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Abstract. In this study, we focus on the analytical derivation of the
expected distance between all sensor nodes and the base station (i.e.,
E[dtoBS]) in a randomly deployed WSN. Although similar derivations
appear in the related literature, to the best of our knowledge, our deriva-
tion, which assumes a particular scenario, has not been formulated be-
fore. In this specific scenario, the sensing field is a square-shaped region
and the base station is located at some arbitrary distance to one of the
edges of the square. Having the knowledge of E[dtoBS] value is important
because E[dtoBS] provides a network designer with the opportunity to
make a decision on whether it is energy-efficient to perform clustering for
WSN applications that aim to pursue the clustered architectures. Simi-
larly, a network designer might make use of this expected value during
the process of deciding on the modes of communications (i.e., multi-hop
or direct communication) after comparing it with the maximum trans-
mission ranges of devices. Last but not least, the use of our derivation
is not limited to WSN domain. It can be also exploited in any domain
when there is a need for a probabilistic approach to find the average
distance between any given number of points which are all assumed to
be randomly and uniformly located in any square-shaped region and at
a specific point outside this region.

Keywords: Wireless sensor networks, Optimal cluster numbers, Energy
efficiency, Random deployment, Base station location.

1 Introduction

A Wireless Sensor Network (WSN) is composed of a sheer number of battery-
powered sensor nodes that communicate with each other through a wireless chan-
nel. Moreover, these nodes have moderate storage and application specific sens-
ing capabilities in addition to their limited on-board processing power. Although
WSNs suffer from scarcity of these resources, they offer promising potential to
operate in unattended and harsh environments where the human-interacted or
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the human-controlled monitoring schemes are risky, inefficient and sometimes
infeasible.

In a typical WSN application, the main objective is to deploy a multitude
sensor nodes working collaboratively in order to cover a given sensing field and
to transfer (i.e., connectivity) the sensed data to the base station (BS). As such,
coverage and connectivity are considered as two primary performance metrics
and dominating factors that achieve the optimal use of an application’s scarce
resources for a given deployment scenario. The sensor nodes are deployed ac-
cording to either scenario: the deterministic or the random deployment. In the
deterministic deployment, the locations of the sensor nodes are known in pri-
ori. Conversely, in the random deployment, the locations of the sensor nodes
are not deterministic as the term also indicates. The random deployment sce-
narios are used more frequently than their deterministic counterparts because
the randomly deployed WSNs (RDWSNs) have higher potential to be devised
in real-life scenarios especially when there is a need to monitor a physical phe-
nomenon taking place in hostile and inaccessible environments.

Since there is a lack of prior knowledge about the locations of nodes in RD-
WSNs, the connectivity analysis is more stringent than the WSNs that adopt
the deterministic deployment. In a deterministic scenario, the average distance
between each node and its neighbors and similarly the average distance between
each node and the BS are known in advance. However, in the random deploy-
ment scenarios, the above mentioned distances, which indeed affect the energy
consumption and thus the lifetime of an application, are not known before the
deployment. Therefore, it is really crucial for a network designer to estimate these
distances as s/he needs to find out the modes of communication adopted by the
network. These modes can be categorized as the multi-hop communication and
the direct communication (a.k.a., single-hop). In a number of RDWSN applica-
tions, each sensor node is assumed to reach the BS within a single-hop. However,
in those applications that adopt the direct communication, it is observed that
a set of sensor nodes, which is far away from the BS, consumes a considerable
amount of energy because it needs to perform long-haul transmissions. There-
fore, those nodes, which are far from the BS, tend to die early and thus shorten
the lifetime of the network. This is known as the energy-hole problem. To tackle
the effects of this problem, the multi-hop communication is usually considered
as more energy efficient than the direct communication. As such, in the process
of making a decision on the communication modes, the network designer should
need to compare the maximum transmission range with the expected value of
the distance between each node and the BS (E[dtoBS ]).

More importantly, E[dtoBS ] value also has an important role particularly for
the clustered RDWSNs. In a clustering scheme, sensor nodes are basically grouped
into clusters based on the proximity of the neighbouring nodes, the average
distance to the BS, and energy levels, etc. to overcome some of the inherent
challenges of WSNs. Clustering has been used as the most common technique
due to its direct impact on the energy efficiency, network scalability and, more
importantly, on the overall network lifetime. This is the reason why there are
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numerous studies on this subject in the related literature. The reader is encour-
aged to refer to a recent and comprehensive survey [1] for an overview of different
clustering schemes. In the studies analysing clustering schemes [2] and [3], it is
revealed that E[dtoBS ] value is the key determinant to find out the optimum
number of clusters (kopt) that maximizes the lifetime in the clustered RDWSNs.
A notable work in [3] proposes a number of closed-form expressions to identify
kopt. Amini et. al. provide a complete theoretical framework for characterization
of kopt with respect to a set of parameters of the system scenario listed as fol-
lows: the number of nodes to be deployed (N), the area of sensing field (A), and
E[dtoBS ]. The values for N and A are definitely known before the deployment.
And the only thing the network designer needs to derive the E[dtoBS ] value to
find kopt value which maximizes the network lifetime. As such, the derivation of
E[dtoBS ] becomes one of the central concerns in the clustered RDWSNs. In [3],
the authors derive various expected values for the distance with numerous pow-
ers analytically and validate them through simulations. They mainly assume two
symmetric sensing fields: a disc (with radius R) and a square (with side length
M). By considering both a disc-shaped and a square-shaped sensing fields and a
single BS, they find various E[dtoBS ] values for different powers (i.e., E[dtoBS ],
E[d2toBS ], and E[d4toBS ]). Amini et. al. analyze the E[dtoBS ] formulations by the
varying locations of the BS as follows:

– The BS is located in the center
– The BS is located on the perimeter
– The BS is located outside the (on the axis of) sensing field

However, the case that gives E[dtoBS ] (n = 1) when the sensing field is square
and the BS is located outside the field, is missing and therefore there is a gap
to be filled. Herein, our main contribution is to articulate this gap by deriving
E[dtoBS ] for this special case.

After outlining the main motivations of this study, we introduce a review
of literature devoted to this topic to identify the reasons of clustering and the
importance of optimum number of clusters in a clustered architecture. Following
this review, Section 3 introduces the network model employed and the pertinent
assumptions used throughout the paper. Section 4 illustrates our derivation of
E[dtoBS ]. Section 4 also includes the validation of our formulations. And the last
section presents the conclusion of our study.

2 Related Work

Lifetime maximization is usually considered as one of the most important objec-
tives in WSN applications. Lifetime maximization objective is mainly affected
by the energy-hole problem. This problem is experienced when the nodes closer
to the BS are usually required to forward a large amount of traffic for devices
farther from the BS. The similar problem is also observed when a set of sensor
nodes, which is far away from the BS, consumes a considerable amount of energy
as it needs to perform long-haul transmissions. Therefore, these nodes tend to
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die early which further results in energy holes. As far as the random deploy-
ment is concerned, the effects of energy-hole problem become even more serious.
To minimize these effects, there are various studies which attack this problem.
The most common technique to maximize lifetime in RDWSNs is to devise one
clustering scheme or another. A clustering scheme typically groups sensor nodes
into clusters to optimize the transmission distance for energy-efficiency and ro-
tates the clusterheads for the evenly distribution of power loads. And the most
widely-used and influential clustering scheme proposed is LEACH (Low-Energy
Adaptive Clustering Hierarchy) [4].

LEACH mainly integrates the concept of energy-efficient cluster-based rout-
ing and medium access to prolong the system lifetime. It addresses the energy
consumption minimization problems by making use of a distributed round-based
algorithm. In each round of this distributed algorithm, it is expected that there
are initially chosen number of clusters. And, after the competition of each round,
clusterheads can be reelected periodically to balance the energy consumption.
Thus, LEACH highly relies on the optimal number of clusters (kopt) and in each
round it is assumed that WSN consists of kopt number of clusters. In [4], the
authors describe whether there is an optimal tradeoff between the inter-cluster
communication and the intra-cluster communication that balances energy con-
sumption and they derive analytical expressions from simplifying and sound
approximations. Analytical and simulation results are given to demonstrate the
high performance of LEACH when compared with minimum transmission en-
ergy and static clustering. Thus, most of the studies dealing with clustering in
WSN domain have been inspired by the study of LEACH. Thus, many variants
of LEACH and the protocols that take the core idea from LEACH are system-
atically reviewed in [1].

HEED (Hybrid Energy-Efficient Distributed clustering) [5] is another protocol
that aims to improve LEACH by periodically selecting clusterheads according
to a hybrid of the node residual energy and a secondary parameter, such as node
proximity to its neighbors or node degree.

Regardless of which clustering technique is employed or similarly which com-
munication mode (i.e., multi-hop or single-hop) is exploited, a WSN applica-
tion can only take the advantage of clustering if and only if the application is
grouped with the optimum number of clusters. [3] analytically provides the op-
timal cluster size that minimizes the total energy expenditure in such networks,
where all sensors communicate data through their elected clusterheads to the
BS in a decentralized fashion. The analytical outcomes are given in the form of
closed-form expressions for various widely-used network configurations. Exten-
sive simulations are performed for the validation purposes when three cluster-
based architectures namely LEACH, LEACH-Coverage, and DBS, are used.

One of the important concerns in the cluster-based architectures is the iden-
tification of kopt. When portioning the WSN into clusters different from kopt,
the energy consumption of the WSN may become inefficient and it may degrade
the network fast. Since the energy consumption of inter-cluster and intra-cluster
transmissions of sensor nodes is a function of distance, kopt depends on the
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expected distance (E[dntoBS ]) between the sensor nodes and the BS. There can
be several scenarios where the BS will be positioned relative to the sending field.
A majority of these scenarios have been studied by [3] and E[dntoBS ] and thus
k values are derived for n=1, n=2, and n=4 when the sensing field is a disc or
a square. Authors addressed the problem of determining the kopt of randomly
deployed sensor nodes when the BS is located inside the field, on the perimeter
and outside (on the axis of) the sensing field. It is observed that the deriva-
tion regarding one specific scenario is missing. Our contribution at this point is
proposing the derivation of E[dtoBS ] of the missing scenario: when the sensing
field is square and the BS is located outside the field.

3 Network Model

In this section, to facilitate the derivation of E[dtoBS ] expression, we describe the
general system model and the pertinent assumptions used throughout the paper.
As E[dtoBS ] value is mainly used to cluster a RDWSN with optimum number
of clusters, herein we illustrate a sample RDWSN with the reduced number
of devices before clustering in Figure 1(a) and after clustering in Figure 1(b).
However, it should be noted once again that our derivations can also be exploited
in any domain when there is a need for a probabilistic approach to find the
average distance between any given number of points which are all assumed to
be randomly and uniformly located in any square-shaped region and at a specific
point outside this region.

For a RDWSN before clustering, let a square-shaped sensing field, with a
surface area ofM2, to be covered byN sensor nodes which are deployed randomly
and uniformly over this field. Figure 1(a) simply illustrates this sample network
with 22 devices before the cluster formation phase. After the calculation of kopt
value, suppose that 6 (say kopt = 6) of the nodes switch to clusterhead role and
16 of the nodes keep on playing the ordinary sensor node role as can be seen in
Figure 1(b).
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Fig. 1. A Sample Network Model (a) before clustering (b) after clustering
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3.1 Assumptions

In this paper, all subsequent discussions are based on the following assumptions:

– The BS is assumed to be located at the origin. And the origin point is k
units far away from the edge (on the axis symmetry) of the square-shaped
sensing field as shown in Figure 1. The relative location of the BS is known
in advance before the deployment.

– The BS is also assumed to have unlimited energy and thus there is no en-
ergy constraint associated with it. Moreover, all devices are assumed to be
stationary and unattended.

4 Expected Distance between the Nodes and the BS

To deriveE[dtoBS ] formulation, one should integrate the product of two functions
over the entire sensing field. The first function determines the distance between a
point and the BS. And the second function identifies the probability of a sensor
node being at that specific point. First, we attempt to solve the problem by
looking at double integrals in Cartesian Coordinates as shown in Figure 2(a).
Recall that the infinitesimal area in the Cartesian Coordinates is dA = dxdy.
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Fig. 2. Integration in the (a) Cartesian (b) Polar Coordinates

This is a rectangle with sides dx and dy. And, suppose that the probability of a
sensor node being at point (x,y), which is

√
x2 + y2 units away from the BS, is

p(x, y). Then, the integration to find E[dtoBS ] can be written as:

E[dtoBS ] =

∫ ∫
p(x, y)

√
x2 + y2dxdy (1)

Since, the probability of having a sensor node at each point inside the sensing
field is identical1, p(x, y) is independent of x and y and is equal to 1/M2. By
substituting 1/M2 value with p(x, y) in Eqn. 1, we have:

1 Due to the fact that the nodes are randomly and uniformly deployed and the sum
of these probabilities is 1.
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E[dtoBS ] = 1/M2

∫ ∫ √
x2 + y2dxdy (2)

However, it is not trivial to find the integration in Eqn. 2 in the Cartesian
Coordinates. Thus, we attempt to solve the same problem by using the Polar Co-
ordinates and by integrating an infinitesimal ring-shaped element (dA = rdrdφ).
Before starting to integrate in the Polar Coordinates, recall that the probability
of a sensor node being in the ring-shaped segment which is r radial distance from
the BS is p(r) as shown in Figure 2(b). Then, the integration to find E[dtoBS ]
can be written in the Polar Coordinates as:

E[dtoBS ] =

∫ ∫
p(r)r2drdθ (3)

Similar to the probability value in the Cartesian Coordinates, p(r) is equal to
1/M2. Therefore, we have:

E[dtoBS ] = 1/M2

∫ ∫
r2drdθ (4)

To be able to integrate r2drdθ over the square-shaped sensing field, we need to
consider two different regions with two different geometries. Thus, the sensing
field is analyzed by dividing it into two separate regions as a triangle and a
trapezoid as is shown in Figure 3(a) and (b) respectively.

4.1 Derivation of E[dtoBS−tri] in a Triangle

Herein, we focus on the integration of E[dtoBS−tri] over only the triangular
region depicted in Figure 3(a). Boundary values for the integration are plugged
in the Eqn. 4 when using the following trigonometric substitutions: r1 = A/cosθ
and r2 = M/cosθ

E[dtoBS−tri] =
1

M2

∫ α2

α1

∫ M/cosθ

A/cosθ

r2drdθ (5)
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Fig. 3. (a) Shaded Triangular Region (b) Shaded Trapezoid Region



On the Analysis of Expected Distance 365

By using the similar triangles in Figure 3(a), we can denote the value of A in
terms of k and M as:

k +M

M
=

k

A
⇒ A =

k.M

k +M
(6)

Moreover, α1 and α2 can be expressed in terms of trigonometric identities as
given in Eqn. 7 and 8 respectively.

tanα1 =
k

M
and secα1 =

√
k2 +M2

M
(7)

tanα2 =
k +M

M
and secα2 =

√
(k +M)2 +M2

M
(8)

Therefore, E[dtoBS−tri] can be found as:

E[dtoBS−tri] =
1

M2

∫ α2

α1

r3

3

∣∣
∣
∣

M/cosθ

A/cosθ

dθ =
M3 −A3

3M2

∫ α2

α1

1

cos3 θ
dθ (9)

We replace the term A in Eqn. 9 with the substitute of A in Eqn. 6. Therefore,
we have:

E[dtoBS−tri] =
M

3

(
(k +M)3 − k3

(k +M)3

)∫ α2

α1

1

cos3 θ
dθ (10)

In order to find the last term in Eqn. 10, we use Eqn. 11 which is from the table
of integrals in [6]:

∫ α2

α1

1

cos3 θ
dθ =

1

2
[tanα2 secα2 + ln(secα2 + tanα2)]−
1

2
[tanα1 secα1 + ln(secα1 + tanα1)] (11)

By replacing the trigonometric identities in Eqn. 7 and 8 with their substitute in
Eqn. 11, we can find Eqn. 12. And finally, E[dtoBS−tri] value for the triangular
region is given in Eqn. 13.

∫ α2

α1

1

cos3 θ
dθ =

1

2

[
(k +M)

√
(k +M)2 +M2

M2
+ ln

(√
(k +M)2 +M2

M
+

k +M

M

)]

−

1

2

[
k
√
k2 +M2

M2
+ ln

(√
k2 +M2

M
+

k

M

)]

(12)
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E[dtoBS−tri] =
M

6

(
(k +M)3 − k3

(k +M)3

)

{
[
(k +M)

√
(k +M)2 +M2

M2
+ ln

(√
(k +M)2 +M2

M
+

k +M

M

)]

−
[
k
√
k2 +M2

M2
+ ln

(√
k2 +M2

M
+

k

M

)]

} (13)

4.2 Derivation of E[dtoBS−trap] in a Trapezoid

Herein, we concentrate on the integration of E[dtoBS−trap] over the trapezoidal
region depicted in Figure 2(b). A trapezoidal region can be typically expressed
by subtracting an area of a larger triangle from a smaller one. While the first
term in the Eqn. 14 represents the larger triangle, the second one represents the
smaller triangle.

E[dtoBS−trap] =
1

M2

[∫ π
2

α2

∫ M+k/sinθ

0

r2drdθ −
∫ π

2

α2

∫ A/sinθ

0

r2drdθ

]

(14)

E[dtoBS−trap] =
1

M2

[∫ π
2

α2

r3

3

∣
∣∣
∣

M+k/sinθ

0

dθ −
∫ π

2

α2

r3

3

∣
∣∣
∣

A/sinθ

0

dθ

]

(15)

E[dtoBS−trap] =
1

M2

[
(M + k)3

3
− A3

3

] [∫ π
2

α2

1

sin3 θ
dθ

]

(16)

Again by using the table of integrals in [6], the last term (B) in Eqn. 16 can be
rewritten as:

∫ π
2

α2

1

sin3 θ
dθ =

1

2
[− cot θ csc θ + ln | csc θ − cot θ|] |π2α2 = B (17)

From Figure 3, we can easily find the following trigonometric identities:

cot
π

2
= 0 and csc

π

2
= 1 (18)

After B = B
′ −B

′′
substitution, we have:

B
′
=

1

2

[
− cot

π

2
csc

π

2
+ ln | csc π

2
− cot

π

2
|
]
= 0 (19)

B
′′
=

1

2
[− cotα2 cscα2 + ln | cscα2 − cotα2|] (20)
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B =
1

2

[
M

k +M

√
(k +M)2 +M2

k +M

]

− 1

2
ln

∣
∣
∣
∣
∣

√
(k +M)2 +M2

k +M
− M

k +M

∣
∣
∣
∣
∣
(21)

E[dtoBS−trap] =
1

M2

[
(M + k)3

3
− A3

3

]
B (22)

By replacing the terms A and B in Eqn. 22 with their substitutes in Eqn. 6 and
21 respectively, we have the following:

E[dtoBS−trap] =
1

2M2

[
(M + k)3

3
− ( k.M

k+M )3

3

]

[
M

k +M

√
(k +M)2 +M2

k +M
− ln

∣
∣∣
∣
∣

√
(k +M)2 +M2

k +M
− M

k +M

∣
∣∣
∣
∣

]

(23)

4.3 Derivation of E[dtoBS] in a Square

Finally, to find E[dtoBS ], we add E[dtoBS−tri] and E[dtoBS−trap] expressions
both for the triangle (Eqn. 13) and for the trapezoid (Eqn. 23). And, the formu-
lation for our research problem is given in Eqn. 24

E[dtoBS ] =
M

6

(
(k +M)3 − k3

(k +M)3

)

{
[
(k +M)

√
(k +M)2 +M2

M2
+ ln

(√
(k +M)2 +M2

M
+

k +M

M

)]

−
[
k
√
k2 +M2

M2
+ ln

(√
k2 +M2

M
+

k

M

)]

}+

1

2M2

[
(M + k)3

3
− ( k.M

k+M )3

3

]

[
M

k +M

√
(k +M)2 +M2

k +M
− ln

∣
∣
∣
∣∣

√
(k +M)2 +M2

k +M
− M

k +M

∣
∣
∣
∣∣

]

(24)

4.4 Validation

In order to validate our E[dtoBS ] formulation given in Eqn. 24, we compared
it with Eqn. 42 in [3]. While the latter one assumes that the BS is located on
the edge of the square-shaped sensing field, our derivation in Eqn. 24 assumes
that the BS in arbitrarily located units outside the field. To adapt Eqn. 24 in
this study to the one in [3], in other words, to move the BS from k units outside
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the field to the edge of the sensing field, we assign k = 0 into Eqn. 24. After
substituting 0 for k in Eqn. 24, we have the following expressions:

E[dtoBS ] =
M

6
{
[√

2 + ln
(√

2 + 1)
)]

− [0 + ln (1 + 0)]}+
1

2M2

[
(M)3

3

] [√
2− ln

∣
∣
∣
√
2− 1

∣
∣
∣
]

(25)

E[dtoBS ] =
M

3

[√
2 + ln

(√
2 + 1)

)]
(26)

The fact that Eqn. 26 is exactly the same as the Eqn. 42 in [3] validates our
finding.

5 Conclusion

We have formulated E[dtoBS ] when sensor nodes are deployed randomly and
uniformly over a square-shaped sensing field and the BS is located outside the
field. This expected value is required not only for the calculation of the optimum
number of clusters in the clustered RDWSNs but also for the decision whether
multi-hop or direct communication should be devised. One of the limitations
of our derivation in this paper is that the BS is assumed to be located on the
axis of (outside) the sensing field. Our future work will focus on this limitation
and explore E[dtoBS ] when the BS is located at any arbitrary point outside the
sensing field rather than at a specific point on the axis of the sensing field.
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