reusing the artefacts of the reusable platform. An
important artefact in SPLE is the product line architecture
which represents the common architecture for the products in
the selected product line. Based on the product line
architecture and the application requirements the application
architecture is developed. Hereby, it is important that the
application architecture is consistent with the product line
architecture. Unfortunately, both the product line architecture
and the application architecture can change due to various
reasons such as bug fixes or new requirements. As such, the
product line architecture and application architecture might
evolve separately from each other leading soon to
inconsistencies between both architectures. For very large
systems the scope of the product line can extend even further
and the product can be built using sub-products from multiple

product lines. In that case the system will include a system-of-
systems architecture and conformance analysis need to be
considered from a further broader perspective.

A related problem to the inconsistencies of the
corresponding architectures in the SPLE context, is usually
defined as architectural drift problem. This problem defines
the general case of the discrepancy between the architecture
description and the resulting implementation. To detect the
inconsistencies among the code and the architecture, various
architecture conformance analysis approaches have been
proposed. A popular conformance analysis is reflexion
modeling in which the architecture design is compared with
the derived abstract model of the code. A reflexion model
highlights the differences between the code and the
architecture and as such defines the extent of the architectural
drift problem.

In this paper we provide an approach for checking the
conformance within the multiple product line engineering
context. We discuss the new challenges and the required
conformance analysis steps at different levels and pave the
road for further research.

The remainder of the paper is organized as follows. In
section 2 we provide the background on multiple product line
engineering and reflexion modeling. Section 3 presents the
industrial case study that we will use to illustrate the problem
statement and the approach. Section 4 presents the overall
reflexion modeling approach. Section 5 discusses the tool that
implements the approach. Finally, section 6 presents the
conclusion.

II. BACKGROUND

A. Reflexion Modeling
Architecture consistency implies that the architecture

design elements can be mapped to the implementation
elements. In case the relationships between the architecture
and implementation do not correspond then these are called
architectural violations. If the relations that are present in the
architecture are also found in the implementation then this is
convergent relation. In case the architecture relation is not
present in the implementation then this is called an absence
relation. Absence relations occur of course during the initial
development of the system in which the architecture is defined
but the implementation is not ready yet. As such, in the early

2014 23rd Australasian Software Engineering Conference

978-1-4799-3149-1/14 $31.00 © 2014 IEEE

DOI 10.1109/ASWEC.2014.23

25

2014 23rd Australian Software Engineering Conference

978-1-4799-3149-1/14 $31.00 © 2014 IEEE

DOI 10.1109/ASWEC.2014.23

25

phases of the development these absence relations might be a
lesser concern. Finally, if the implementation includes relation
that is not present in the architecture, then this is called
divergence relation. Architectural violations are due to
absence or divergence relations.

Consistency Checker (Tool) DeveloperArchitect

Create
Architecture Views

Update
Architecture

Reflexion Model
Analysis

Notify
Architect

Notify
Developer

[action
required]

[violations
detected]

CodeCreate Reflexion
Model

Develop
Code

Update
Code

 Reflexion
Model-V

[action
required]

 Architecture
View Abstract

Model

Map Code to
Abstract Model

Fig. 1. Activity diagram showing the steps in reflexion modeling for
architecture-to-code conformance

A successful design recovery technique that is used for
architecture consistency checking is the reflexion modeling
approach as proposed by Murphy et al. [4]. In principle, a
reflexion model allows a software developer to view the
structure of a system's source through a chosen high-level
(often architectural) view. To check the consistency between
the architecture model and the code, an abstract model of the
code is derived. The two models are then compared to each
other with respect to earlier defined mapping rules between
the code and the implementation. The results of the
comparison are presented to the user through a Reflexion
Model. The reflexion model explicitly represents the
convergence (solid edge), the divergence (dashed edge), and
the absence relation (dotted edge). By analyzing the reflexion
model, the architecture, the code or the mapping rules can be
altered. Usually architecture conformance analysis approaches
that apply reflexion modeling include tools for modeling the
architecture, modeling the mappings, deriving the abstract
model from the source code, the consistency analysis checker,
and the generator of the resulting reflexion model.

B. Multiple Product Line Engineering
When reuse is an important concern a system can be built
based on product line approach. The relation between these
concepts is illustrated in Fig. 2. For very large systems the
scope of the product line can extend further and the product
can be built using sub-products from multiple product lines.
The notion of multiple product lines has been addressed earlier
by different authors [6][11][13][15]. In this context, the notion
of multiple product lines, nested product lines or product lines
of product lines have been used to denote the same concept. In
[15] the authors define multiple product lines as “a set of
interacting and interdependent SPLs”.

In principle we can consider the composition of product
lines as the application of a composite pattern as shown in Fig.
2. A large and complex System could be build using non-
Product Line Units and/or using a Product Line. Product Line
could be either a flat Software Product Line (PL) or a

Composite Product Line (CPL). CPL itself could contain other
product lines and likewise the product line can be built in a
nested manner. Alternatively, the CPL could include only flat
product lines leading to a multiple product line consisting of
independent product lines.

Composite Product
Line (CPL)

build using

Product Line

System

Software Product
Line (PL)

children

Non-Product Line
Unit (NPLU)

uses

uses

*
*

*
* *

Architecturehas

share

Fig. 2. Conceptual Model for System Development using Product Lines,
Multiple Product Lines and non-Product Line Units

An example of a multiple product line architecture is
shown in Fig. 3 which is designed within the context of
Aselsan REHIS, a leading high technology company in
defense systems development in Turkey.

<<CPL>>
REFoRM

<<PL>>
HASP

<<PL>>
VERY

<<PL>>
Navigation

<<PL>>
SelfProtection

Suite

<<CI>>
Reusable
AssetA

<<CI>>
Reusable
AssetB

<<CI>>
Reusable
AssetC

<<CI>>
Reusable
AssetD

<<CPL>> Radar

<<PL>>
RadarArea1

<<PL>>
RadarArea2

 <<CPL>> RadEW

<<PL>>
RadarESM

<<PL>>
RadarECM

<<CI>>
VersionMan

<<CI>>
Grafics

<<CI>>
CommonLib

<<CPL>> ComEW

<<PL>>
ComArea1

<<PL>>
ComArea2

<<CI>>
Reusable
AssetE

<<CI>>
Reusable
AssetF

<<CI>>
Reusable
AssetG

<<CI>>
Reusable
AssetH

<<CI>>
Reusable

AssetI

Fig. 3. Multiple Product Line Architecture

Due to the large scope of the required products a multiple
product line engineering approach is adopted in which
products are composed from different but related product
lines. Fig. 3 represents an example of the product line
decomposition view for the given case study that is based on
the adapted decomposition viewpoint [2]. The stereotypes
<<CPL>> indicate a composite product line, <<PL>> a flat
product line and <<CI>> a configuration item. In the given
example, the system has been defined as one composite
product line (CPL) that contains three separate CPLs (RadEW,
ComEW, and Radar), four PLs (HASP, VERY, Navigation, and
SelfProtectionSuite), and 12 CIs (libraries). The CPLs each
consists of two PLs. An important concern in the development
of products is the consistency of the products on this overall
system-of-systems architecture, as well as the consistency
between the product line architecture and the application
architecture, and the consistency between application
architecture and its corresponding code. We elaborate on these
in the following section

2626

III. REFLEXION MODELING APPROACH IN MPL
ARCHITECTURE

Obviously, the scope of the architecture drift problem and
the required architecture conformance analysis techniques
need to be considered from a broader scope. We distinguish
two basic categories of conformance analysis techniques with
respect to the considered scope: (1) conformance analysis
from single system perspective (2) conformance analysis from
system-of-systems perspective. We discuss these two
approaches in the following two subsections.

A. Single System Conformance Checking
Fig. 4 shows conformance analysis from a single system

perspective. In this case the product is developed from a single
product line. The artefacts involved are Product Line
Architecture, Application Architecture and Code. Hereby we
consider the following levels of architecture conformance
analysis:
� Application Architecture-Code Conformance Analysis

This level considers the ACA of a single application
architecture with the code. This is the general view of ACA as
shown in the approach of Fig. 1. Here, it is usually expected
that the consistency relation is bidirectional, that is, the code
should conform to the architecture and vice versa. This ACA
can be done using conventional approaches in the literature.

� Product Line Architecture-Application Architecture
Conformance Analysis

This level considers the consistency between the product line
architecture and application architecture for a separate sub-
product. The application architecture is derived from the
product line architecture. Inconsistencies might occur in the
initial design or the evolution of the product line architecture
and the application architecture. Usually, the conforms to
relation is from the application architecture to the product line
architecture. However, one might also decide to adapt the
product line architecture to align it for the different application
architectures. The reflexion modeling approach for this case is
shown in Fig. 5.

Product Line
Architecture

Application
Architecture

Code

needs to
conforms to

PL Architect

Developer

Application
Architect

designs

designs

implements

needs to
conforms to

Fig. 4. Conformance analysis from single system perspective

PL Architecture-Application
Architecture Consistency Checker

(Tool)

Application ArchitectPL Architect

Create
PL Architecture Views

Update PL
Architecture

Reflexion Model
Analysis

Notify
PL Architect

Notify
App. Arch.

[action
required]

[violations
detected]

Create Reflexion
Model

 Reflexion
Model-V

[action
required]

 PL Architecture
View

Create Application
Architecture Views

 Application Architecture
View

Update Application
Architecture

Fig. 5. Activity diagram showing the steps in reflexion modeling for product
line architecture-to-application architecture conformance analysis

Note that in this case the creation of reflexion model will be
different than in the case of conformance checking of the
architecture with the code. This is because in general the
application architecture will include so-called deltas, i.e.
unique entities that are required for a particular application but
which are not part of the product line architecture. To make a
difference of deltas with real inconsistencies the reflexion
model should include separate notations for these.

A B

C

E

F

G

D

Key:
 Conformance

 Absence

Divergence

Delta

Fig. 6. Reflexion Uses View

Fig. 6 shows for example a possible reflexion model as a

result of the comparison of the product line architecture uses

view with the application architecture view. The model shows

in addition to convergence, absence and divergence entities

also delta entities. From the figure we can observe that the

uses relation B to E (bold) is missing in the application

architecture although it was defined in the product line

architecture uses view (absence). The uses relations A to C,

and G to B (dashed) is added to the implementation although

this was not present in the architecture (divergence). The

module D is denoted as a delta module that is added to the

application and which is allowed by the product line

architecture. This implies that for conformance checking in

the product line architecture it is also important to define the

possible violation or allowance rules for the deltas.

2727

B. System-of-Systems Conformance Checking
Fig. 7 shows the conformance analysis levels from the

system-of-systems perspective that typically applies to the
multiple product line engineering context. Hereby, the product
is developed from sub-products that are developed in separate
product lines. The artefacts involved are Multiple Product
Line Architecture, System-of-Systems Architecture and
System-of-Systems Code.

System-of-Systems
Architecture

System-of-Systems
Implementation

needs to conforms to
PL Architect

Developers

Multiple Product Line
Architecture

needs to conforms to
MPL Architect

designs

designs

implement

Fig. 7. Conformance analysis from system-of-systems perspective

Here, we distinguish among the following levels of
conformance analysis:

� System-of-Systems Architecture - System-of-Systems
Implementation Conformance Analysis

This ACA considers the conformance between the system-
of-systems architecture and its implementation. In fact the
conformance analysis will be typically similar as in
architecture to code conformance analysis.

� Multiple Product Line Architecture - System-of-Systems
Conformance Analysis

This ACA considers the consistency of the multiple
product line architecture with the System-of-Systems
Architecture. The process is similar as defined in Fig. 5. The
consistency analysis in this case checks whether the final
product adheres to the design and configuration constraints as
defined at the MPL level.

IV. CONCLUSION

In this paper we have described an approach for reflexion
modeling within the context of multiple product line
engineering. The need for this was derived from a real
industrial context in which consistency of the multiple product
line architecture, the product line architecture, and the code is
important. In our analysis we distinguish between the system
level and system-of-systems level of reflexion modeling.
Based on this we could define four different levels of
architecture conformance analysis. The conformance analysis
for product line architecture and application architecture

imposes new requirements on the generation of the reflexion
model as well as the violation rules that define the
inconsistencies. In our future work we will detail each
approach and provide an integrated tool for coping with these
four different levels of architecture conformance analysis.
Further we will also look at the implications for architecture
conformance analysis techniques other than reflexion
modeling.

REFERENCES

[1] M. A. Babar, L. Zhu, and R. Jeffery. A framework for classifying and
comparing software architecture evaluation methods. aswec, 00:309,
2004.

[2] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord, J. Stafford. Documenting Software Architectures:
Views and Beyond. Second Edition. Addison-Wesley, 2010.

[3] J. Knodel, D. Popescu. A comparison of static architecture compliance
checking approaches. Proceedings of the 6th Working IEEE/IFIP
Conference on Software Architecture, Mumbai, India, 2007; 12.

[4] G. Murphy, D. Notkin, K. Sullivan. Software reflexion models: Bridging
the gap between design and implementation. IEEE Transactions on
Software Engineering 2001; 27(4):364–380.

[5] J. Rosik, A. Le Gear, J. Buckley, M. A. Babar, and D. Connolly,
“Assessing architectural drift in commercial software development: a
case study,” Software: Practice and Experience, 41:1, pp. 63–86, 2011.

[6] M. Aoyama, K. Watanabe, Y. Nishio, and Y. Moriwaki: “Embracing
Requirements Variety for e-Governments Based on Multiple Product-
Lines Frameworks”. Proceedings of the 11th IEEE International
Requirements Engineering Conference, 2003.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord, J. Stafford. Documenting Software Architectures:
Views and Beyond. Second Edition, Addison-Wesley: Reading, MA,
2011.

[8] P. Clements, L. Northrop. Software Product Lines: Practices and
Patterns. Boston, MA:Addison-Wesley, 2002.

[9] http://en.wikipedia.org/wiki/Electronic_warfare_support_measures,
accessed January 2011.

[10] ISO/IEC, ISO/IEC 42010 Systems and Software Engineering --
Recommended Practice For Architectural Description Of Software-
Intensive Systems, 2007.

[11] C.W. Krueger, New Methods in Software Product Line
Development. BigLever Software, Austin, TX; in Proc. of 10th
Software Product Line Conference, 2006

[12] K. Lee, L.C. Kang. Feature Dependency Analysis for Product Line
Component Design, in: J. Bosch and C. Krueger (Eds.): ICSR 2004,
Springer LNCS 3107, pp. 69–85, 2004.

[13] R. van Ommering, Widening the Scope of Software Product Lines –
from Variation to Composition, proceeding of the Software Product
Lines 2nd International Conference, SPLC 2, San Diego, CA, Aug 2002,
Springer-Verlag LNCS 2379, p 328.

[14] K. Pohl, G. Böckle, F. van der Linden. Software Product Line
Engineering – Foundations, Principles, and Techniques, Springer, 2005.

[15] M. Rosenmüller and N. Siegmund. Automating the Configuration of
Multi Software Product Lines. In Proceedings of the International
Workshop on Variability Modelling of Software-intensive Systems
(VaMoS). Linz, Austria, Jan. 2010.

[16] K. Schmid, M. Verlage. The Economic Impact of Product Line Adoption
and Evolution. IEEE Software, Vol. 19, No. 4, July/August 2002, 50-57.

2828

