
Supporting Information

Study of Exciton Transfer in Dense Quantum Dot Nanocomposites
Burak Guzelturk1,2, Pedro Ludwig Hernandez-Martinez1,2, Vijay Kumar Sharma1, Yasemin Coskun1, 
Vusala Ibrahimova1, Donus Tuncel1, Alexander O. Govorov3, Xiao Wei Sun2, Qihua Xiong2 and Hilmi 
Volkan Demir1,2*

1Department of Electrical and Electronics Engineering, Department of Physics, Department of Chemistry, and 
UNAM–National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent 
University, Ankara, Turkey TR-06800
2 Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic 
Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Avenue, 
Singapore 639798, Singapore
3 Department of Physics and Astronomy, Ohio Univeristy, Athens, Ohio, 45701, United States 

Keywords: Conjugated polymers, colloidal quantum dots, Förster resonance energy transfer, FRET, hybrid light-emitting 
diodes.

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2014



BrBr +

S S

O
OH

OHO

BB
O

O O

O

M1 M2 P1
P2

Figure S1. Synthesis of poly[(9,9-bis{propenyl}fluorenyl-2,7-diyl)-co-(9,9-dihexylfluorenyl-2,7-diyl)] (P1) and poly[(9,9-

bis{carboxymethylsulfonyl-propyl}fluorenyl-2,7-diyl)-co-(9,9-dihexylfluorenyl-2,7-diyl)] (P2).

Figure S2. (Left) Transmission electron microscope image of the core/gradient-shell QDs. (Right) High resolution TEM image 

of the same QDs.



Figure S3. Enhancement of the fluorescence lifetime of the QDs in the functionalized CP-QD nanocomposite for 3 w% and 45 

w% QD loading.

XPS study of the nanocomposite and blend

To understand the specific interaction between the functionalized CP and the QDs, XPS measurements 

were further carried out for samples of QDs alone, functionalized CP-QDs and nonfunctionalized CP-

QDs. The peak binding energies of the elemental electronic states of the QDs when alone and when in 

polymer matrices are tabulated in Table S1. The XPS measurements indicate that the shifts in the peak 

binding energies are substantially greater in the case of the functionalized CP-QDs as compared to the 

nonfunctionalized CP-QDs. The maximum shift of ~0.65 eV is observed for Zn in the functionalized CP-

QDs when compared to QDs alone, whereas the same peak shifts only ~0.12 eV for the nonfunctionalized 

CP-QDs. This observation suggests that there is a strong interaction between the functionalized CP and 

the surfaces of the QDs, since the QD surfaces are Zn-abundant. Furthermore, the Zn binding peak shifts 

towards higher binding energies relative to the case of only QDs. This is attributed mainly to the 

screening effects and high electro-negativity of the oxygen atoms of carboxyl acid moieties in the 



functionalized CP.[1] In comparison, there is no evidence for a strong interaction in the case of 

nonfunctional CP-QDs, since there are only small shifts in the binding peaks, which is possibly due to the 

change in the chemical microenvironment of the QDs.

Table S1. XPS results for chemical integration of the polymer with the QDs. Peak binding energies of the elements that 
constitute a QD tabulated for the cases of QDs alone, functionalized CP-QDs and nonfunctionalized CP-QDs. Shifts in the peak 
binding energies are also calculated for functional and nonfunctional hybrid nanostructures relative to the case of only QDs.

Elements Only QDs
(eV)

Functionalized 
CP-QDs

(eV)

Nonfunctionalized 
CP-QDs

(eV)

Shift in the peak 
(functionalized CP) 

(eV)

Shift in the peak 
(nonfunctionalized CP)

(eV)

Cd 405.18 405.54 405.24 0.36 0.06

Zn 1022.03 1022.68 1022.15 0.65 0.12

Se 53.93 54.58 54.29 0.65 0.36

S 161.9 162.06 161.76 0.16 0.14

O 532.1 532.58 532.26 0.48 0.16 



Theory

Loring-Anderson-Fayer (LAF) model 

LAF method extends decay kinetics described by Förster theory for the three-dimensional multi-acceptor 

case. Donor fluorescence decay in the presence of multiple acceptors can be written as Equation S1 [2],
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Where τD is the bare donor lifetime of the CP, γDD is the reduced donor concentration and γDA is the 

reduced acceptor concentration. γDD and γDA are related to the donor-donor and the donor-acceptor dipole-

dipole couplings, respectively. In LAF analysis, α and β factors represent the strength factors for the 

donor-acceptor and the donor-donor dipole-dipole interactions, respectively.
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where R0D and R0A are Förster radii for the donor-donor and donor-acceptor dipole couplings, 

respectively. If the strength factor α is much larger than β (α >> β), then LAF analysis can be used within 

the limit of dominant donor-acceptor coupling. Using the measured self-spectral overlap between the 

emission and absorption spectra of the functionalized CP, the maximum value of R0D is calculated to be 

up to 2.3 nm. Förster radius for the donor-acceptor coupling, previous reports estimate Förster radius to 

be 4-7 nm for these CP-QD FRET couples.[3, 4] Even when the smallest reported value of 4 nm is used as 

the Förster radius (R0A), the strength of the donor-acceptor coupling is significantly larger than the 



strength of donor-donor coupling (α >> β). Therefore, γDD can be neglected. In such case, the donor 

fluorescence decay in the presence of acceptors is given by 
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Fitting the fluorescence decay curves of the CP using Equation (S4), we obtain the reduced acceptor 

concentration (γDA) as a function of temperature. If the donor-acceptor Förster radius  is given in cm  0 AR

and the acceptor concentration  is in M (mol/liter), the reduced acceptor concentration  is defined  AC DA

as 
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where is the critical acceptor concentration in M (mol/liter) defined by (Ref. [26] main text)0 AC
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γDA depends on the actual concentration (CA) of the QDs, Förster radius for the donor-acceptor coupling 

(R0,A) and the Avogadro’s number (N). γDA can effectively change as a function of temperature since 

average distance between an exciton in the donor and the acceptor is shortened due to exciton diffusion in 

the CP. Then, FRET efficiency (η) can be calculated as follows,
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After integration, the FRET efficiency is given by
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Gösele model 

Gösele model[5,6] was first developed to predict the energy transfer between chromophores in solution 

having translational diffusion, which is similar to our case of solid state films with conjugated polymers, 

where excitons could diffuse through inter- and intra-chain.

In Gösele model, the equation for the donor fluorescence decay that is modified in the presence of 

acceptor is given by[7];
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where D is the diffusion coefficient (nm2/ns), nA is the density of the acceptors (# of acceptors/nm3), τD is 

the donor fluorescence lifetime (when there is no acceptor), which is experimentally precisely known as a 

function of temperature, γDA is the reduced acceptor concentration, which dependents on nA, and R0A.
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Here is the Förster radius. Reduced acceptor concentration ( ) is defined as0,AR DA
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To calculate R0A, we employ quantum yield of the donor functionalized CP, absorbance of the QDs as 

measured from their thin films and comparing to the known QD concentration and estimate it as 6 nm.

The donor fluorescence lifetime in the presence of acceptor (τDA) is estimated using the time expected 

value of the fluorescence decay by Gösele approach (Equation (S9)). The time expected value  isDA
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where ID is the donor fluorescence decay in the absence of the QDs. After integration of Equation (S12), 

the expected value of the donor fluorescence lifetime in the presence of the QDs is given by
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To cross-check the analysis performed using Gösele approach; using Equation (S12), (S13) and (S14) we 

calculated the time expected value (E[τDA]) of the fluorescence decay of the donor functionalized CP, 

which gives the expected value of the fluorescence lifetime of the donor in the presence of acceptor. In 

Figure S4, E[τDA] is compared with the experimentally measured fluorescence lifetimes as a function of 

temperature for both QD densities. There is a quite good match between the model as obtained by Gösele 

approach and the experimental fluorescence lifetimes. 



Figure S4.  Time expected value of donor functionalized CP fluorescence lifetime in the presence of acceptor (τDA) is compared 
with the experimental donor fluorescence lifetime in the presence of low (3 w%) and high (45 w%) QD densities. 



Iso-donor-fluorescence lifetime plots by Gösele model
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Figure S5. Iso- τDA curves at 270, 230, 130, 80 and 37 K, which were not demonstrated in the main manuscript due to space 

consideration.



Temperature dependent steady state PL dynamics

At room temperature, both polymer alone and 3 w% loaded hybrid sample exhibits quite broad polymer 

emission with strong second vibronic emission peak along with the defect emission in the 480-550 nm. 

However, for the case of high loading of 45 w%, the defect state emission, which appears as a shoulder at 

480 and 530 nm is significantly repressed. Moreover, the first vibronic emission peak becomes dominant. 

This observation indicates the suppression of the exciton diffusion in the highly loaded case at room 

temperature since the over-population of the defect states and lower energy vibronic emission levels is 

assisted with the exciton diffusion. At low temperature cases, high energy vibronic peak dominates the 

spectrum. For the case of high QD loading, the dominant of the high energy vibronic peak is more 

pronounced.

Figure S6. Steady state PLs of the solid state films of functionalized CP alone, 3 w% and 45 w% hybrid at 295 K and 37 K. The 

changes of the vibronic peaks in the PL spectrum of thes polymer indicate the evolution of the exciton diffusion as a function of 

QD loading. High energy vibronic emission becomes dominant as the QD loading is increased due to the suppression of the 

exciton diffusion.
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