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Determining the compositional properties of surfaces in the environment is an important

visual capacity. One such property is specular reflectance, which encompasses the

range from matte to shiny surfaces. Visual estimation of specular reflectance can be

informed by characteristic motion profiles; a surface with a specular reflectance that is

difficult to determine while static can be confidently disambiguated when set in motion.

Here, we used fMRI to trace the sensitivity of human visual cortex to such motion cues,

both with and without photometric cues to specular reflectance. Participants viewed

rotating blob-like objects that were rendered as images (photometric) or dots (kinematic)

with either matte-consistent or shiny-consistent specular reflectance profiles. We were

unable to identify any areas in low and mid-level human visual cortex that responded

preferentially to surface specular reflectance from motion. However, univariate and

multivariate analyses identified several visual areas; V1, V2, V3, V3A/B, and hMT+,

capable of differentiating shiny from matte surface flows. These results indicate that the

machinery for extracting kinematic cues is present in human visual cortex, but the areas

involved in integrating such information with the photometric cues necessary for surface

specular reflectance remain unclear.

Keywords: visual perception, surface materials, motion flow, functional magnetic resonance imaging (fMRI),

classification

1. INTRODUCTION

Experiencing visual qualities, such as the glossiness of polished marble or the smoothness of
silk, are an integral part of human conscious experience. The automaticity with which this
perceptual process occurs belies the computational difficulty that the brain is faced with in its
task to extract meaningful information from the ambiguous retinal signal. The ambiguity lies in
whether the pattern of light arriving at the retinae originates from variations in illumination, shape,
mesoscale geometrical structure, or the material of the object. Despite this computational challenge
humans can effortlessly visually sense dynamic physical properties such as viscosity, elasticity, or
stiffness and optical properties such as transparency, glossiness, shininess, or roughness and easily
discriminate between material classes. Yet, surprisingly little is understood about how the brain
recognizes materials.

While there is a growing body of research on how the visual system extracts optical material
qualities such as surface glossiness, roughness or translucency (e.g., Nishida and Shinya, 1998;
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Adelson, 2001; Dror et al., 2001; Fleming et al., 2004, 2013;
te Pas and Pont, 2005; Ho et al., 2006; Motoyoshi et al., 2007;
Anderson and Kim, 2009; Doerschner et al., 2010, 2011b; Kim
and Anderson, 2010; Olkkonen and Brainard, 2010; Wijntjes
and Pont, 2010; Kim et al., 2011, 2012; Marlow et al., 2011,
2012; Zaidi, 2011; Fleming, 2012; Gkioulekas et al., 2013), the
majority of this research has focused on visual information
available in static images (but see Sakano and Ando, 2008;
Wendt et al., 2010). However, image motion can also convey
optical material qualities. In a seminal demonstration, Hartung
and Kersten (2002) showed that image motion influences how
we perceive the material of a rotating object: when surface
features are rigidly attached to the object it appears matte,
when surface features slide across the shape, consistent with
specular flow, the object looks shiny. Critically, when the object
was not moving it was ambiguous whether it was shiny or
matte (http://gandalf.psych.umn.edu/users/kersten/kersten-lab/
demos/MatteOrShiny.html). In subsequent work (Doerschner
et al., 2011a), using a combination of image and optic flow
analysis, pattern classification and psychophysics, identified three
motion cues that the brain could rely on to distinguish between
matte and shiny surfaces. Their results revealed a previously
unknown use for optic flow in the perception of optical surface
material properties. How the brain processes material-dependent
image motion, however, is currently unstudied.

In fact, only a few studies have investigated the neural basis
of material perception, and these have focused on static image
cues to surface material appearance. Electrophysiological studies
found neurons in the superior temporal sulcus and anterior
inferior temporal cortex to be responsive to surface material
properties (e.g., Nishio et al., 2012), whereas neuroimaging
studies have identified several loci in low and high level visual
areas including V1, V2, V3, V4, posterior inferior temporal
cortex, and ventral higher-order visual areas (Peuskens et al.,
2004; Cant and Goodale, 2007; Köteles et al., 2008; Cant and
Goodale, 2009, 2011; Cavina-Pratesi et al., 2010a,b; Hiramatsu
et al., 2011; Okazawa et al., 2012; Wada et al., 2014) with
responses in higher level visual areas correlating with perceived
similarities of surface material categories, and responses in
early visual areas correlating with concurrent changes in simple
image features such as spatial frequency or color (Hiramatsu
et al., 2011). The first hint that there may be specialized neural
mechanisms sensitive tomaterial-specificmotion cues came from
an experiment by Kam et al. (2012) which found that visual
adaptation to a specular rotating object biases subsequently
presented objects toward matte appearance.

The study of perceptual or neural responses to optic flow
produced by object motion is complicated by the fact that
both kinematic and photometric factors contribute to flow. The
kinematic deals with the geometric relation between objects and
their image projections and is critical for inferring structure.
The photometric deals with the relation between the material
reflective properties of objects and their images given possibly
varying illumination conditions, and is crucial for perceiving
material appearance. Reliable estimates of the shape of a rigidly
rotating object require the identification of geometric features
that are uniquely tied to surface points. Thus, studies of

perceived “structure-from-motion” have traditionally relied on
kinematic displays composed of moving dots which have a
unique relationship to corresponding surface points. However,
on inspection such displays convey no information about
surface properties such as reflectance or shininess. On the other
hand photometric flows are characterized by spatio-temporal
changes in intensity which provide information about material
properties as well as geometrical structure. While photometric
and kinematic factors are not independent (Zang et al., 2010) one
can assess the effect of added photometric information.

Here, our aim was to investigate the brain processing
underlying the perception of specular reflectance from motion
in human observers. We used functional magnetic resonance
imaging (fMRI) to infer the magnitude of brain activation across
posterior visual cortex to rotating blob-like objects. Following
Doerschner et al. (2011a), we rendered the objects in image
sequences that yield a perceptual impression of a matte or shiny
specular reflectance when set in motion. We also identified
the flow structure of such sequences and used dots to create
presentation conditions that mimic the matte and specular flows
but lack the perception of surface specular reflectance. Our
key prediction was that areas of human visual cortex that are
sensitive to specular reflectance from motion would show an
interaction between the rendering type (image or dot) and the
flow type (matte or shiny).

2. MATERIALS AND METHODS

2.1. Participants
Nine participants, each with normal vision, participated in the
current study. Each participant gave their informed written
consent and the study conformed to safety guidelines for MRI
research and was approved by the Institutional Review Board at
Korea University. One participant was excluded from analysis
due to difficulties in defining his/her retinotopic visual areas, and
the analysis presented here is derived from the remaining eight
participants.

2.2. Apparatus
Functional imaging was conducted using a Siemens 3T-Trio
magnet (Erlangen, Germany) with a 32-channel head coil. To
allow participants to have unrestricted viewing of the display
through each eye, the coil was operated with the lower 20
elements only. Images were collected with a T∗

2 sensitive gradient
echo imaging pulse sequence (TR = 3 s, TE = 30ms,
delay in TR = 0.8 s, flip angle = 90◦, matrix = 96 ×

96, GRAPPA acceleration factor = 2, FOV= 192 × 192mm,
partial Fourier= 7

8 , voxel size = 2mm isotropic) in 35
interleaved oblique coronal slices covering the occipital lobes.
Stimuli were displayed on an LCD monitor (“BOLDscreen,”
Cambridge Research Systems, Kent, UK) with a spatial resolution
of 1920 × 1200 pixels, temporal resolution of 60 Hz, and mean
luminance of 450 cd/m2. The monitor output was linearized
via correction of luminance values measured with a ColorCAL
MKII colorimeter (Cambridge Research Systems, Kent, UK).
The screen was viewed through a mirror mounted on the head
coil at a distance of 112 cm, giving a viewing angle of 26.0◦ ×
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16.4◦. Stimuli were displayed using PsychToolbox (Brainard,
1997; Pelli, 1997; Kleiner et al., 2007) on a Macbook Pro driving
an Intel HD Graphics 4000 video card. As detailed below,
analyses were performed using FreeSurfer 5.1.0 (Dale et al.,
1999; Fischl et al., 1999), FSL 4.1.6 (Smith et al., 2004), and
AFNI/SUMA (2013/05/22; Cox, 1996; Saad et al., 2004).

2.3. Stimuli
Four stimulus conditions, each based on a single blob-like
object, were developed: a rendering class with two conditions
corresponding to photometric and kinematic displays, which we
call “image” and “dot” flows, respectively. These conditions were
crossed with amaterial flow class with two conditions referred to
as “matte” and “shiny.”

“Image” renderings were created with Radiance 3D (Larson
et al., 1998) using the environment-mapping techniques
described in Debevec (2002). Objects were either rendered as
specularily-reflecting or as textured and diffusely reflecting. For
the latter, the specular reflection from one particular view point
was “stuck on” to the object’s surface creating a matte, textured
appearance when the object was rotating. See Doerschner
et al., 2011a for details of the object generation and rendering
procedure, and see Figure 1 for stimulus examples.

Five environment maps were generated by combining several
maps of the Debevec (2002) database using an array of
techniques in Adobe Photoshop such as blending, duplicating,
and reflecting over the horizontal axis. This was done in order
to maximize spatial complexity in the resulting environment
map, and to obtain optimal optic flow estimates. The object
was assigned a material property of either diffuse or specular
reflectance. Such material properties are difficult to distinguish
when viewed statically, as evident in Figure 1 and quantified
in Supplementary Figure 1, and this ambiguity was further
enhanced by histogram equalization and contrast reduction. The
luminance histogram was equalized using the method proposed
by Gonzalez and Woods (2008). This approach essentially
reduces the skewness in the luminance histogram, and thus
removes a (static) image cue that has been shown to correlate
with a glossy appearance (Motoyoshi et al., 2007). As a next
step, we decreased the intensity of pixels above a value of 128
using the following procedure: we computed the difference that
a given pixel intensity has with respect to 128, and multiplied
this difference by 0.4. The new pixel value was then obtained
by adding the attenuated difference to 128, and rounding
the result. As an example a pixel value of 255 would be
reduced to 179 (128 + (255 − 128) × 0.4). This manipulation
reduced image contrast, by attenuating the intensity of particular
bright regions on the object (such as specular highlights),
thus further reducing the effects of static cues to perceived
glossiness (Marlow et al., 2011). By these two processing steps
the mean luminance and contrast of all stimuli (“shiny” and
“matte”) was effectively equated to a value of 141 and 0.2,
respectively.

We define photometric cues on Section 1 as those, signaling
the relation between material reflective properties of objects and
their images given varying illumination conditions. Luminance
histogram skewness and image contrast are only two potential

correlates of shiny appearance (see Chadwick and Kentridge,
2015), thus while we might have reduced photometric cues to
glossiness we did not eliminate all. In particular the idiosyncratic
spatial structure (e.g., compression at high curvature points) in
the images of specular objects remained intact (e.g., Fleming
et al., 2004).

More importantly, we wanted to create a baseline stimulus
where the surface material is ambiguous in the static case [as in
the Hartung and Kersten (2002) demo, i.e., both interpretations,
“shiny” and “matte,” are equally likely; also see Supplementary
Figure 1]. Had our objects already looked shiny in the static case,
we would have introduced an asymmetry for the moving stimuli:
the motion of “sticky” reflections patterns (matte appearance)
would have been surprising and in conflict with the photometric
cues (say high positive skewness), whereas the specular motion
would not have this conflicting information. In order to avoid
this confounding asymmetry we performed the above described
image manipulations.

The kinematic dot renders were created by applying a phase-
based optical flow method (Gautama and Van Hulle, 2002) to
the image renders. Dots (white diamonds, 0.1◦ visual angle in
diameter) were initially placed at uniform locations in the two-
dimensional area occupied by the object (9 dots/◦ visual angle2

density), and each dot was then moved on each frame by an
estimate of its underlying flow field (see Supplementary Movies
3, 4). Due to the lack of photometric information, the shiny/dot
and matte/dot conditions are not perceived as shiny or matte.
Both image and dot renders do, however, retain the differences
between shiny and matte stimuli in coverage, divergence, and
shape reliability cues that were reported by Doerschner et al.
(2011a); see Supplementary Figures 2–4 and Supplementary
Tables 1–3. The details of the methods for calculating the features
are described in Doerschner et al. (2011a).

2.4. Experimental Procedures
The four stimulus conditions (matte/shiny image flows,
matte/shiny dot flows) were presented in a block design. Within
each stimulus block, four objects, each rendered with the the
same environment map (assigned from a set of five maps in
pseudorandom order across blocks) and being approximately
7.0◦ in diameter, were centered at 6.9◦ eccentricity within the
visual field quadrants (see Figure 2). Each object rotated back
and forth eight times over the course of a 15 s block, with each
rotation traveling 15◦. The object in a given visual field quadrant
rotated about the same axis over the course of the experiment,
and the three cardinal axes and one oblique axis were assigned
to the four visual field quadrants (see Supplementary Movie 5).
Blocks were ordered in sequences in which the four stimulus
condition blocks were followed by a blank block, with the
arrangement of stimulus blocks chosen such that each condition
was preceded an equal number of times by each of the other
conditions. There were four such sequences per run, and an
additional blank block was appended to the run order, giving a
run duration of 315 s (105 volumes). Each participant completed
12 runs, collected within a single session.

A demanding foveal task was used to control fixation, and
divert attention from the appearance of the objects. Throughout
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FIGURE 1 | Example frames for “matte” and “shiny” rendered images and dots. Columns show the set of environment maps that were applied to the object,

and rows show the texture applied as diffuse (“matte”) and specular (“shiny”) reflectance with each rendering method. In these static images, the “shiny” and “matte”

conditions are difficult to discriminate. In sequences of rotation, however, they are readily perceived as having different reflectance properties (see Supplementary

Movies 1, 2).

FIGURE 2 | Display and stimulus layout. Four rotating objects were

presented in the visual field quadrants, surrounding a central fixation marker.

each run, a sequence of digits, which were randomly chosen
from zero to nine and of random polarity (black or white), was
presented at center of the screen. Participants were instructed
to press a button when one of two target digits appeared in
the sequence. The foveal targets, which had opposite polarities

and differing digits, were introduced to the participants at the
beginning of each run.

2.5. Anatomical Acquisition and Processing
A T1-weighted anatomical image (sagittal MP-RAGE, 1mm
isotropic resolution) was collected from each participant in a
separate session. FreeSurfer (Dale et al., 1999; Fischl et al., 1999)
was used for segmentation, cortical surface reconstruction, and
surface inflation and flattening of each participant’s anatomical
image.

2.6. Visual Area Definition
In a separate session, standard protocols (Sereno et al., 1995;
DeYoe et al., 1996; Engel et al., 1997; Larsson and Heeger,
2006; Hansen et al., 2007; Schira et al., 2007; Bressler and Silver,
2010) were used for defining retinotopic visual areas of the
brain. Participants observed a clockwise/anti-clockwise rotating
wedge stimulus during four runs and expanding/contracting
ring stimulus during two runs. We manually defined the visual
areas V1, V2, and V3 (Dougherty et al., 2003), hV4 (Wade
et al., 2002; Goddard et al., 2011), LO1/2 (Larsson and Heeger,
2006), and VO1 (Brewer et al., 2005) based on the visual
field preferences established from phase-encoded analysis (see
Figure 3).
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FIGURE 3 | Parcellation of human visual cortex of an example participant. (A) Angular visual field preference obtained from rotating wedge stimulation, with a

threshold of 10dB BOLD signal-to-noise-ratio (where “signal” was defined as the power of the BOLD timeseries at the wedge rotation frequency and “noise” was

defined as the average power in the two neighboring frequency bins). (B) Eccentricity visual field preference obtained from expanding/contracting ring stimulation, with

a threshold as in (A). (C) Regions significantly (puncorrected < 0.01) responsive to a moving (expanding/contracting) > static dots stimulus. (D) Regions significantly

responsive to all conditions against blank condition contrast (p FDR < 0.001). All panels show a flattened representation of an example participant’s posterior left

hemisphere. Colors in (A,B) correspond to the visual field legend shown below the panel.

We also functionally defined the humanMT complex (hMT+;
Tootell et al., 1995) and Lateral Occipital Complex (LOC; Malach
et al., 1995) via two runs of moving (expanding/contracting)
and static low-contrast dots and two runs of a Face-Place-
Object (FPO) paradigm (Cant and Goodale, 2011), respectively.
For the FPO paradigm, we collected face and object images from
the Carnegie Mellon University database (Harvey and Burgund,
2012) and place images from the Caltech database (Andrews
et al., 2010).

The relevant localizer contrast from a GLM analysis (motion
> static for hMT+, objects > faces and places for LOC) was
visualized on the flattened cortical surface of each participant and
hemisphere. The threshold on the contrast statistic was manually
adjusted to estimate the extent of hMT+ and LOC, with the
location of hMT+ and LOC identified as the cluster that matched
the expected anatomical location and the expected location with
respect to the retinotopically-defined visual areas. The ROIs
were then drawn manually as a closed and filled region on the
cortical surface (see Figure 3C for an example ROI definition for
hMT+).

2.7. Pre-processing
Functional images were motion corrected using AFNI, with
reference to the volume acquired closest in time to a within-
session fieldmap image, and resampled with heptic interpolation
before being unwarped using FSL to correct geometric distortions
introduced by magnetic field inhomogeneities. No slice-timing
correction was applied. The participant’s anatomical image was
then coregistered with a mean of all functional images via AFNI’s
align_epi_anat.py, using a local Pearson correlation cost
function (Saad et al., 2009) and six free parameters (three
translation, three rotation). Coarse registration parameters were
determined manually and passed to the registration routine to
provide initial estimates and to constrain the range of reasonable
transformation parameter values. The motion-corrected and
unwarped functional data were then projected onto the cortical
surface by averaging between the white matter and pial
boundaries (identified with FreeSurfer) using AFNI/SUMA.
No specific spatial smoothing was applied. All analysis was
performed on the nodes of this surface domain representation
in the participant’s native brain space.
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2.8. Univariate Analysis
Stimulus blocks for each condition were modeled as boxcars
and convolved with SPM’s canonical haemodynamic response
function. Legendre polynomials up to the third degree were
included as additional regressors, for each run, to detrend
for low-frequency noise. The GLM was estimated via AFNI’s
3dREMLfit, which accounts for noise temporal correlations via
a voxelwise ARMA(1,1) model.

The stimulus condition beta weights obtained from the GLM
were converted to Percent Signal Change (PSC) via division
by the average of the synthesized baseline timecourse (derived
from the Legendre polynomial regressors). For each visual area,
such percent signal change values were then averaged across the
cortical surface nodes within the area that showed above-baseline
responses to visual stimulation (identified by an all stimulus > 0
contrast, p FDR < 0.001).

The mean PSC value across participants within each area
were normalized by subtracting each participant’s mean response
across stimulus conditions and adding the grand mean across
participants and conditions (Cousineau, 2005). A Two-way
within-subjects ANOVAwas then conducted for each visual area,
with flow (matte, shiny) and rendering (image, dots) as fixed
factors and participants as a random factor.

2.9. Multivariate Pattern Analysis (MVPA)
The timeseries for each participant and run were first high-
pass filtered with Legendre polynomials up to the third degree.
An amplitude was then estimated for each block as the mean
signal within its five volumes (15 s), shifted by two volumes (6
s) to compensate for the delayed hemodynamic response. The
amplitude estimates within each run were then normalized (z-
scored). This procedure produced 192 responses per participant
for each node on the cortical surface; four responses for each of
four conditions in each of 12 runs.

The MVPA was performed separately for each participant and
visual area, and was implemented using a 12-fold leave-one-
run-out strategy in which the responses from a given run were
designated (in turn) to form the “test” set and the remaining
runs to form the “training” set. In each fold, separate linear
support vector machines (SVMs) were trained for image and dot
renderings on labeled examples of matte and shiny flow response
patterns. Each training set thus consisted of 88 examples,
with matte and shiny flow examples equally represented. Flow
discrimination accuracy was then estimated by using the trained
SVMs to predict the flow condition of test set examples from
the same (within-class) or different (between-class) rendering.
SVMs were implemented with libsvm 3.17 (Chang and Lin,
2011) via Matlab 8.1.0.604 (The Mathworks Inc., Natick, MA).
The accuracy was based on the proportion of hits and false alarms
after aggregation of the 12-folds, and expressed in d′ units. The
d′ calculation included an addition of 0.5 to all hit and false
alarm counts and an addition of 1 to the number of trials in each
condition class, in order to accommodate extreme hit or false
alarm rates (Stanislaw and Todorov, 1999).

Features were selected for inclusion in the response pattern for
a given visual area based on the t-value of the all stimulus> blank
screen contrast performed in the univariate analysis. The surface

nodes within a given visual area were ranked in descending order
based on the magnitude of this localizing t-value, and the MVPA
procedure was performed with patterns formed from including
increasing numbers of such ranked nodes (from n = 10 to
N, where N is the number of nodes with statistically significant
t-values at p < 0.05, one-tailed, uncorrected) in 10 node
increments. The variation inMVPA performance with increasing
nodes was summarized via a least-squares fit to the function:

p = a(1− e
−n
c ) (1)

where p is the performance level (d′), n is the number of
included nodes, and a and c are fitted parameters that describe the
asymptotic performance (a) and curvature (c). The classification
accuracy for a given participant, visual area, training class (image,
dot), and testing class (within-class, between-class) was then
taken as either the fitted asymptote or, in the case of unsuccessful
fit, the mean accuracy over nodes. The classification accuracy
and fitted performance levels with increasing nodes are shown
in Supplementary Figures 5–13.

2.10. Multiple Comparisons Correction
The largely exploratory nature of the research question
investigated in this study motivates the testing of hypotheses
in multiple candidate regions in the posterior vision-sensitive
area of the brain. This approach necessitates consideration
of the inflationary effect of performing statistical analyses in
multiple regions-of-interest (visual areas) on the rate of false-
positive inference. Here, we adopted a false discovery rate (FDR;
Benjamini and Hochberg, 1995) strategy to help reduce this
multiple comparisons problem. Specifically, we adjusted the
probability outcomes of each statistical test conducted across
multiple visual areas via the FDR procedure, and the resulting
p FDR values were then evaluated at a criterion of 0.05 for
statistical significance (with the exception of the localizer
contrast, which was evaluated at 0.001).

3. RESULTS

We examined the response characteristics of the low and
mid-level regions of human visual cortex during observation
of blob-like objects with motion properties consistent with
different surface attributes (shiny and matte). The objects were
rendered either as dynamic intensity flows (the photometric or
“image” condition) or as moving light points (the kinematic
or “dot” condition). Photometric presentation supports the
perception of matte or shiny surface attributes, whereas
kinematic presentation, despite containing similar flow patterns,
does not evoke a perception of matte or shiny surface structure.
The renderings were presented in four quadrants of the visual
field (see Figure 2) while fMRI was used to measure the BOLD
activity from within the posterior region of human visual
cortex. This stimulus presentation evoked significant activity
levels (p FDR < 0.001), aggregated over shiny and matte
renderings and dot flows and compared with a blank screen
baseline, within low-level visual areas V1, V2, and V3, dorsal
areas LO1, LO2, V3A/B, and hMT+, and ventral areas hV4 and
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VO1. We also evaluated the anterior subdivision of the LOC,
defined functionally as preferring images of objects over images
of faces and houses, but it was not activated consistently across
participants and was therefore not analyzed further.

3.1. Response Amplitude
We conducted a Two-way ANOVA (flow class: matte, shiny;
rendering: image, dot) on the mean response amplitude elicited
in each visual area. We predicted that the perceptual sensitivity
to material properties from motion would be related to the
activity levels in the low and mid-level regions of human visual
cortex, and that this would be demonstrated via an interaction
between the motion flow class (matte, shiny) and the rendering
type (image, dot). However, as shown in Figure 4, such an
interaction was not evident in any of the investigated visual
areas (all p FDR >> 0.05; see Table 1, for details).

We then investigated the potential main effects of flow (matte,
shiny) and rendering (image, dot). There was a significant main
effect of flow class for the mean BOLD response amplitudes in
V1 [F(1, 7) = 37.62, p FDR = 0.004], V2 [F(1, 7) = 20.22, p FDR =

0.013], LO1 [F(1, 7) = 9.72, p FDR = 0.038], and hMT+ [F(1, 7) =
13.41, p FDR = 0.024]. Responses were greater for shiny than
matte flows in V1 (difference mean = 0.26, SEM = 0.04) and
V2 (difference mean = 0.18, SEM = 0.04) while response were
greater for matte than shiny in LO1 (difference mean = 0.09,
SEM = 0.03) and hMT+ (difference mean = 0.13, SEM = 0.04).
Themain effect of flow class was not significant in the other visual
areas under investigation (p FDR > 0.05; see Table 1).

There was also a significant main effect of rendering class
for the mean BOLD response amplitudes in V1 [F(1, 7) =

89.87, p FDR < 0.001], V3 [F(1, 7) = 17.72, p FDR = 0.012],
hV4 [F(1, 7) = 8.69, p FDR = 0.039], VO1 [F(1, 7) = 10.43,

p FDR = 0.033], and LO1 [F(1, 7) = 43.42, p FDR = 0.001].
Responses were greater for dots than images in each of these
areas (V1 difference mean = 0.64, SEM = 0.07; V3 difference
mean=0.23, SEM = 0.06; hV4 difference mean = 0.26, SEM =

0.09; VO1 difference mean = 0.33, SEM = 0.10; LO1
difference mean = 0.24, SEM = 0.04). The main effect of
rendering class was not significant in the other visual areas under
investigation (p FDR > 0.05; see Table 1).

3.2. Response Pattern
We also investigated whether the multivariate pattern of
responses within each visual area could discriminate between
shiny and matte flows. We employed a pattern classification
procedure to test for visual areas with a representation of
surface material from motion flows. For each visual area, a
classifier was trained with activation patterns from a particular
rendering class (image or dot) and then tested with either
the same or different rendering class (within or between-class
classification). The rationale was that a visual area representing
surface material would be significantly better at discriminating
shiny and matte flows for within-class classifications with image
renderings, since that is the only combination in which surface
material perception differs between shiny and matte in the
same way between training and testing. However, as shown in
Figure 5, this interaction between rendering class (image, dot)
and classification type (within, between) was not statistically
significant in any of the visual areas under consideration (all
p FDR > 0.05; see Table 2, for details).

We then considered themain effects of rendering class (image,
dot) and classification type (within, between) on the observed
classification accuracies. None of the visual areas under
consideration had a significant main effect of rendering

FIGURE 4 | BOLD signal amplitude evoked by image and dot renders of shiny and matte flows. Each panel shows the magnitude of BOLD

response (normalized percent signal change), averaged over participants (error bars indicate SEM).
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TABLE 1 | Results of Two-way ANOVA for each visual area, conducted on the average signal amplitude for each participant.

Area Flow (shiny, matte) Rendering (image, dots) Flow × Rendering

F(1, 7) p p FDR F(1, 7) p p FDR F(1, 7) p p FDR

V1 37.62 < 0.001 0.004 89.87 < 0.001 < 0.001 3.85 0.090 0.509

V2 20.22 0.003 0.013 3.03 0.126 0.161 0.43 0.531 0.710

V3 4.49 0.072 0.092 17.72 0.004 0.012 0.39 0.552 0.710

hV4 1.54 0.254 0.286 8.69 0.021 0.039 0.11 0.747 0.747

VO1 0.31 0.593 0.593 10.43 0.014 0.033 2.28 0.175 0.509

V3A/B 4.81 0.064 0.092 4.58 0.070 0.105 1.76 0.226 0.509

LO1 9.72 0.017 0.038 43.42 < 0.001 0.001 0.21 0.659 0.741

LO2 6.33 0.040 0.072 2.69 0.145 0.163 0.84 0.389 0.701

hMT+ 13.41 0.008 0.024 1.42 0.272 0.272 1.98 0.202 0.509

FIGURE 5 | Accuracy of multivariate pattern classification of flow type (shiny/matte) in each visual area. Within-class (black) accuracy denotes the level at

which the pattern of responses to a given rendering class (image/dot) can distinguish the material flow type (shiny/matte) of the same rendering class.

Between-class (red) accuracy denotes the level at which the pattern of responses to a given rendering class (image/dot) can distinguish the material

class (shiny/matte) of the other rendering class. Points and lines show mean and SEM over participants, respectively, in d′ units.

class (all p FDR > 0.05). The main effect of classification type was
significant in V1 [F(1, 7) = 25.26, p FDR = 0.011], V2 [F(1, 7) =

11.49, p FDR = 0.021], V3 [F(1, 7) = 21.16, p FDR = 0.011],
hV4 [F(1, 7) = 18.10, p FDR = 0.011], V3A/B [F(1, 7) =

14.28, p FDR = 0.016], and LO2 [F(1, 7) = 7.08, p FDR = 0.049].
As shown in Figure 5, accuracies were significantly greater for
within-class than between-class classification in these areas.

Finally, we examined the ability of each visual area and
classification condition to discriminate shiny and matte flows
at levels significantly greater than chance. All of the visual
areas under consideration were able to perform within-class
classification (image → image, dot → dot) significantly greater
than chance (all p FDR < 0.05 except LO2 where p FDR =

0.057; see Table 3, for details). Visual areas V1, V2, V3,
V3A/B, and hMT+ were also able to perform between-class
classification (image → dot, dot → image) significantly greater
than chance (all p FDR < 0.05). The between-class classification
performance was less reliable for hV4 and VO1 (p FDR between
0.051 and 0.067), and not significantly greater than chance in LO1
and LO2 (all p FDR > 0.05).

4. DISCUSSION

We measured the responses of visual areas to rotating 3D
objects, with photometric or kinematic flows corresponding
to shiny or matte objects, while observers were engaged in a
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TABLE 2 | Results of Two-way ANOVA for each visual area, conducted on the accuracy (d′) for each participant.

Area Classification (within, between) Rendering (image, dots) Classification × Rendering

F(1, 7) p p FDR F(1, 7) p p FDR F(1, 7) p p FDR

V1 25.26 0.002 0.011 3.02 0.126 0.313 10.32 0.015 0.133

V2 11.49 0.012 0.021 2.72 0.143 0.313 4.91 0.062 0.187

V3 21.16 0.002 0.011 4.61 0.069 0.310 6.27 0.041 0.184

hV4 18.10 0.004 0.011 10.62 0.014 0.125 2.60 0.151 0.226

VO1 3.52 0.103 0.132 0.97 0.358 0.537 2.96 0.129 0.226

V3A/B 14.28 0.007 0.016 0.00 0.998 0.998 0.26 0.627 0.705

LO1 1.13 0.323 0.323 0.64 0.451 0.580 2.90 0.132 0.226

LO2 7.08 0.032 0.049 0.42 0.538 0.605 0.42 0.539 0.693

hMT+ 2.31 0.173 0.194 2.29 0.174 0.313 0.00 0.980 0.980

TABLE 3 | Results of a one-sample t-test against a chance level of d′ accuracy of 0 for each visual area, conducted on the accuracy of multivariate

pattern classification.

Image → Image Dot → Dot Image → Dot Dot → Image

Area t7 p p FDR t7 p p FDR t7 p p FDR t7 p p FDR

V1 4.94 0.001 0.008 5.55 <0.001 0.001 5.28 0.001 0.003 4.23 0.002 0.006

V2 4.05 0.002 0.009 5.19 0.001 0.001 5.86 <0.001 0.003 5.78 <0.001 0.003

V3 3.89 0.003 0.009 5.40 0.001 0.001 4.10 0.002 0.007 3.87 0.003 0.007

hV4 2.32 0.027 0.030 5.32 0.001 0.001 2.06 0.039 0.054 2.16 0.034 0.051

VO1 2.32 0.027 0.030 2.90 0.011 0.015 2.01 0.042 0.054 1.87 0.052 0.067

V3A/B 3.57 0.005 0.010 5.08 0.001 0.001 3.32 0.006 0.014 2.32 0.027 0.048

LO1 2.63 0.017 0.025 2.66 0.016 0.018 1.50 0.088 0.099 1.39 0.104 0.117

LO2 1.81 0.057 0.057 2.12 0.036 0.036 1.07 0.160 0.160 1.07 0.161 0.161

hMT+ 3.22 0.007 0.013 3.45 0.005 0.008 2.75 0.014 0.026 5.16 0.001 0.003

demanding fixation task. With almost all of the previous work
investigating the cortical processing of material properties with
static images (Cant and Goodale, 2007, 2009; Hiramatsu et al.,
2011), we focused here on dynamic information for surface
reflectance (Doerschner et al., 2011a). While we find no obvious
candidates in human low and mid-level visual cortex for an
explicit representation of specular reflectance from motion, we
do find several areas with response properties that are modulated
by the structure of matte and shiny flows.

4.1. Representation of Specular
Reflectance from Motion
We did not observe an interaction between rendering
type (image, dot) and flow (matte, shiny) in the mean response
amplitudes of any of the visual areas under consideration.
We also did not observe a difference in the accuracy of
pattern classification performance that would be indicative of a
representation of specular reflectance from motion in any of the
visual areas.

However, the results outlined above do not necessarily
indicate that the visual areas investigated in the current study
are unable to represent the perception of specular reflectance
from motion. Such a representation may produce differences
in response amplitude that are too small to be recovered with

the current design, or may be present at a spatial scale that
is not visible to the resolution of our fMRI measurements.
Furthermore, it is possible that the extraction of specular
reflectance from motion requires observer attention to be
directed at the stimulus. Our wariness of a attentional confound,
in which shiny surfaces are potentially more engaging than
matte surfaces, led us to direct our observers’ attention to an
unrelated task at fixation. However, a potential consequence of
this attentional focus is a lack of activation of cortical pathways
that are involved in extracting the surface properties from the
motion flows. This could perhaps be assessed behaviorally in
future studies using an adaptation paradigm (Kam et al., 2012)
with differing attentional demands.

4.2. Correlates of Specular Reflectance
Motion
We did find several areas in low and mid-level human visual
cortex that were affected by whether the flow was consistent
with a shiny or matte surface. Shiny and matte flows differ on
many dimensions, which raises the question of which aspects
of the motion signals are affecting the response properties of
the different visual areas. For example, shiny and matte flows
can differ in the statistical distribution of velocity parameters
(mean and variance of speed and direction; cf. Doerschner et al.,
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2011b), luminance contrast, and higher-order regularities. We
next consider the potential contribution of such dimensions to
the visual regions under investigation.

4.2.1. Effect of matte vs. shiny flow class on average

responses
While areas V1, V2, LO1, and hMT+ all had significantly
different levels of mean activity for shiny andmatte flows, V1 and
V2 showed larger responses to shiny than to matte flows, whereas
LO1 and hMT+ showed the opposite pattern (Figure 4).

If shiny and matte objects contain different levels of motion
energy, that could potentially account for the differences in
activity levels we observed in early visual areas. We checked
this possibility by computing motion energy for all of our
stimuli using Gabor filters (Adelson and Bergen, 1985). While
the motion energy between shiny and matte photometric flows
did not differ significantly, we found that motion energy for
matte dot flows were significantly larger than for shiny dot flows
(Supplementary Figure 14 and Supplementary Tables 4, 5). If
cortical areas were sensitive solely to motion energy we would
expect a significant interaction term for rendering type and
material class for identified cortical areas. This was not, however,
what we found. Thus, while motion energy might explain the
general larger responses of cortical areas to dot flows1, they
cannot account for the overall observed response pattern.

Macaque V1 (Priebe et al., 2006) and MT (Priebe et al., 2003)
contains neurons selective for stimulus speed, and a difference
in speed distributions between shiny and matte stimuli could
potentially introduce differences in response magnitude into
the observed fMRI responses. We computed speed histograms
to evaluate such a possibility and find no difference in mean
speed between shiny and matte flows (Supplementary Figure
15), making it unlikely that speed is responsible for the effects
observed in low-level areas.

Inspecting the corresponding motion direction histograms
in Supplementary Figure 15 it becomes apparent that the
distributions for matte flows form a cluster around a dominant
direction of motion whereas shiny flows tend to be distributed
more uniformly—owing to the large variations of flow direction
in specular flow (Doerschner et al., 2011a). Considering
the different receptive field sizes in V1/V2 compared to
hMT+/LO1 (Mikami et al., 1986; Amano et al., 2009) we might
be able to partially explain the opposing response patterns to
matte and shiny flows in these areas: due to their small receptive
field sizes, non-overlapping neural populations in V1/V2 might
respond their preferred motion, creating large net response.
In hMT+, however, due to the larger receptive field sizes,
and opponent processes (Heeger et al., 1999) a given neural
population may have preferred and non-preferred direction in
their receptive field present, thus creating an overall decreased
response. By the same argument we would expect decreased net
response in V1/V2 to matte flows and a relatively increased net
response in hMT+/LO1. Though variability in motion direction
can be related to motion coherency these two are not the same

1With the exception of area hMT+ which is known to saturate at lower contrasts.

concept2. Thus, we consider the latter as a potential explanation
of our results next.

Shiny and matte flows, both kinematic and photometric,
differ with respect to the degree of motion coherency. There
is large literature which has studied behavioral and neural
responses to structure-from-motion stimuli composed of dots
whose coherency is manipulated by assigning random velocities
to varying proportions of the dots.While this dimension does not
map simply on to matte vs. shiny flows, coherency is correlated
with distortions in the appearance of specular flows (Doerschner
et al., 2011a). Specifically Doerschner et al. (2011a) showed that
distortion manifests itself in the degree of expansion/contraction
of optic flow (“divergence”), the degree to which image features
could be unambiguously tracked across time (“trackability”),
and the degree to which features were consistent with rigid-
body rotation (“shape reliability”), for matte and shiny surfaces.
Both decreased trackability and shape reliability (and perhaps to
a lesser extent divergence) are also characteristic of decreased
coherence in random dot displays. It has been shown that
V1 shows greater activation for random dot motion than for
translational coherent motion (Braddick et al., 2001, but see
Morrone et al., 2000), wheras areas V5/hMT+ responses increase
with increases in motion coherence (Rees et al., 2000; Braddick
et al., 2001; Händel et al., 2007 but also see McKeefry et al., 1997;
Paradis et al., 2000; Smith et al., 2006) raising the possibility that
these stimulus features account in part for the larger response of
early visual cortex to shiny over matte, and the opposite pattern
found in hMT+.

While this finding confirms the potential usefulness of these
three motion cues in identifying reflectance properties, the
current experimental design does not permit to identify the
relative weight that these cues are given at this early stage of the
visual analysis. This will be the topic of future experiments.

It is likely that simple cues like coherence or divergence play
a less important role in motion-based material identification at
intermediate levels of visual analysis compared to the early stages
of visual processing. This idea is supported by the observed
larger responses of LO1 to matte flows. However, this increased
response might not necessarily indicate sensitivity to motion
characteristics—such as coherence—per se (Larsson and Heeger,
2006), but rather reflect this area’s sensitivity to 3D structure
(Freeman et al., 2012). One hallmark of specular moving objects
is that they frequently yield a non-rigid percepts. Thus, these
stimuli may provide less information for computing 3D rigid
shape from motion than diffusely reflecting moving objects—
which might account for the observed pattern of responses.

2We equate variability with estimated variance of the motion direction histogram.

Coherence is defined as similarity in motion direction and speed. The component

that relates the two concepts is motion direction, however one can think of all

possible constellations of high and low motion direction variability and high and

lowmotion coherence. For example: A given dot motion field can have lowmotion

direction variability and low coherence (if dots move at different speeds, but in

the same direction) or low motion direction variability and high coherence (if

dots move at the same speeds, in the same direction) or can have high motion

direction variability and high coherence (half of the dots move at same speed in

one direction and the other half at the same speed at the opposite direction, with

non-overlapping dot trajectories) or can have highmotion direction variability and

low coherence (random direction dot motion).
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Taken together, differences in motion coherence in shiny and
matte flows appear to offer a fairly good account of the observed
pattern of responses in areas V1 and hMT+, keeping in mind
though that previous findings on coherence preferences of areas
V1, V2, and hMT+ have been mixed. It is likely that it is a
combination of factors such as direction variability, coherence
and kinetic structure that is responsible for the observed pattern
of cortical responses—either directly or potentially indirectly
via altering other stimulus properties such as perceived surface
brightness, contrast, or motion detection thresholds.

4.2.2. Discrimination of Matte vs. Shiny Flows Across

Visual Areas
Visual areas V1, V2, V3, V3A/B, and hMT+ were able to
discriminate shiny and matte flows at levels significantly above
chance, for both image and dot renders and within and
between-class classification. What flow information is common
to both photometric and kinematic flows that might explain
the discriminative capabilities these visual areas? From the
above discussion and stimulus measurements it appears that
motion coherence, direction variability, and shape reliability are
viable candidates, since these computations would all require to
discount the intensity variations in photometric flow and thus
be consistent with the extraction of a motion field. In line with
this argument, we ruled out motion energy—a computation that
does depend on photometric properties (Adelson and Bergen,
1985)—as an explanatory factor.

The response profile of these cortical areas thus suggests that
the computation of surface material cannot simply discount
structure, but that these two computations are interrelated.
Intuitively this makes sense, given that 3D structure is needed,
for example, to explain away (via boundary motion) a non-
rigid interpretation of optic flow (see Supplementary Movies
6,7), or the interesting perceptual trade-off between perceived
shininess and perceived rigidity of moving objects (Doerschner
and Kersten, 2007; Zang et al., 2009, 2010; Doerschner et al.,
2011a; Doerschner, 2013). Conversely, in some cases material
inference may also influence perceived structure (Kersten et al.,
1992).

4.3. Conclusion
Natural image flows carry information not only about structure,
but also about material. Traditional studies of object motion have
focused on structure-from-motion and have typically used very
simple experimental manipulations such as varying coherence by
randomizing the motions of subsets of dots. Dot flows largely
miss the space of flows normally experienced and in particular
which provide information for material. While were unable to

identify regions of low and mid-level human visual cortex that
respond preferentially to material structure from motion, we
report the presence of several visual areas that modulate their
activity with changes in specular reflectance flows.

Future work needs to be done to study brain mechanisms
involved in the interaction between image flow properties and
the conscious decisions about material. For example, Cant and
Goodale (2007) have shown that attention to static object shape
or material modulates different regions of the ventral stream,

and more recently Wada et al. (2014) identified ventral and
dorsal areas involved in both, the processing of image cues to
glossiness as well as the perception of gloss in static images.
More work is also needed to continue to quantify higher-order
image regularities that capture characteristicmotion patterns that
support the dimensions along which humans can perceive object
material qualities. For example, simple inspection of a rotating
shiny object through an aperture illustrates the importance of
boundary information and thus shape (Supplementary Movies
6, 7): without shape to “explain away” non-rigid interpretations,
one often perceives non-rigid fluid flow.
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