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Abstract

This paper studies upper bounds on the position error for a single estimate of an unknown target node position based
on distance estimates in wireless sensor networks. In this study, we investigate a number of approaches to confine the
target node position to bounded sets for different scenarios. Firstly, if at least one distance estimate error is positive,
we derive a simple, but potentially loose upper bound, which is always valid. In addition assuming that the probability
density of measurement noise is nonzero for positive values and a sufficiently large number of distance estimates are
available, we propose an upper bound, which is valid with high probability. Secondly, if a reasonable lower bound on
negative measurement errors is known a priori, we manipulate the distance estimates to obtain a new set with positive
measurement errors. In general, we formulate bounds as nonconvex optimization problems. To solve the problems,
we employ a relaxation technique and obtain semidefinite programs. We also propose a simple approach to find the
bounds in closed forms. Simulation results show reasonable tightness for different bounds in various situations.

Keywords: Wireless sensor networks; Positioning problem; Projection onto convex set; Convex feasibility problem;
Semidefinite relaxation; Position error; Worst-case position error

1 Introduction
Position information is often one of the vital require-
ments for wireless sensor networks (WSNs), especially for
location-aware services [1]. Position information can be
extracted via GPS but also from the network [2]. During
the last few years, a vast number of positioning algorithms
have been proposed in the literature [1,3-6], just to cite
a few. Such algorithms can be assessed in different ways,
for example on the basis of complexity, accuracy, or cover-
age [6]. Accuracy is one of the performance measures that
is commonly used to evaluate positioning algorithms. In
the literature, the accuracy metric has been studied widely
through the position error, defined as the norm of the dif-
ference between the estimated and the true position [1,6].
For instance, the Cramér-Rao lower bound, employed to
evaluate position estimates, provides a lower bound on the
variance of any unbiased estimator ([7], chap. 3).
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In addition to the lower bound assessment, for some
applications, it may be useful to know the maximum posi-
tion error contained in an estimate of the target node
position [1,8,9]. For example, it can be imagined that a
specific service can be offered to a user if its maximum
location error is smaller than a predetermined thresh-
old. The worst-case position error or a reasonable upper
bound on the position error can also be used in traffic-
safety applications to decrease the number of collisions
between vehicles [9]. A powerful approach to find the
worst-case position error, when an estimate of the target
node position is available, is to confine the target node
position to a bounded set. For instance, by defining a con-
fidence region for an estimate [10], a target node position
can be confined to a set, e.g., an ellipsoid, with a certain
probability, say, 95% of the cases. This approach has been
employed in characterizing GPS position errors [11] or in
studying a position algorithm [12]. The confidence region
mainly depends on the covariance of the position estimate
and can be a large volume depending on the accuracy of
the estimate. To determine a confidence region, the distri-
bution of the position estimate must be known. Although
some distributions, such as the Gaussian distribution, may
be suitable to model the position estimate, it is in general
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difficult to identify the distribution of the position esti-
mate. This approach, therefore, may have some limitations
for practical scenarios.
The geometric approach developed in [9,13] can be used

to confine the target node position to a bounded set if
certain conditions are satisfied. In fact, regardless of the
accuracy of an estimate, one can obtain a bounded set
from the measurements in which the target node posi-
tion resides. For instance, for range-based positioning, it
can be concluded that the target node position can be
found in a bounded convex set (a feasible set) if the dis-
tance measurement error is positive. This set, therefore,
is obtained from the intersection of a number of balls
derived from the measurements. When a single estimate
is available, it is reasonable to define the worst-case posi-
tion error as the maximum distance from the estimate
to a point in the feasible set. Based on this interpreta-
tion, one can also design a geometric algorithm that gives
an estimate inside the feasible set. For example, the well-
known projection onto convex set (POCS) technique has
been successfully applied to the positioning problem on
the basis of this geometric interpretation (for details of
the POCS approach for positioning see, e.g., [13-17]).
In the previous study in [9], it has also been argued that
the maximum position error (when distance estimation
errors are positive) is difficult to compute because the
problem is formulated as a nonconvex problem; how-
ever, by means of a relaxation technique, an upper bound
on the position error can be obtained efficiently [9].
Although the assumption that the measurement error
is positive is fulfilled in some situations, e.g., in non-
line-of-sight conditions, in which the measured distances
(with high probability) are larger than the actual distances,
there are also situations in which all measurement errors
may not be positive. Therefore, the intersection derived
from the distance measurements will no longer contain
the target node position, even if the intersection hap-
pens to be nonempty. Hence, the approach introduced
in [9] may fail to give an upper bound on the position
error.
In this paper, we relax the assumption on measure-

ment noise considered in [9] to a general case in which
a fraction of the range measurement errors may also be
negative. For a single position estimate, we consider three
approaches to define upper bounds on the position error.
We first assume that a subset of measurements (at least
one) have positive errors, thus, we are able to bound a
target node position to a set derived from the subset
of measurements, i.e., the set of distance measurements
having positive errors among all distance measurements.
Since this subset is unknown in advance, the largest dis-
tance among the maximum distances from the estimate to
all balls (derived from measurements) can be considered
as an upper bound on the position error. Although this

approach may result in a loose upper bound in general, we
consider it to assess other bounds.
Secondly, we assume that the noise is bounded from

below, meaning that the realization of the measurement
error cannot be an arbitrarily large negative value. This
assumption is implicitly considered as positive distance
estimates in the positioning literature, e.g., in [18]. After
that, we enlarge the distance estimate by adding a pos-
itive value, the absolute value of a lower bound on the
measurement error (assuming it is known in advance),
and then obtain distance measurements that have positive
errors. Therefore, the intersection of balls derived from
the new set of the measurements definitely contains the
target node position.
Finally, we propose a method to confine a target node

to a bounded set when a reasonable lower bound on the
measurement errors is a priori unknown, for instance,
in a practical scenario in which it is difficult to find a
reasonable lower bound on the measurement error. The
idea relies on the fact that the probability density function
(pdf) of the measurement error is nonzero for positive
values. Hence, if we take a sufficiently large number of
distance estimates for every link, i.e., between the target
node and a reference node, with high probability, at least
one distance measurement has a positive error. Now by
taking the maximum of distance estimates among all dis-
tance estimates for a link, we obtain a distance estimate
that has a positive error (with high probability). Thus,
the target node position can be confined to a bounded
set derived from the new set of measurements with high
probability.
The second and third bounds are formulated as non-

convex problems. We then employ a relaxation technique
to approximately solve the problem. We further derive a
simple bound as the maximum distance from the estimate
to a ball corresponding to a reference node in which has
the minimum distance estimate to the target node. Sim-
ulation results show that the proposed upper bounds are
reasonably tight in some situations. The results also reveal
a tradeoff between the tightness and validity of the third
bound in terms of the number of samples. Note that for
the new intersection derived from the new set of measure-
ments (for both the second and third approaches), we may
apply a geometric technique to take a point inside the new
feasible set as an estimate.
In summary, the main contributions of this study are as

follow:

• generalizing the idea of upper bounding a single
position error, as opposed to bounding a statistical
measure of the ensemble of position errors such as
the mean squared error, introduced in [9], to the case
of range-based positioning when some of the distance
estimation errors can be negative;
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• formulating upper bounds on the position error that
are always valid if (a) at least one distance error is
positive or (b) if in advance we know a reasonable
lower bound on the distance estimation errors;

• formulating an upper bound that holds with high
probability if there is a sufficiently large number of
distance estimate between each reference node and
the target node and if the distance estimation errors
are not always negative.

The rest of the paper is organized as follows: Section 2
reviews some preliminary requirements and section 3
studies the signal model considered in this study. Different
upper bounds are derived in sections 4 to 6. Simulation
results are discussed in section 7. Finally, in section 8,
some concluding remarks are made.

2 Preliminaries
2.1 Notation
The following notations are used in this paper: Low-
ercase and bold lowercase letters denote scalar values
and vectors, respectively. Matrices are written using bold
uppercase letters. By 0m×m, we denote the m by m zero
matrix, and we use 0m as the m-vector of m zeros. 1M
and IM denote the vectors of M ones and the M by M
identity matrix, respectively. The operator tr(·) is used
to denote the trace of a square matrix. The Euclidean
norm is denoted by ‖ · ‖2. Given two matrices A and B,
A � (�) B means that A − B is positive (semi)definite.
S
m, Rm, and R

m+ denote the set of all m × m symmet-
ric matrices, the set of all m × 1 vectors with real values,
and the set of all m × 1 vectors with nonnegative real
values.

2.2 Semidefinite relaxation
Let us consider a quadratically constrained quadratic pro-
gram (QCQP) as

maximize
x∈Rm

xTA0x + 2bT0 x + c0

subject to xTAix + 2bTi x + ci ≤ 0, i = 1, . . . ,N (1)

for Ai ∈ S
m, bi ∈ R

m, and ci ∈ R. For nonconvex QCQP
in (1), we employ a relaxation technique and derive a
semidefinite programming (SDP) problem as follows. Let
us rewrite the problem in (1) as

maximize
x∈Rm

tr(A0xxT ) + 2bT0 x + c0

subject to tr(AixxT ) + 2bTi x + ci ≤ 0, i = 1, . . . ,N .
(2)

Now, by replacing Z = xxT and then relaxing it as Z �
xxT , we obtain an SDP as [19]

maximize
x∈Rm, Z∈Sm

tr(A0Z) + 2bT0 x + c0

subject to tr(AiZ) + 2bTi x + ci ≤ 0, i = 1, . . . ,N[
Z x
xT 1

]
� 0. (3)

Using the Schur complement ([20], Appendix B), we
expressed the constraint Z � xxT as a linear matrix
inequality in (3). To refer to the QCQP formulated in (1)
throughout this paper, we use QP{Ai, bi, ci}Ni=0. Similarly,
to refer to the SDP relaxation derived in (3) originated
from QCQP in (1), we use SDP{Ai, bi, ci}Ni=0. For the opti-
mal values of the objective function of the QCQP and
the corresponding SDP relaxation in (1) and in (3), we
use vqp{Ai, bi, ci}Ni=0 and vsdp{Ai, bi, ci}Ni=0, respectively. By
adopting the relaxation in (3), we expand the feasible set,
therefore, the objective function in (3) is maximized over
a larger set than in (1), thus

vqp{Ai, bi, ci}Ni=0 ≤ vsdp{Ai, bi, ci}Ni=0 . (4)

That is, the optimal value in (3) gives an upper bound on
the optimal value in (1).

3 Systemmodel
Let us consider an m-dimensional network, m = 2 or
3, with N reference nodes at known positions ai =
[ai,1 · · · ai,m]T ∈ R

m, i = 1, . . . ,N . Suppose that a target
node is placed at an unknown position x = [x1 · · · xm]T ∈
R
m. The range measurement between the target node and

reference node i is modeled as [6,21]

d̂i = d(x,ai) + εi, i = 1, . . . ,N , (5)

where d(x,ai) = ‖x−ai‖2 is the actual Euclidean distance
between the target node and reference node i and εi is the
measurement error.
In the literature, the measurement error is commonly

modeled as a zero-meanGaussian random variable [1,3,5].
In some scenarios, however, other distributions, e.g., an
exponential, uniform, or Laplacian distribution, seem to
be more reasonable to describe the model in (5) [22-24].
In the previous work [9,13,17], it is assumed that all mea-
surement errors are positive and then it is concluded that
a target node can definitely be confined to a bounded
convex set, derived from the measurements. In fact, the
intersection of a number of balls (with centers ai and radii
d̂i), which is nonempty for range measurements with pos-
itive errors, definitely contains the target node position.
When at least one distance error is negative, the intersec-
tion derived from the measurements does not contain the
target node position, even if the intersection happens to
be nonempty. In this study, we generalize the technique
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introduced in [9] to upper bound a position error in which
the intersection does not contain the target’s location.
Before a detailed discussions on upper bounds proposed

in this work, we first review the concept of the geometric
upper bounding a position error in which distance esti-
mate errors are positive. For a general discussion about an
upper bounds on estimation errors, we refer the reader to
[9] and also to Appendix A.
Let us consider a geometric interpretation of the posi-

tioning problem. In the absence of measurement errors,
i.e., d̂i = d(x,ai), it is clear that the geometric locus of
the target node position lies on a sphere with the radius
d(x,ai) and center ai. If themeasurement error is positive,
the ball with the radius d̂i and center ai definitely con-
tains the target node position. Therefore, the intersection
of a number of balls defines a set in which the target node
position resides. Let us define the ball Bi at center ai as

Bi �
{
x ∈ R

m : ‖x − ai‖2 ≤ d̂i
}
, i = 1, . . . ,N .

(6)

It is then reasonable to consider every point in the inter-
section B (a bounded set) of the balls Bi as an estimate x̂
of x, i.e.,

x̂ ∈ B �
N⋂
i=1

Bi. (7)

We call B a feasible set and every point in B a feasible
point. Based on the geometric interpretation in (7), we
can derive estimators to get one point inside the inter-
section as an estimate. For example, the POCS or outer-
approximation approach, picks one feasible point as an
estimate [13,15,17]. Regardless of the type of the estima-
tor, if an estimate of the target node position is available,
we can define an upper bound on the position error ewith
respect to the feasible set B [9]. Namely, we consider the
following definition:

e � ‖x̂ − x‖2 � vmax(x̂,B) � max
y∈B ‖x̂ − y‖2, (8)

where x̂ is an estimate of the target node position x given
by a positioning algorithm. For details of defining different
upper bounds, we refer the reader to [9].
The validity of the definition in (8) relies on the fact that

the target node position is confined to a bounded set. (For
an unbounded feasible set B, the upper bound defined in
(8) is trivial). If at least one distance estimate error is neg-
ative, the intersection no longer contains the target node
position, and then the bound defined in (8) may not be
valid. Figure 1 shows an example of a network consist-
ing of three reference nodes and one target node in which
different cases are observed for the intersection for the
range-based measurements.

4 An upper bound for both positive and negative
measurement errors

In this section, we derive a simple upper bound, expressed
in a closed form expression, which is valid if at least one
distance estimate error is positive. Based on previous dis-
cussions, when a distance estimate error is positive, the
ball defined for that measurement definitely contains the
target node position. Then, we can confine the target node
position to a bounded convex set as follows:

x̂ ∈ BI =
⋂
i∈I

Bi, (9)

where the set I (|I| ≤ N) indicates the measurements
that have positive errors, e.g., in Figure 1a I = {1}. If the
set I is known in advance, we can use the same strategy as
in the previous section and derive an upper bound on the
position error with respect to set BI . In general, however,
finding the set I is a difficult task. Now we relax the prob-
lem to find an upper bound when the set I is unknown,
but nonempty. Since the target node position belongs to at
least a ball (at least one measurement has a positive error),
then we can compute the maximum distance to different
balls to find an upper bound. In fact, instead of the inter-
section of balls in (9), we consider each ball individually
and determine an upper bound as

e ≤ vmax(x̂,BI) ≤ max
i=1,...,N

max
y∈Bi

‖x̂ − y‖2

=max
{
‖x̂−a1‖2+d̂1, . . . , ‖x̂ − aN‖2+d̂N

}
.

(10)

As an example, Figure 2 shows how the position error
can be upper bounded for a network consisting of three
reference nodes and one target node in which one distance
estimate has a positive error. If the set I = {1} is known in
advance, we simply find an upper bound on the position
error as ‖x̂−a1‖2+d̂1. Note that the bound defined in (10)
may not be tight enough since it depends on, for instance,
the geometry and the size of the network.
In Proposition 4.1, we show that a simple test can be

used to determine whether a target node position belongs
to at least one ball.

Proposition 4.1. Suppose x is in the convex hull of
a1, . . . ,aN , where ai ∈ R

m. LetBi = {z ∈ R
m : ‖z−ai‖2 ≤

d̂i}, i = 1, . . . ,N . If
⋂N

i=1 Bi is nonempty, then x ∈ B� for
some � ∈ {1, . . . ,N}.

Proof. The convex hull of reference nodes is a convex
polyhedron with vertices a�, � ∈ J = {j1, . . . , jl} ⊆
{1, . . . ,N}. Consider a point y inside the convex hull such
that ‖y − aj‖2 ≤ d̂j, j ∈ J . Now, we partition the con-
vex hull into a number of simplexes. Then, the target node
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(a) (b) (c) (d)

Figure 1 The intersection for a network consisting of three reference nodes and one target node. (a)measurement one has positive error
and two others have negative errors. The intersection is nonempty and does not contain the target node position, (b) all measurement errors are
positive and the intersection definitely contains the target node position, (c) all measurements have negative errors and the intersection is
nonempty and does not contain the target node position, and (d) all measurement errors are negative and the intersection is empty.

position, x, belongs to one of these simplexes, say the sim-
plex formed by vertices an, y, ap and aq with n, p, q ∈ J .
Therefore, we have

‖x − an‖2 + ‖x − ap‖2 + ‖x − aq‖2 ≤ ‖y − an‖2
+ ‖y − ap‖2 + ‖y − aq‖2 ≤ d̂n + d̂p + d̂q. (11)

From (11), it is easily concluded that ‖x−an‖2 ≤ d̂n, ‖x−
ap‖2 ≤ d̂p, or ‖x − aq‖2 ≤ d̂q. Hence, the target node
position belongs to at least the nth, the pth, or the qth ball.
Thus, the proposition is proved.

Proposition 4.1 implies that the convex hull of the ref-
erence nodes is a subset of the union of the balls Bj, j =
1, 2, . . . ,N , if the intersection in (7) is nonempty.

Figure 2 The intersection is empty andmeasurement one has a
positive error. The actual error and an upper bound on the position
error are shown in this figure.

In summary, the bound in (10) is valid if there is at least
one distance estimate with a positive error.

5 An upper bound for boundedmeasurement
errors

The bound derived in (10) may not be tight, as will be
observed in the simulations. In the sequel, we investi-
gate another derivation of an upper bound regarding a
bounded measurement error. In a practical application, it
is more realistic to assume that the measurement error is
bounded. For instance, assuming that the estimated dis-
tance d̂i is nonnegative, we can conclude that the absolute
value of the negative noise is at most equal to the actual
distance d(x,ai). Therefore, it is reasonable to assume a
bounded measurement errora. Let the measurement error
in (5) be bounded, i.e., −ρi

1 ≤ εi ≤ ρi
2, ρi

1, ρi
2 ∈ R+. It

means that the measured distances can be bounded as

di(x,ai) − ρi
1 ≤ d̂i ≤ di(x,ai) + ρi

2. (12)

Therefore, geometrically, we can conclude that the target
node position belongs to a number of rings (or annulus)
derived frommeasurements, two rings for every measure-
ment. Now, let us consider a new set of measurements as

d̃i = d̂i + ρi
1 ≥ di(x,ai), (13)

where we assume that the values of ρi
1 are known in

advance. It is observed that the newmeasurements, i.e., d̃i,
have positive errors. Let us form a new intersection B′ as

B′ =
N⋂
i=1

B′
i, (14)

where B′
i � {x : ‖x − ai‖2 ≤ d̃i}.

We can deduce that the nonempty feasible set B′ def-
initely contains the target node position. For example,
Figure 3 shows a scenario in which all distance errors are
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Figure 3 Every distance measurement d̂i is replaced by a larger
value d̃i. The intersection drawn by green color now definitely
contains the target node position.

negative and the intersection derived from the measure-
ment is empty. By adding a positive value (the absolute
value of a lower bound on the error) to estimated dis-
tances d̂1, d̂2, and d̂3, a set of larger distances is obtained,
i.e., d̃1, d̃2, and d̃3, which have positive errors, thus the
balls with radii d̃1, d̃2, and d̃3 definitely contain the target
node position.
According to the discussion in section 3, let us define

an optimization problem to derive an upper bound on the
position error as

e �≤ vmax(x̂,B′) = max
{‖y − x̂‖2 : y ∈ B′} . (15)

Note that when the lower bound on the distance esti-
mate error ρi

1 tends to zero, the bound obtained in (15)
covers the one in [9] as a special case.
The problem in (15) is a nonconvex problem and can

be cast as a convex problem by adopting a relaxation sim-
ilar to the approaches explained in [9]. That is, we first
consider the following optimization problem:

maximize
y∈Rm

yTy − 2x̂Ty + x̂T x̂

subject to yTy − 2aiTy + aiTai ≤ d̃
2
i , i = 1, . . . ,N .

(16)

In fact, the problem in (16) is a QCQP{Ai, bi, ci}Ni=0 with
parameters

Ai = Im, bi =
{

−x̂, if i = 0,
−ai, otherwise,

ci =
{

‖x̂‖22, if i = 0,
‖ai‖22 − d̃

2
i , otherwise.

(17)

It is clear that vmax(x̂,B′) =
√
vqp{Ai, bi, ci}Ni=0.

Following a similar procedure as explained in
section 2.2, we can obtain a relaxed SDP problem
SDP{Ai, bi, ci}Ni=0, with parameters defined in (17), and
the maximum position error can be upper bounded as

e ≤ vmax(x̂,B′) =
√
vqp{Ai, bi, ci}Ni=0 ≤

√
vsdp{Ai, bi, ci}Ni=0.

(18)

To investigate the tightness of the right-most bound in
(18), we can derive a lower bound on the maximum posi-
tion error vmax(x̂,B′) based on the upper bound derived
in (18) considering the methods proposed in [25,26]. Con-
sidering similar procedures as taken in [9], we can bound
vqp{Ai, bi, ci}Ni=0 from below as

α vsdp{Ai, bi, ci}Ni=0 ≤ vqp{Ai, bi, ci}Ni=0 , (19)

where

α = 1
2 ln(2(N + 1)μ)

, μ = min{N + 1, m + 1}.
(20)

Therefore, the maximum position error vmax(x̂,B′) can be
upper and lower bounded as√

αvsdp{Ai, bi, ci}Ni=0 ≤ vmax(x̂,B′) ≤
√
vsdp{Ai, bi, ci}Ni=0.

(21)

Remark 1. Considering a reasonable lower bound on
distance estimation errors, we can derive a positioning
algorithm based on, e.g., the least squares approach. In
fact, we can solve the least squares over the feasible set
derived based on enlarging the distance measurements
(a constraint least squares). We can also apply a modified
version of the POCS to find an estimate of the target node
position. Instead of projecting onto every ball with radius
d̂i, we now project onto a larger ball with radius d̃i. Note
that to handle the nonempty intersection for the POCS
algorithms a relaxed approach is used in the literature, e.g.,
see [13,15]. By increasing the estimated distance, we can
apply an unrelaxed POCS as well without facing any con-
vergence problems. We can also apply a method based on
projection onto rings [13] to find an estimate of the tar-
get node position. For details of projection onto rings, see,
e.g., [13,27].

Remark 2. Considering the new feasible set including
the target node position, we may design an algorithm
that takes a point inside the feasible set as an estimate
(Remark 1). Therefore, we can define new upper bounds
on the position error as the maximum distance between
two points in the intersection involving the target node
position. To find the maximum length of the intersection,
we can follow the approaches studied in [9].
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Remark 3. For the Gaussian noise, we can consider a
bounded interval in which noise samples reside with high
probability. For instance for zero-mean Gaussian noise if
we define ρi

1 = ρi
2 = ρ = 3σ , noise samples belong to the

set {α ∈ R : −3σ ≤ α ≤ 3σ } with probability 0.9973.

In the rest of this section, we combine preceding bounds
and derive another simple upper bound on the position
error for bounded measurement errors. The main reason
for deriving the new upper bound is that it is simple and
it can be expressed in a closed-form expression. Suppose
that the measurement errors are bounded from below.
We first form a new set of measurements as performed
in (13). Now we know that every ball includes the target
node position. Hence, the maximum distance to every ball
defines an upper bound to the position error, namely

e ≤ vmax(x̂,B′) � max
y∈B′

i

‖x̂ − y‖2=‖x̂ − ai‖2+d̃i, i=1, . . . ,N .

(22)

The expression in (22) can alternatively be written as

e ≤ vmax(x̂,B′) � min
i=1,...,N

max
y∈B′

i

‖x̂ − y‖2

= min
{
‖x̂ − a1‖2 + d̃1, . . . , ‖x̂ − aN‖2 + d̃N

}
,
(23)

which provides a simple upper bound in closed-form.

6 An upper bound for an unknownmeasurement
noise

For practical measurements, we can use the upper bound
developed in (18) or (23) if a reasonable lower bound
on the measurement errors is available. For scenarios in
which it is difficult to obtain a lower bound on the mea-
surement errors, the bounds introduced in section 5 may
not be applicable. In this section, we introduce a new
bound that can be applied for the cases in which the
realizations of distance errors are not always negative.
Suppose a target node measures the distance between a

reference and itself K times. Namely, we have

d̂
k
i = d(x,ai) + εki , i = 1, . . . ,N , k = 1, . . . ,K .

(24)

Without any particular assumption on measurement
noise εki , except that Pr(εki ≥ 0) > 0, the set ωi = {k :
εki ≥ 0, k = 1, . . . ,K} is nonempty as K is sufficiently
large. Then, we can write

d(x,ai) ≤ d̂
m
i , m ∈ ωi. (25)

It means that at least one distancemeasurement has a pos-
itive error. Then, we form a new set of measurements as

d̄i � max{d̂ k
i : k = 1, . . . ,K}, i = 1, . . . ,N . (26)

Therefore, we can show that limK→∞Pr(d̄i − di(x,ai) ≥
0) → 1. Hence, we can deduce that the new distance d̄i
asymptotically has positive error. Consequently, we can
define a feasible set in which the target node position
resides as

x̂ ∈ B̄ =
N⋂
i=1

B̄i, (27)

where B̄i = {x ∈ R
m : ‖x − ai‖2 ≤ d̄i}.

According to the discussion in section 3, an upper
bound on the position error can then be obtained as

e ≤ vmax(x̂, B̄). (28)

Similarly, we consider QCQP{Ai, bi, ci}Ni=0 to find an
upper bound, where

Ai = Im, bi =
{

−x̂, if i = 0,
−ai, otherwise,

ci =
{

‖x̂‖22, if i = 0,
‖ai‖22 − d̄ 2

i , otherwise.
(29)

Following a similar approach, we can derive a relaxed SDP
as SDP{Ai, bi, ci}Ni=0 parameterized in (29). Then an upper
bound on the position error can be derived by solving the
SDP{Ai, bi, ci}Ni=0, i.e.,

e ≤ vmax(x̂, B̄) =
√
vqp{Ai, bi, ci}Ni=0 ≤

√
vsdp{Ai, bi, ci}Ni=0.

(30)
We can also find a lower bound similar to (19) on the
upper bound vmax(x̂, B̄). Finally, a simple upper bound
similar to (23) can be obtained as

vmax(x̂,B̄) � min
i=1,...,N

max
y∈B̄i

‖x̂ − y‖2 = min
{
‖x̂ − a1‖2

+ d̄1, . . . , ‖x̂ − aN‖2 + d̄N
}
. (31)

Note that a tighter upper bound can be derived if the set
ωi is known in advance. In fact, we can form a new set of
measurements that have positive errors as

d̄ ′
i � min{d̂ k

i : k ∈ wi, i = 1, . . . ,N}. (32)

Remark 4. It is clear that for a very large K, we may have
large positive outliers and the intersection obtained in (27)
can be a large volume which yields a loose bound. On the
contrary, a small number of samples for every link may
not guarantee that one distance among all distances has
a positive error. But as reported in [28], the distance esti-
mates tend to have positive errors in practice. Therefore, a
medium number of samples seems to be enough to obtain
a valid and tight bound.

Table 1 summarizes different bounds formulated in this
study.
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Table 1 Summary of bounds

Equation

Definition

e � ‖x̂ − x‖2 (8)

vmax(x̂,B) � max
y∈B ‖x̂ − y‖2 (8)

Upper bounds

Bound 1

(Assumption At least one measurement has positive error,
i.e., d̂i ≥ di for at least one i = 1, 2, . . . ,N)

e ≤ max{‖x̂ − a1‖2 + d̂1, . . . , ‖x̂ − aN‖2 + d̂N} (10)

Bound 2

(Assumption: a reasonable lower bound on measurement noise is
known in advance, i.e., di − d̂i ≤ ρ i

1 for known ρ i
i and

i = 1, 2, . . . ,N)

e ≤
√
vsdp{Ai , bi , ci}Ni=0 (18)

{Ai , bi , ci} as defined in (17)

Bound 2 (relaxed)

(Assumption: a reasonable lower bound on measurement noise is
known in advance, i.e., di − d̂i ≤ ρ i

1 for known ρ i
i and

i = 1, 2, . . . ,N)

e ≤ min{‖x̂ − a1‖2 + d̃1, . . . , ‖x̂ − aN‖2 + d̃N} (23)

Bound 3

(Assumption: measurement error can be positive and there are
enough distance estimates for every link, i.e., Pr{εki ≥ 0} > 0,
for i = 1, 2, . . . ,N and k = 1, 2, . . . , K , and K is
sufficiently large.)

e ≤
√
vsdp{Ai , bi , ci}Ni=0 (30)

{Ai , bi , ci} as defined in (29)

Bound 3 (relaxed)

(Assumption: measurement error can be positive and there are
enough distance estimates for every link, i.e., Pr{εki ≥ 0} > 0,
for i = 1, 2, . . . ,N and k = 1, 2, . . . , K , and K is
sufficiently large.)

e ≤ min{‖x̂ − a1‖2 + d̄1, . . . , ‖x̂ − aN‖2 + d̄N} (31)

7 Simulation results
Computer simulations are conducted to study the validity
and tightness of the proposed bounds. In the simulations,
we consider a network consisting of N reference nodes
randomly distributed in a 10 × 10 × 10 m3 cube volume.
One target node is randomly placed inside the volume. To
generate noisy distances, we add noise to the actual dis-
tance between the reference nodes and the target node.
We consider both Gaussian and truncated Gaussian mea-
surement errors. Specially, we consider ρi

1 = ρi
2 = ρ in

(12). In the simulations, we also pick the set of distance
estimates with positive errors, i.e., the set I , and form an
intersection as in (9), and then we derive an upper bound
for this nonempty intersection by solving a relaxed SDP.
In fact, in this case an upper bound is derived using (18)
in which B′ is replaced by BI . To solve the optimiza-
tion problems formulated in this study, we use the CVX
toolbox [29].
We define the tightness of the bound as tv � (v − e)

for a bound v and the true position error e. We also define
the relative tightness as τv � (v − e)/e. To illustrate
how the tightness varies with, e.g., network deployment,
measurement noise, or estimator parameters, we study
the cumulative distribution function (CDF) of tv and τv,

i.e., Pr {tv ≤ x} and Pr {τv ≤ x}, where the randomness
comes from selecting, e.g., the deployment in a random
fashion. In the following, we will generate e from the unre-
laxed POCS estimates (for details of POCS and different
relaxations see, e.g., [13], ([30], chap. 5)).
Figure 4 shows the CDF of the relative tightness for

the bounded Gaussian measurement errors when an esti-
mate of the target node is obtained via the POCS algo-
rithm. In the simulations, we generate Gaussian samples
in the interval [−3σ , 3σ ], i.e., the distance error pdf
is a scaled Gaussian pdf inside the interval [−3σ , 3σ ]
and zero elsewhere. The standard deviation of the dis-
tribution is set to 1.5 m. As observed from the figure,
Bound 1, i.e., Equation 10, is always the loosest bound
as expected. Also it is concluded that the upper bound
for known BI becomes the tightest bound among other
bounds as the number of reference nodes increases. For
few reference nodes, Bound 2 shows comparable tight-
ness against the Bound 2 for known I . The results also
demonstrate that for low-density networks Bound 2 and
Bound 2 (relaxed) are close to one another. This figure
also shows that the behaviors of Bound 2 and Bound 2
(relaxed) almost remain the same for different network
densities.
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(a) (b)

(c) (d)
Figure 4 Comparison between the CDF of the relative tightness of upper bounds versus the POCS position error. (a) 5 Reference nodes,
(b) 10 reference nodes, (c) 15 reference nodes, and (d) 20 reference nodes.

For further investigations, we study the validity of the
bounds for Gaussianmeasurement errors for different val-
ues of ρ (ρ = σ , 2σ , 3σ , and 4σ ). In the simulations,
we set σ = 1 m. Figure 5 shows the CDF of the rela-
tive tightness for different bounds. As can be seen, Bound
2 and Bound 2 (relaxed) may not be valid in all cases,
but increasing ρ improves the validity of the bounds. For
instance, in this figure, we can conclude that for ρ ≥ 3σ
the bounds are valid (with high probability). For small ρ,
e.g., ρ = σ , the intersection derived from the measure-
ments may be empty or may not include the target node
position. For example in Figure 5a, 20% of the cases the
intersection is empty and almost in 30% of the cases the
bound (Bound 2) is not valid although the intersection
is nonempty. Note that if the intersection is empty, the

SDP algorithm returns infinity to indicate an infeasible
problem.
In the next simulations, we compare the upper bounds

with the maximum position error. To compare different
upper bounds, we again employ the POCS method. For
every realization of the network, we run POCS for 200
random initializations and take the maximum position
error. For every random realization, the upper bounds are
computed regarding the estimate that gives the maximum
POCS position error. Figure 6 shows the CDF of the rel-
ative tightness for different bounds. It is again observed
that Bound 1 is the loosest bound. For low-density net-
works, Bound 2 and Bound 2 for known I are close to each
other. It is also observed that Bound 2 (relaxed) shows
good tightness for low density networks.
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(a) (b)

(c) (d)
Figure 5 CDF comparison of relative tightness for POCS position error for Gaussian measurement errors (σ = 1 [m], N = 15), (a) ρ = σ ,
(b) ρ = 2σ , (c) ρ = 3σ , and (d) ρ = 4σ .

We now evaluate Bound 3 for different networks when
K distance samples are available for every link. In the
simulations, we set σ = 1 m. Figure 7 shows the CDFs
of relative tightness for Bound 3 and Bound 3 (relaxed)
with respect to the POCS estimates. Among K position
estimates, we pick the estimate that gives the largest posi-
tion error among the POCS estimates. As can be seen,
increasing the number of samples, K, the tightness of
both bounds decreases due to appearance of large out-
liers. Hence, the intersection, consequently, will be a large
area and the tightness of both bounds will decrease. From
this figure, it is also observed that Bound 3 is more sen-
sitive to the number of samples, K, compared to Bound
3 (relaxed). In addition, for a fixed K, we see that Bound
3 (relaxed) shows almost the same behavior for different

numbers of reference nodes. From this figure, it is also
seen that bounds obtained for small K when the number
of reference nodes increases may not be valid all the time.
For instance for N = 20 and K = 5, a small percentage
of the time the intersection does not contain the posi-
tion of the target node and therefore, Bound 3 may not be
valid.
Finally, we consider a moving target, e.g., a vehicle, and

compute confidence regions - using available estimates
and upper bounds on the position errors - containing the
position of the target in different locations. In particular,
we consider a 2D network in which a number of reference
nodes are placed on the lines y = 0 and y = 100, see
Figures 8 and 9 for details. In every positionmarked by red
circles in the figures, we measure noisy distances and run
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(a) (b)

(c) (d)
Figure 6 Comparison between CDF of relative tightness of upper bounds versus maximum POCS position error. (a) 5 Reference nodes,
(b) 10 reference nodes, (c) 15 reference nodes, and (d) 20 reference nodes.

the POCS algorithm as before and obtain estimates of the
target positions. The target moves on a trajectory accord-
ing to a quadratic curve y = −0.0007x2 + 0.4x+ 10 in the
xy plane (see the red curves in Figures 8 and 9).
Figure 8 shows discs that are centered with the POCS

estimates and have radii equal to the upper bounds
(Bound 2, Equation (18)) on the position errors. In the
simulation, we assume the same truncated Gaussian dis-
tribution as before. From the figure, it is observed that the
discs are reasonably tight and definitely contain the target
locations.
In Figure 9, we plot confidence discs using Bound 3

in Equation (30). In the simulation, we set K = 6 for
the Gaussian measurement errors. From the figure, it
is observed that the corresponding discs for different

estimates contain the target positions. In some locations,
the discs are quite small, which implies that the bound is
tight for those locations. For small K, the corresponding
discs can be quite small, but in some situations the inter-
section might be empty and thus the algorithmmay fail to
provide an upper bound on the position error. For large
K, the upper bound can be quite large resulting in larger
discs. In the simulation, we observe that K = 6 or K = 7
provides satisfactory performance.

8 Conclusions
In this paper, we have studied the possibility of upper
bounding a single position error for wireless sensor net-
works considering range measurements when at least one
distance estimate has a negative error.
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(a) (b)

(c) (d)
Figure 7 CDF of relative tightness for Bound 3 and Bound 3 (relaxed) for different numbers of distance estimates for every link, K.
(a) 5 Reference nodes, (b) 10 reference nodes, (c) 15 reference nodes, and (d) 20 reference nodes.

Figure 8 Confidence discs formed by POCS estimates and corresponding upper bounds (Bound 2, Equation 18). Discs contain the location
of a target moving according to a trajectory.
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Figure 9 Confidence discs formed by POCS estimates and corresponding upper bound (Bound 3 in Equation 30,K = 6). Discs are formed
for the same trajectory used in Figure 8.

To derive an upper bound on the position error, we
have followed the technique introduced in [9] to find
a bounded set that contains the target node position.
We have first assumed that at least one measurement
error is positive and then have concluded that the tar-
get node position can be found at least inside one ball
derived from the measurements. Since the set of measure-
ments with positive errors are unknown in advance, we
have proposed to pick the largest distance of the maxi-
mum distance from the estimate to every ball, Equation
(10). This bound, called Bound 1, is not so tight as
we have observed through simulations. We have fur-
ther assumed that the measurement errors are bounded
from below and assumed a reasonable lower bound on
measurement error is known a priori, and then have
enlarged the measurements with the absolute value of
the lower bound of the measurements to derive a new
set of distance estimates with positive errors. We have
argued that the target node position can be found in
a feasible set derived from the new set of measure-
ments. We have, then, defined the maximum distance
from the estimate to every point in the feasible set as
an upper bound on the position error. Consequently, we
have derived two upper bounds on the position error,
i.e., Bound 2 in Equation (18) and Bound 2 (relaxed) in
Equation (23).
Since a reasonable lower bound on measurement errors

may not be known in practical scenarios, we have further
assumed that a number of distance estimates between a
target node and a reference node are available. If the dis-
tance errors are positive with a nonzero probability and
we get enough estimates for a link, then with high proba-
bility at least one distance error is positive. Therefore, we
take the maximum distance between different estimates
as a distance estimate with positive error. Hence, we are
able to confine a target node position to a bounded convex

set, which definitely contains the target node position, this
bound is called Bound 3.
Simulation results show that the upper bounds are rea-

sonably tight for some situations. For instance, for dense
networks, Bound 2 shows acceptable tightness compared
to the bound when the set of distance estimates with pos-
itive errors are known in advance. Numerical results also
show that Bound 3 is reasonably tight when for every link
there is a reasonable number of distance measurements.
For a large number of distance estimates, Bound 3 can be
a loose bound, while for very few samples, Bound 3 may
not be a valid bound all the time.

Endnote
a In fact, we only need to assume that measurement

error is bounded from below.

Appendix A
An instantaneous upper bound on the estimation error
Let us consider an unknown parameter vector x ∈ R

n and
define the set of the possible values of x as

X � {possible values of x} ⊆ R
n.

Suppose we aim at estimating x from a random vectorM.
Let m be the observed realization of the (random) mea-
surement vector M. Given the event M = m, the set of
possible values of x changes to

X (m) � {possible values of x : M = m} ⊆ X .

Let us denote an estimate of x by x̂(m) ∈ R
n as a function

of the observed datam. We can define an upper bound on
the �2 norm of estimation error e � ‖x̂(m, f ) − x‖2 as

e ≤ u1(x̂(m)) � sup
x∈X (m)

‖x̂(m) − x‖2. (33)
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Remark 5. It is clear that the tightness of the bound
depends on how large the feasible setX (m) and how accu-
rate the estimate x̂(m) is. If the bound is tight enough,
it provides a good measure in evaluating the worst-case
estimation error).
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