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Abstract—In this paper, we explore design aspects of adaptive
modulation based on orthogonal frequency-division multiplexing
(OFDM) for underwater acoustic (UWA) communications, and
study its performance using real-time at-sea experiments. Our
design criterion is to maximize the system throughput under a
target average bit error rate (BER). We consider two different
schemes based on the level of adaptivity: in the first scheme, only
the modulation levels are adjusted while the power is allocated
uniformly across the subcarriers, whereas in the second scheme,
both the modulation levels and the power are adjusted adaptively.
For both schemes we linearly predict the channel one travel time
ahead so as to improve the performance in the presence of a long
propagation delay. The system design assumes a feedback link
from the receiver that is exploited in two forms: one that conveys
the modulation alphabet and quantized power levels to be used for
each subcarrier, and the other that conveys a quantized estimate
of the sparse channel impulse response. The second approach
is shown to be advantageous, as it requires significantly fewer
feedback bits for the same system throughput. The effectiveness
of the proposed adaptive schemes is demonstrated using computer
simulations, real channel measurements recorded in shallow
water off the western coast of Kauai, HI, USA, in June 2008,
and real-time at-sea experiments conducted at the same location
in July 2011. We note that this is the first paper that presents
adaptive modulation results for UWA links with real-time at-sea
experiments.

Index Terms—Adaptive modulation, feedback, orthogonal
frequency-division multiplexing (OFDM), underwater acoustic
(UWA) communication.
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I. INTRODUCTION

U NDERWATER ACOUSTIC (UWA) channels are con-
sidered as some of the most challenging communication

media, generally characterized by low propagation speed of
sound in water (nominally 1500 m/s), limited bandwidth, and
randomly time-varying multipath propagation which results in
frequency-selective fading [1]. Delay spreading in an UWA
channel can occur over tens of milliseconds; however, the
channel impulse response often has a sparse structure, with
only a few propagation paths carrying most of the channel
energy.
Orthogonal frequency-division multiplexing (OFDM) has re-

cently emerged as a promising alternative to single-carrier sys-
tems for UWA communications because of its robustness to
channels that exhibit long delay spreads and frequency selec-
tivity [2]–[14]. However, applying OFDM to UWA channels is
a challenging task because of its sensitivity to frequency offset
that arises due to motion. In particular, because of the low speed
of sound and the fact that acoustic communication signals oc-
cupy a bandwidth that is not negligible with respect to the center
frequency, motion-induced Doppler effects result in major prob-
lems such as nonuniform frequency shift across the signal band-
width and intercarrier interference (ICI) [15], [16].
Time-varying multipath propagation and limited bandwidth

place significant constraints on the achievable throughput
of UWA communication systems. To support high spectral
efficiencies over long intervals of time in a nonstationary
environment such as the UWA channel, we consider commu-
nication systems employing adaptive modulation schemes.
While adaptive signaling techniques have been extensively
studied for radio channels [17]–[21], only preliminary results
for UWA channels are reported in [22]–[26], where simulations
and recorded data are used to demonstrate the effectiveness of
the proposed adaptation metrics.
The performance of an adaptive system depends on the trans-

mitter’s knowledge of the channel which is provided via feed-
back from the receiver. Since sound propagates at a very low
speed, the design and implementation of an adaptive system es-
sentially relies on the ability to predict the channel at least one
travel time ahead. This is a very challenging task for communi-
cations in the range of several kilometers which imposes signifi-
cant limitations on the use of feedback. However, our prior work
has shown that channel prediction is possible over such intervals
of time using a low-order predictor [27]. Crucial to successful
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Fig. 1. The adaptive system with the important functional blocks.

channel prediction is motion compensation that stabilizes the
nonuniform Doppler shift and enables (sparse) channel estima-
tion. The so-obtained channel estimates contain only a few sig-
nificant coefficients that are shown to be stable enough to sup-
port prediction several seconds into the future.
In this paper, we design an adaptive OFDM system and study

its performance using recorded test channels and real-time
at-sea experiments. Our approach and contributions are the
following.
• We estimate small Doppler rates (less than 10 ) that cor-
respond either to drifting of the instruments, or residuals
after initial resampling in mobile systems (e.g., systems
using autonomous underwater vehicles). Proper Doppler
compensation ensures stability over intervals of time that
are long enough to support channel prediction several sec-
onds ahead.

• We exploit the sparse multipath structure of the channel
impulse response to estimate the most significant channel
paths and simplify the prediction problem. Specifically, we
estimate only a few significant paths of the channel within
a possibly large overall delay spread.We treat the statistical
properties of the underlying random process of the channel
fading as unknown, and compute the parameters of a linear
predictor adaptively, by applying a recursive least squares
(RLS) algorithm [28].

• We develop two modulation schemes, distinguished by the
level of adaptivity: Scheme 1 adjusts only the modula-
tion level and assumes a uniform power allocation, while
scheme 2 adjusts both the modulation level and the power
allotted to each subcarrier. Both schemes are based on a
greedy algorithm whose optimality was discussed in [20].

• We propose a new design criterion for an adaptive OFDM
system based on the information that is fed back to the
transmitter. Specifically, we consider two cases. In the first
case, the information about the modulation alphabet and
the quantized power level for each subcarrier is computed
at the receiver and fed back to the transmitter. In the second
case, the quantized channel estimates are fed back, and the
adaptive algorithm for bit loading and power allocation is
implemented at the transmitter.

• We demonstrate the effectiveness of the proposed adap-
tive schemes using computer simulations, test channels
recorded during the Kauai Acoustic CommunicationsMul-
tidisciplinary University Research Initiative (MURI) 2008
(KAM08) experiment in shallow water off the western

coast of Kauai, HI, USA, in June 2008, and real-time at-sea
experiments conducted during the Kauai Acoustic Com-
municationsMURI 2011 (KAM11) experiment at the same
location in July 2011. The numerical and experimental re-
sults show that the adaptive modulation scheme can pro-
vide significant throughput improvements as compared to
conventional, nonadaptive modulation for the same power
and target bit error rate (BER).

The paper is organized as follows. In Section II, we describe
the system and the channel model that characterizes an UWA
channel. In Section III, we introduce a linear RLS predictor for
the channel tap coefficients. In Section IV, we introduce the
rules for selection of the modulation levels, the information that
is fed back to the transmitter, and the adaptive OFDM schemes.
In Section V, we demonstrate the performance of the proposed
adaptive schemes using numerical and experimental results that
are based on recorded test channels and real-time at-sea trials,
respectively. In Section VI, we provide concluding remarks.

II. SYSTEM AND CHANNEL MODEL

Let us consider an OFDM system with subcarriers, where
the th block of the input data symbols ,
, is modulated using the inverse fast Fourier transform (IFFT).
The block of input data consists of information-bearing sym-
bols and pilots, with corresponding sets denoted as and ,
respectively. We assume that the information symbols are inde-
pendent, while candidate modulation schemes are binary phase-
shift keying (BPSK), quadrature phase-shift keying (QPSK), 8
phase-shift keying (8PSK), and 16-quadrature amplitude mod-
ulation (16QAM) with 2-D Gray mapping. In other words, for
the th subcarrier, where , and the th block, the modu-
lation level , and if no data are transmitted

. It is assumed that the pilot symbols take
values from the QPSK modulation alphabet. For each modula-
tion alphabet, we assume a uniform distribution of the constel-
lation points with a normalized average power. The transmitter
sends frames of OFDM blocks, such that one OFDM block oc-
cupies an interval , where and are the symbol
duration and the guard time interval, respectively. We denote
by the total bandwidth of the system, by the fre-
quency of the first subcarrier, by the central
frequency, and by the subcarrier separation.
In this paper, we consider an adaptive system illustrated in

Fig. 1. The different functional blocks of the system, such as
channel and Doppler estimation, channel prediction, adaptive
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allocation, and feedback information, are discussed in the rest
of the paper.

A. Channel Model

Let us now define the impulse response of the overall channel

(1)

where is the number of distinct propagation paths, is the
delay variable, and is the time at which the channel is ob-
served. Coefficient represents the real-valued gain of the
th path, and represents the corresponding delay. Here,
we emphasize that the channel model (1) includes the initial re-
sampling operation at the receiver by a common Doppler factor.
Assuming a high bandwidth (sufficient resolution in the delay
variable ), the set of coefficients offers
a good representation of the actual propagation paths. The re-
ceived signal is given as

(2)

where is the transmitted signal and represents the ad-
ditive white Gaussian noise (AWGN) process with zero mean
and power spectral density normalized to unity.1 If we also de-
fine the equivalent baseband signals and with respect
to the frequency , such that

(3)

we then obtain

(4)

where

(5)

and is the equivalent baseband noise. Equation (4) implies
the equivalent baseband channel response

(6)

B. Modeling of the Time-Varying Path Delay

Following the approach from our previous work [27], we
model the time-varying path delays as

(7)

1The AWGN assumption incurs no loss of generality of the proposed adaptive
scheme even though acoustic noise is not white.

where is the Doppler scaling factor, which is some func-
tion of time. This model includes the fixed term , which
describes the nominal propagation delay corresponding to the
system geometry at the time of transmission, and an additional
term that describes the effect ofmotion at the time
of observation either due to drifting of the instruments (Doppler
rates less than 10 ) in stationary systems, or residuals after
initial resampling in mobile systems (e.g., systems using au-
tonomous underwater vehicles). The system motion during a
period of time corresponding to a few seconds (or several data
packets) is modeled by velocity and acceleration terms which
lead to a linear Doppler rate . A more accurate model could
include higher order terms; however, experimental results con-
firm that this is not necessary. Specifically, we model as a
piecewise linear function

(8)

where , and are the Doppler scaling
factors evaluated at time instances .
This channel model is deemed suitable for the time scales of

interest to an adaptive UWA communication system, since pro-
viding a reliable predicted channel state information (CSI) de-
pends on the availability of a stable signal reference that can be
obtained through accurate motion compensation. For example,
for a 2-km link and the center frequency 20 kHz, a small
Doppler rate can cause the phase of in
(5) to change up to radians during a time interval of 1.33 s
that corresponds to the propagation delay of one travel time.2

Such a phase shift can considerably degrade the performance of
channel prediction and the reliability of the corresponding CSI.
In other words, proper Doppler compensation ensures stability
over intervals of time that are long enough to support channel
prediction several seconds ahead.
Model (7) allows one to decouple phase into two

terms: one that is not related to motion, and another that is re-
lated to motion. While the first term may not be predictable with
sufficient accuracy because frequency may be several orders
of magnitude larger than the inverse of the path delay, the second
term can be predicted using the estimates of the Doppler scaling
factors . With this fact in mind, we proceed to develop a
channel prediction method that focuses on two general terms: a
complex-valued coefficient and a mo-
tion-induced phase . In other words,
we model the baseband channel response as

(9)

where we treat each as an unknown complex-valued
channel coefficient, which is assumed to be stable over a
prolonged period of time (tens of seconds), and as
an unknown motion-induced phase, which is modeled as a
second-order polynomial based on expressions (7) and (8). We

2Here we should make a distinction between making the prediction for one
travel time ahead, and for the round-trip time (two travel times ahead), since
the two cases correspond to different feedback implementation strategies, i.e.,
different functions performed by the two ends of a link.
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Fig. 2. Channel estimates obtained by the RLS and the MP algorithm.

emphasize that this model is valid for some interval of time, but
its parameters may change from one such interval to another.
Our goal is to develop a two-step procedure in which we first

estimate the channel coefficients at the receiver from a probe
signal, and then use the so-obtained estimates to form predic-
tions, which are finally fed back to the transmitter. This CSI will
be used at the receiver (or the transmitter) to perform adaptive
allocation of the modulation levels and power for each subcar-
rier in the current OFDM block transmission.

C. Channel Estimation

Channel estimation consists of two steps. In the first step,
initial phase compensation is performed to produce a stable
reference signal. This step includes resampling by a nominal
(average) Doppler factor and removal of the phase offset .
Here, we should emphasize that the process relies on the esti-
mates of the Doppler scaling factors , which are assumed
to be available with a certain precision (e.g., from a dedicated
synchronization preamble). In the second step, the so-obtained
signal is used to estimate the path coefficients . The
Doppler factors are not needed thereafter, as we conjecture
that the channel coefficients after motion compensation exhibit
sufficient stability to allow prediction several seconds into the
future.
Fig. 2 illustrates the channel estimates obtained from real

data collected during the KAM08 experiment. Specifically,
in this section, we will focus on channel estimates obtained
from a short probe signal described in [29]. After the initial
phase compensation where a phase-locked loop (PLL) was
used, we perform channel estimation from the received signal
using the matching pursuit (MP) algorithm [30]. Note from
Fig. 2 that the MP algorithm produces eight coefficients, where
neighboring coefficients belong to the same propagation path
due to the path dispersion [1]. For further analysis, we weigh
the adjacent coefficients based on the channel tap power and
merge them, so as to represent the channel via four propagation
paths , , , and . Therefore, the MP algorithm provides
estimates of the channel coefficients , assuming that

channel coefficients are sufficient for the description of
the sparse multipath structure. These estimates are denoted by

Fig. 3. (a) Magnitudes and (b) phases of the channel path coefficients.

, and computed at time instances separated by
155 ms. For comparison purposes, we also provide the channel
estimate obtained using the RLS algorithm. Different peaks in
the channel estimates can be associated with multiple surface
and bottom reflections calculated from the geometry of the
experiment. As can be seen from the figure, the MP algorithm
successfully estimates the significant channel coefficients, and
reduces the estimation error with respect to that incurred by the
RLS algorithm.
We emphasize that positions of the significant paths may drift

on a larger time scale (tens of seconds), and, therefore, have to
be updated accordingly. In Fig. 3, we show the magnitudes and
phases of the significant paths over a time period of 8 s. As we
initially conjectured, the phases of remain relatively stable
for more than a few seconds (a propagation delay over several
kilometers).

III. CHANNEL PREDICTION

As we previously reported in [27], the future values of
are predicted from the estimates . In particular,

if the OFDM blocks are periodically transmitted at time
instances , we use observations made at times

to predict the channel at time . To
account for possible correlation between the path coefficients,
we allow for their joint prediction. In other words, we use all
channel coefficients to predict each new coefficient. The

prediction is thus made as

(10)

where

(11)

(12)

Matrix contains prediction coefficients that are
to be determined.
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Table I
PREDICTION RLS ALGORITHM

Because the second-order statistics are not available for the
random process , we compute adaptively, by ap-
plying the RLS algorithm as specified in Table I. In (14), is
an matrix, which represents an estimate of the in-
verse joint autocorrelation matrix and is a
small constant, typically a fraction of the minimum among vari-
ances of the channel coefficients jointly predicted by the RLS
algorithm.
As discussed earlier, UWA systems suffer from inherently

long propagation delays, which pose additional challenges in
the design of a predictor. To counteract this problem, channel
prediction one travel time ahead is achieved by using an RLS
predictor of a low-order (e.g., or ) and a small
forgetting factor [e.g., , which corresponds to
an effective window of length ].
Note that the forgetting factor is uniquely specified for all
channel coefficients. With a small order and only a few sig-
nificant paths, i.e., a small , computational complexity of joint
channel prediction is sufficiently low to allow for a practical im-
plementation.
The structure of matrix is primarily driven by the ge-

ometry of the propagation environment, i.e., not all of the prop-
agation paths are mutually correlated. In the present data set,
the strongest arrival often exhibits more stability, and the con-
tribution from the other, weaker paths in its prediction appears
to be negligible. Therefore, the strongest path can be predicted
independently, without loss in performance. In other words, if
channel coefficient corresponds to the strongest path, (18) can
be modified as follows: the th column of is recursively
updated only for those elements that correspond to the prior ob-
servations of the th coefficient

. In addition, exploiting the correlation among the re-
maining paths may lead to a performance improvement, whose
exact amount is determined by the environmental profile, and
accuracy of the channel and Doppler estimates.
After performing channel prediction at the receiver, the

so-obtained CSI is used to initialize adaptive allocation of the
modulation levels and power across the OFDM subcarriers.
As we will discuss later, depending on which end of the com-
munication link performs adaptive allocation, different types
of information are fed back over a low-rate feedback channel.
In the following, we describe the design framework, initially

proposed in [26], under which we developed two practical
adaptive modulation schemes, and we also discuss the design
of bandlimited feedback.

IV. ADAPTIVE MODULATION AND POWER ALLOCATION

The system model assumes that residual Doppler effects are
negligible after proper initial motion compensation [resampling
by a nominal Doppler factor and removal of the phase offset

]. After this initial step, it is also assumed that the channel is
constant at least over the transmission interval of one OFDM
block. Therefore, the received signal can be expressed as

(20)

where

(21)

and , , and are, respectively, the received signal
after fast Fourier transform (FFT) demodulation, the transmitted
power, and zero-mean circularly symmetric complex AWGN
with variance per dimension. The noise term includes the
effects of ambient noise and residual ICI on the th subcarrier
and the th OFDM block, which is approximated as a Gaussian
random variable.
For the transmission of each OFDM block, we adaptively

compute the size of the modulation alphabet and the
transmission power . The objective of our adaptive OFDM
system is to maximize the throughput by maintaining a target
average BER. To maintain the BER at a fixed value, we propose
the following optimization criterion:

maximize

subject to

(22)

where is the overall average power allocated to the th
OFDM block, is the average BER for the th subcarrier,
and is the target average BER. The average power can be
expressed as where is a constant and
is the residual power from the previous block which was not
allocated (i.e., is less than the minimum power increment
required by the algorithm for a one-bit increase of the overall
throughput). Here, we should emphasize the difference be-
tween total power allocation and distribution of this total power
among the subcarriers. In the former case, one can design
an adaptive scheme where the total power is adaptively
allocated (and uniformly distributed among the subcarriers) to
achieve the prespecified performance [e.g., the target average
BER or signal-to-noise (SNR) at the receiver] for the fixed
system throughput, whereas in the latter case, the fixed total
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power is nonuniformly distributed among the subcarriers
to achieve the prespecified performance, and to maximize the
system throughput. For the purpose of experimental sea trials,
the total power allocation is initially set to a value which
is able to support the target error rate, and avoid the outage
scenario (no data transmission).
To reduce the computational complexity of the adaptive algo-

rithm, the subcarriers of the th OFDM block can be grouped
into clusters. If we assume , we group consecutive sub-
carriers into clusters, where is the size
of each cluster. We denote by and , respectively, the
allocated power and the modulation level corresponding to the
th cluster, . The optimal power level for
each cluster depends on the transfer function of the channel. If
the channel does not change much within a cluster, computation
of and is performed based on the average channel
gain in cluster . Note that if a cluster is affected by a deep fade,
it will be dominated by the subcarrier with the lowest channel
gain. Clustering reduces the computational load (see [26] for
more details), but implies possible error penalization and/or a
decrease in throughput as compared to the full computation of
modulation levels and powers for all subcarriers.

A. Thresholds for Modulation Levels

Due to the large propagation delays, the proposed adaptive
OFDM transmission relies on channel prediction. We obtain
predictions of the channel gains one travel time ahead
based on the time-domain predictions of the most significant
channel coefficients (10). We model the prediction error on the
th channel path as a complex zero-mean circularly symmetric
Gaussian random variable with variance per dimension.
Furthermore, based on the a priori knowledge obtained from
the channel prediction, we model as a complex Gaussian
random variable with mean

(23)

and variance , where is the number of sig-
nificant time-domain channel coefficients. Assuming that the
current channel gain is perfectly known, we apply max-
imum likelihood symbol detection for the AWGN channel at the
output of the matched filter. Thus, the probability of bit error for
the th subcarrier for M-ary phase-shift keying (MPSK)/mul-
tiple quadrature amplitudemodulation (MQAM) is well approx-
imated by [18]

(24)

where coefficients are determined numerically for
each modulation alphabet, as accurately as desired for the BER
approximation and take values for

, respectively.
For transmission of the th OFDMblock, the adaptive system

has knowledge of the predicted values , but not of the full

channel . Therefore, from (24), the average BER on the th
subcarrier is obtained as [18]

(25)

For a given target , we now compute the thresholds
for the available modulation levels. The solution

for is given by

(26)

where is the principal branch of the Lambert
-function, the inverse function of . Note that

if , the threshold goes to zero, i.e.,
. This case corresponds either to high SNR

regimes with reliable CSI, or to very high target BERs of the
system. Reasonably accurate approximations for , which
can be computed efficiently, are provided in [31]. We should
emphasize that different thresholds correspond to different av-
erage values of , since all of the subcarriers are affected by
the prediction error of the same variance .
The optimization problem (22) is hard to solve from the

standpoint of a practical implementation, because it is com-
putationally too intensive to be run at the receiver (or the
transmitter) for every OFDM block. Therefore, we pursue
suboptimal solutions which are obtained by relaxing one of the
problem constraints. Specifically, we focus on two adaptive
schemes in the rest of this section.

B. Adaptive Scheme 1

The optimal solution for (22) includes a nonuniform power
allocation for a maximum attainable throughput, such that the
target average BER is . This causes that each subcarrier con-
tributes to the average BER differently, due to the frequency se-
lectivity of the channel. However, the problem can be simplified
if we consider adaptive allocation of themodulation levels while
distributing the power uniformly among the subcarriers. Since
we adaptively allocate only the modulation levels, the so-ob-
tained solution for (22) will be suboptimal. Specifically, we
apply a greedy algorithm that computes the modulation levels
in a given block using the allocations from the previous block

for initialization. The proposed algorithm is given in
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Table II
MODULATION LEVEL ALLOCATION

Table II. Similar greedy algorithms have already been consid-
ered in [32] and [33].
After initialization of the algorithm for each subcarrier, as

given by (27)–(30), we successively increase the modulation
levels for those subcarriers that require the smallest power in-
crement (31)–(43), while maintaining the average BER below
the target . If the set of modulation levels from the previous
transmission interval is not a greedy-based solution for the cur-
rently available CSI , the algorithm greedily searches for
the closest solution which is used as a new initialization point
of the algorithm. Also, if the algorithm does not support the
throughput from the previous transmission interval (i.e., it fails
during the initialization step), it searches for the subcarrier
with the largest power decrement that is required to decrease the
modulation level . The algorithm is terminated when the
prespecified is achieved.

C. Adaptive Scheme 2

In the second scheme, we consider adaptive allocation of the
modulation levels and the subcarrier powers such that
for each subcarrier.
Once the thresholds are computed from (26), we apply the

adaptive algorithm of Table III to generate the signal of the th

OFDM block. The algorithm is terminated when the available
power is exhausted, or when all subcarriers achieve the max-
imum modulation level (16QAM). Here, we emphasize that for
those subcarriers that are in a deep fade no data are transmitted
(zero power is allocated). In other words, the subcarrier with
index is in deep fade if threshold is high enough
to violate the power constraint in (22).
Because of the additional freedom to adjust the power, this

scheme will achieve a higher overall throughput as compared
to scheme 1.

D. Limited Feedback for Adaptive UWA Systems

We assume that a limited-feedback channel is available for
conveying information from the receiver back to the transmitter.
The receiver has knowledge of the channel frequency response
at subcarrier frequencies and the corresponding channel im-
pulse response. The transmitter needs to know the modulation
levels and the power levels at the frequencies. To accomplish
this, there are different feedback options. Here we consider three
different alternatives.
A first option is to feed back the frequency response at the
subcarriers, where is typically of the order of 1000. If the

channel frequency response changes slowly across frequencies,
neighboring subcarriers would be allocated the same modula-
tion and power levels. In such a case, it is not necessary to feed
back the channel frequency response in amplitude and phase for
each subcarrier. Hence, the total number of bits fed back can be
reduced from a factor of to some factor, say ,
where is the number of subcarriers contained in the coher-
ence bandwidth of the channel.
A second option is to transmit the actual modulation levels

and the power levels directly to the transmitter at the subcar-
rier frequencies. bits may be used to represent the available
modulation levels. For example, in our case, we used
bits. The power levels can be uniformly quantized, such that
bits are used to represent each quantization level.
A third option is to feed back the values of the quantized

channel impulse response. Since the impulse response is sparse,
the total number of bits required to convey this information to
the transmitter is , where is the number of sig-
nificant coefficients in the channel impulse response (typically,

or less for the shallow-water channels considered),
is the number of bits required to represent the quantized com-
plex-valued channel coefficients, and is the number of bits
required to represent the time delay of each dominant channel
coefficient.
To further reduce the number of bits fed back to the trans-

mitter, we applied a lossless data compression technique. In par-
ticular, we employed run length encoding (RLE) [34], which
is a simple coding scheme that provides good compression of
data that contains many runs of zeros or ones, together with the
well-known Lempel–Ziv–Welch (LZW) algorithm (used as an
inner code) [35], to efficiently compress the feedback informa-
tion. As we will see in the following section, assuming perfect
CSI at the receiver, feeding back the sparse channel impulse re-
sponse and computing the modulation levels and power levels
at the transmitter requires significantly fewer bits.
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Table III
MODULATION AND POWER LEVEL ALLOCATION

V. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we present numerical and experimental re-
sults on the performance of the proposed adaptive schemes from
Section IV. The numerical results are based on channel mea-
surements recorded during the KAM08 experiment, and exper-
imental results from the real-time at-sea trials that were con-
ducted during the KAM11 experiment. Both experiments were
conducted at the same location with operational areas marked
in Fig. 4.

A. Numerical Results From the KAM08 Experiment

The KAM08 experiment took place in 100-m deep water,
with a communication distance of 4 km. The transmitter was de-
ployed at the location Sta00 (see Fig. 5) as a 52.5-m aperture ver-
tical array of eight ITC-1001 transducers (7.5-m spacing), with
a sampling rate of 100 kHz. The receiver was deployed
at the location Sta08 as a 56.25-m aperture vertical line array
(VLA) of 16 elements (3.75-m spacing), with a sampling rate
of 50 kHz. The performance results are based on the
channel estimates for transmissions between the fourth trans-
ducer from the bottom (49.5 m deep) and the tenth hydrophone
from the bottom (65.25 m deep). The total bandwidth and the
guard time are 7.8 kHz and 100 ms, respectively.
We assume an OFDM transmission with subcarriers
and a frequency separation of 15.25 Hz. The target average BER
is . We estimate the channel using the MP algorithm,
and predict the five significant channel coefficients 2.67 s ahead.

Fig. 4. The KAM08 and KAM11 operational areas are outlined by the dashed
and solid lines, respectively.

Fig. 5. Mooring deployment positions during the KAM08 in latitude and lon-
gitude. The acoustic source array was located at Sta00, while the VLAs were
located at Sta08 and Sta16.

Fig. 6 presents achievable throughput results for the OFDM
systems that employ scheme 1 and scheme 2 without clustering
for 24 dB, which is measured relative to the overall
channel power. We also provide performance results for the
nonadaptive scheme (with uniform power and modulation
levels) and the optimal solution, which is evaluated using the
interior-point method [36] to solve the nonlinear convex opti-
mization problem (22). Interestingly, scheme 2 shows a slight
performance loss only for the high SNR regime as compared
to the optimal solution, while scheme 1 exhibits a performance
degradation for the entire SNR region. Both schemes signifi-
cantly outperform the nonadaptive solution.
In Fig. 7, we summarize the feedback requirements of scheme

2 without clustering . Feeding back the power and mod-
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Fig. 6. Throughput performance of the various schemes considered.

Fig. 7. Performance of limited feedback for scheme 2 with , overall
power of 60 dB, and average throughput of 3 b per subcarrier. Numbers on
the graph indicate the number of bits that are used to represent the quantized
power levels (dashed line), and the real and imaginary parts of each quantized
channel coefficient (solid line).

ulation level computed at the receiver clearly requires more bits
than feeding back the (sparse) channel response. 2, 3, 4,
and 5 b are used to represent the quantized power levels, and

3 b are used to represent the five modulation levels (no
transmission, BPSK, QPSK, 8PSK, and 16QAM), resulting in a
total of 2560, 3072, 3584, and 4096 b with and .
The feedback information is then compressed, as discussed in
Section IV, resulting in 201, 245, 294, and 350 b (the values in-
dicated on the -axis). If the channel response is fed back,
3, 4, , 10 b are used to represent the real and the imaginary
parts of each quantized channel coefficient, and 8 b are
used to represent the corresponding delays. The feedback infor-
mation is then compressed similarly as in the previous strategy.
We note that the minimum number of bits required to maintain
the target average BER at 10 is 350 and 120 for the two cases,

Fig. 8. Mooring deployment positions during the KAM11 in latitude and lon-
gitude. The VLAs were located at Sta05 and Sta10. The acoustic source array
was located at the ship and used when the ship was stationary.

Fig. 9. The geometry and the setup of the adaptive system.

i.e., that feeding back the channel response reduces the feed-
back requirements approximately threefold. When clustering is
applied, the two feedback strategies require a similar number of
bits to feed back; however, clustering is performed at the ex-
pense of reducing the overall throughput of scheme 2.

B. Experimental Results From the KAM11 Experiment

The KAM11 experiment took place in 100–120-m-deep
water, with communication distances of 1, 2, and 3 km. The
transmitter was deployed from the ship as a 1.5-m aperture
vertical array of four ITC-1032 transducers (0.5-m spacing) at
different locations within the operational area while the ship
was stationary. The sampling rate was 100 kHz. The
radio-frequency (RF)-coupled receiver was deployed at loca-
tions Sta05 and Sta10 (see Fig. 8) as a 0.6-m aperture VLA of
four elements (0.2-m spacing), with a sampling rate of
100 kHz. Both the transmitter and the receiver were deployed in
the middle of the water column. A feedback from the recorder
buoy was provided using an RF link. The geometry of the
experiment and the setup of the system are given in Fig. 9. Due
to the variations of the channel that are inherently present, and
different communication distances tested in the field, a typical
SNR at the receiver varied between 2 and 20 dB.
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The OFDM frame contains four blocks with sub-
carriers per block, at a central frequency of 30 kHz. The re-
ceiver operates coherently where 50% of subcarriers are used as
pilots to accommodate for real-time testing of the system, since
the channel multipath structure can significantly change during
an experimental trial (tens of minutes or even hours). Note that
such a high overhead will not be required in practice when a
propagation model can be run before deployment to evaluate the
multipath extent for a given system geometry. The total band-
width and the guard time are 10 kHz and 100 ms,
respectively. Frame synchronization is performed using a PN
sequence of duration 25 ms and the symbol rate 10 ksymb/s.
The presented performance results are generated by employing
maximal ratio combining (MRC) of signals received at four el-
ements. However, we should emphasize that even though MRC
is used for data detection, we use only one receive element to
perform channel estimation and adaptive allocation to minimize
the processing time at the receiver.
The adaptive system is initialized at the transmitter end (a

terminal at the ship) by sending activation commands to the re-
ceiver end (a terminal at the RF-coupled buoy) through the wire-
less link. Once a confirmation message is received from the re-
ceiver terminal, the transmitter end executes a sequence of op-
erations such as acquiring the ship position from a Global Po-
sitioning System (GPS), gathering various environmental data,
etc. This is followed by the first OFDM frame transmission with
a uniform power allocation and QPSK modulation alphabet for
all data subcarriers. Once the frame is detected at the receiver,
it is stored at the local driver for further processing. In partic-
ular, we perform initial synchronization using the PN preamble,
which is followed by PLL-based Doppler estimation and com-
pensation, as suggested in [15]; we then conduct channel esti-
mation over the uniformly spaced pilot grid using the orthogonal
matching pursuit (OMP) algorithm [30], and perform coherent
detection for each OFDM block of the received frame; finally,
using the channel estimates, we execute scheme 2 at the receiver
to compute the power and modulation levels, which are then fed
back to the transmitter and used for the next OFDM frame trans-
mission. During each real-time trial, we transmitted between 30
and 50 consecutive OFDM frames to demonstrate the perfor-
mance of the proposed adaptive scheme, and the functionality
of the implemented system.
Among various constraints on the real-time implementation

of the system (e.g., out-of-band interference from the other sys-
tems simultaneously tested, a weak RF link for certain positions
of the ship, weather conditions, etc.), the most important limita-
tion is determined to be the total round-trip time of the system
that was on the order of 10–20 s. This significant delay was
mainly caused by all-level processing at both sides of the link
(acquiring GPS and environmental data before each transmis-
sion and after each reception, frame acquisition, recording, data
processing including prediction and adaptive allocation, etc.),
while physical propagation contributed with delays of 0.67–2 s.
Note that the RF feedback imposes no significant delay in the
system, and the total round-trip time is mainly determined by
high processing delays. Since these delays were on the order of
several seconds, a good performance of the proposed schemes
is expected for channels whose coherence time sits within this

Fig. 10. Channel estimates from initial frame synchronization preamble for
three consecutive nonadaptive OFDM frame transmissions. The average time
interval between two consecutive frame transmissions is (roughly) 20 s.

interval. In contrast, for rapidly varying channels, high pro-
cessing delays will result in a poor performance of channel pre-
diction and outdated CSI (which can be seen as feedback error).
Here, we should emphasize that the ultimate performance limi-
tation of an adaptive UWA system will not be determined by the
processing delay, but by the physical propagation delay, which
gives a lower bound on the channel coherence time that can be
supported.
As discussed in Sections II and III, some channel measure-

ments indicated that the channel coherence time was 3–4 s (or
more), which allowed us to perform channel prediction and
minimize feedback errors. These conditions notably prevailed
during sea trials when the channel conditions were calm (e.g.,
wind speed of 2–8 kn and Doppler rates of 10 ), while higher
wind speeds usually coincided with reduced coherence time.
In the rest of this section, we will focus on the experimental
results obtained from calmer sea trials with the (average)
channel coherence time on the order of seconds. We note that
channel conditions in general may not be so calm, resulting in
a proportional reduction of coherence times that can severely
limit the performance of our adaptive scheme.
In Fig. 10, we show the channel estimates obtained from

the frame synchronization preamble of a 2-km link for three
consecutive nonadaptive QPSK-modulated OFDM frame trans-
missions, labeled as , , and . As mentioned earlier, the av-
erage time interval between two consecutive frame transmis-
sions is (roughly) 20 s. Note the significant variations of the
channel impulse response within a 1-min time interval. For the
given consecutive OFDM frame transmissions, in Fig. 11, we
provide the performance results for the receiver with four ele-
ments. Note that poor performance is achieved for transmissions
and , while a fair performance is obtained for transmission
, corresponding to very high SNR observed at the receiver (see
Fig. 10). If the target average BER for OFDM systems is set
to 10 –10 , the nonadaptive scheme should use either more
power, or reduce the overall throughput by employing the BPSK
modulation alphabet which is preferable for the power limited
systems.
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Fig. 11. Scatter plots for three consecutive nonadaptive OFDM frame transmissions, each containing four OFDM blocks. The average time interval between two
consecutive frame transmissions is (roughly) 20 s. The corresponding channel impulse response estimates are given in Fig. 10.

Fig. 12. Channel estimates from initial frame synchronization preamble for
three consecutive adaptive OFDM frame transmissions. The average time in-
terval between two consecutive frame transmissions is (roughly) 20 s.

Fig. 13. Scatter plot for the first adaptive OFDM frame transmission, each
containing four OFDM blocks. The adaptive scheme 2 allocates only QPSK
modulation alphabet to the data subcarriers.

In Fig. 12, we illustrate channel estimates of a 2-km link for
three consecutive adaptive OFDM frame transmissions, labeled
as , , and . The available adaptive modulation alphabets are
BPSK, QPSK, and 8PSK. As in the previous set of nonadaptive
OFDMblock transmissions, we note significant variations in the
channel impulse response within a 1-min time interval. For the
given consecutive OFDM frame transmissions, in Figs. 13–15,

we provide the performance results for the receiver with four
elements. For the target average BER set to 10 –10 , we
note that a good performance is achieved for all three transmis-
sions ( , , and in Figs. 13–15, respectively), since scheme
2 successfully tracks the underlying channel variations. Due to
large propagation delays and channel variations (the coherence
time on the order of seconds) that impose severe limitations on
channel prediction, the adaptive scheme tends to oscillate in
performance around the target BER. In Figs. 16–18, we illus-
trate the channel frequency response, the allocated power, and
modulation levels across the data subcarriers, respectively. A
high attenuation in the frequency region 30–35 kHz is mainly
due to the cutoff frequency of the hydrophones, which is lo-
cated around 30 kHz, resulting in a severe rolloff across the
upper part of the operational bandwidth. We emphasize that this
system limitation was not known a priori, and the whole opera-
tional bandwidth (25–35 kHz) was used for OFDM transmis-
sions. However, scheme 2 has successfully demonstrated the
ability to adapt to the system limitations by allocating the power
and modulation levels to the lower part of the frequency region,
as illustrated in Figs. 17 and 18. Since the transition band of the
hydrophone filter is not sharp, we can note an active tone lo-
cated at 30.55 kHz; this artifact results from a sufficiently high
channel gain present at the given frequency.

VI. CONCLUSION

In this paper, we explored design aspects for adaptive OFDM
modulation over time-varying UWA channels. First, we investi-
gated the possibility of predicting an UWA channel at least one
travel time ahead. The key step in providing a stable reference
for channel prediction is compensation of the motion-induced
phase offset. MP algorithms are used to identify the significant
path coefficients, which are then processed by a low-order
adaptive RLS predictor to account for large prediction lags
(long feedback delays). Second, assuming that the channel is
predicted one travel time ahead with a given accuracy, approx-
imate expressions for the BER of each subcarrier (or a cluster
of adjacent subcarriers) are obtained. From these expressions,
a set of thresholds is obtained that determine the modulation
level and the power needed on each subcarrier to maximize
the throughput while keeping the average BER at the target
level. Third, spectrally efficient adaptive schemes (scheme
1 and scheme 2) are applied to allocate the modulation and
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Fig. 14. Scatter plot for the second adaptive OFDM frame transmission, each containing four OFDM blocks. The adaptive scheme 2 allocates QPSK and
8PSK modulation alphabets to the data subcarriers.

Fig. 15. Scatter plot for the third adaptive OFDM frame transmission, each containing four OFDM blocks. The adaptive scheme 2 allocates QPSK and 8PSK
modulation alphabets to the data subcarriers.

Fig. 16. A sample estimate of the channel frequency response for the OFDM
system with subcarriers.

Fig. 17. A sample power allocation for data subcarriers based on scheme 2 and
the channel response from Fig. 16.

the power across the OFDM subcarriers. Finally, assuming
a limited feedback channel, two competitive strategies were
analyzed: one that feeds back the quantized power and mod-
ulation levels for each subcarrier/cluster, and another that
feeds back the quantized estimate of the significant channel
coefficients in the time domain. The second strategy is found
to offer better performance, as it requires significantly fewer

Fig. 18. A sample constellation level allocation for data subcarriers based on
scheme 2 and the channel response from Fig. 16.

feedback bits. Numerical and experimental results that are
obtained with recorded channels and real-time at-sea experi-
ments, respectively, show that the adaptive modulation scheme
provides significant throughput improvements as compared
to conventional, nonadaptive modulation at the same power
and target BER. This work leads us to conclude that adaptive
modulation methods may be viable for reliable, high-rate UWA
communications. To our knowledge, this is the first paper
that presents adaptive modulation results for UWA links with
real-time at-sea experiments.
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