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Abstract—We study the problem of finding a stable stabilizing controller
that satisfies a desired sensitivity level for an MIMO infinite dimensional
system. The systems we consider have finitely many simple transmission
zeros in , but they are allowed to possess infinitelymany poles in .We
compute both upper and lower bounds of the minimum sensitivity achiev-
able by a stable controller via the tangential Nevanlinna-Pick interpolation.
We also obtain stable controllers attaining such an upper bound. To illus-
trate the results, we discuss a repetitive control system as an application of
the proposed method.

Index Terms— control, infinite dimensional systems, strong stabi-
lization, tangential interpolation.

I. INTRODUCTION

The purpose of this note is to find stable controllers achieving a de-
sired sensitivity level for MIMO infinite dimensional systems. Let us
first note that even for stable plants, optimization may produce un-
stable controllers. However, such controllers have difficulties with ro-
bustness and hardware implementation. Indeed, an unstable controller
can lead to instability of the closed-loop system if a component such
as a sensor or an actuator fails [1] or saturates [2]. See also [3]–[5] for
theoretical and practical significance of stabilization by a stable con-
troller. Applications of stable controllers can be found in flexible
structures [6], DC servo motors [7], data-communication networks [8],
etc.
For SISO infinite dimensional systems, the Nevanlinna-Pick inter-

polation [9], [10] enables us to design stable controllers providing the
minimum sensitivity [11] or robust stability [12]. The point of this ap-
proach is that a stable controller stabilizes the plant if and only if a unit
element in satisfies certain interpolation conditions at the unstable
zeros of the plant. On the other hand, for MIMO infinite dimensional
systems, the stable controller design problem is still largely open.
This is due to the difficulty of multivariable zeros.
We have studied sensitivity reduction by a stable controller for

MIMO systems with infinitely many unstable poles in [13]. We have
shown there that the matrix-valued Nevanlinna-Pick interpolation [3],
[14] gives a sufficient condition and also a necessary condition for
this problem. However the results in [13] are subject to the rather
stringent assumption that all unstable zeros of the plant be blocking
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Fig. 1. Closed-loop system.

zeros, which can be treated in a way similar to that of zeros of SISO
systems. Then we encounter the following question: Can we still solve
this problem for MIMO infinite dimensional systems with unstable
“transmission” zeros by the Nevanlinna-Pick interpolation? If so,
what kind of interpolation do we need?
In this technical note, we consider MIMO plants with equal numbers

of inputs and outputs only. However they are allowed to possess finitely
many simple transmission zeros in and infinitely many poles in .
With the aid of Cramer’s rule, we first show that stabilization by a stable
controller is equivalent to tangential interpolation by a unimodular ma-
trix. Next we obtain both a sufficient condition and a necessary condi-
tion for sensitivity reduction by a stable controller, using the tangential
Nevanlinna-Pick interpolation with boundary conditions. This interpo-
lation problem is solvable if and only if the Pick matrix consisting of
the interpolation data at the interior points of is positive definite
[10]. Thus we can compute upper and lower bounds of the minimum
sensitivity by iterative calculations of the associated Pick matrices. We
also design stable controllers achieving such an upper bound.
The technical note is organized as follows: In Section II, we give the

problem formulation of sensitivity reduction by a stable controller. In
Section III, we first transform this problem to a tangential interpolation
by a unimodular matrix in whose norm is less than one. Next
we obtain both upper and lower bounds of the minimum sensitivity
achievable by a stable controller. Section IV presents two numerical
examples and the second example illustrates application to a repetitive
control system. Concluding remarks are made in Section V.

Notation and Definitions

Let , , and denote the open right half-plane
, the closed right half-plane , and the imaginary

axis , respectively. We define to be the collection of
all analytic and bounded functions on . denotes the subset of

consisting of rational functions with real coefficients. We denote
by the field of fractions of .
For the commutative ring , denotes the set of matrices with

entries in , of whatever order. When it is necessary to display explic-
itly the order of a matrix, we write to indicate that is
a matrix with elements in . and denote the clas-
sical adjoint and the determinant of , respectively. Let
denote the conjugate transpose of . For a matrix-valued
function , let us denote by the tangential interpola-
tion data of for .
The Euclidean norm of is defined by .

For , its Euclidean induced norm is defined by
and equals the largest singular

value of . For , the norm is defined as

A matrix is unimodular if it has an inverse in .
and in are said to be left coprime if they satisfy the Bezout
identity

(I.1)

for some .

II. PROBLEM STATEMENT

Consider the closed-loop system shown in Fig. 1, where
represents the plant and does the

controller. The closed-loop system is defined to be internally stable if
and the transfer matrix

from , to , satisfies

(II.1)
We say that stabilizes if the closed-loop system is internally stable.
Let C denote the set of all controllers stabilizing . A plant is
said to be stabilizable if C and is strongly stabilizable if

C .
If and are real-rational and proper, then is strongly stabiliz-

able if and only if satisfies the parity interlacing property [3], [15].
On the other hand, every stabilizable is known to be
strongly stabilizable [16], but in this case, generally belongs not to

but to , which means for real .
Our problem is the following:
1) Problem II.1: Given a plant , weighting matrices
, , determine whether there exists a controller

C such that

(II.2)

Also, if one exists, find such a controller.
The aim of this article is to obtain a sufficient condition and also

a necessary condition for Problem II.1 that can be checked by matrix
computations. We also design stable controllers satisfying(II.2) under
the sufficient condition.
In [13], the same problem has been studied. Here, we place more

general constraints on the multivariable zeros of the plant than those
in [13]. In the next section, we will discuss the difference of the con-
straints and address the nontrivial modifications arising from it.

III. SENSITIVITY REDUCTION BY STABLE CONTROLLERS

In this section, we prove that if the plant has unstable transmission
zeros, strong stabilization is equivalent to tangential interpolation by
a unimodular matrix in . In conjunction with the tangential
Nevanlinna-Pick interpolation, this equivalence enables us to obtain
both lower and upper bounds of the minimum sensitivity achievable
by a stable controller.

A. Strong Stabilization of MIMO Systems With Unstable Transmission
Zeros

Let us first study strong stabilization for MIMO systems only. By
Lemma III.1 of [13], is stable and stabilizes with the left coprime
factorization if and only if is a solution to the following
problem:
1) Problem III.1: Suppose , are left coprime. Find

such that .
Throughout this note, we assume that the following holds:
Assumption III.2: All entries of , and in (I.1) are mero-

morphic in . In addition, is square and has the form

(III.1)

The rational function satisfies and has only simple zeros
in . For , the left annihilating nonzero

vector satisfying

(III.2)
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is unique up to multiplication by a constant complex number.
In [13], it is assumed that the matrix-valued function can be fac-

tored as , where and .
Note that Assumption III.2 requires a factorization (III.1) of the scalar-
valued function .
We shall show that Problem III.1 is equivalent to the following

problem:
2) Problem III.3: Suppose that are distinct

and that Find a unimodular matrix
such that all elements of are meromorphic in and
for .

Theorem III.4: Consider Problem III.1 under Assumption III.2. We
restrict the solutions to matrices whose entries are meromorphic in .
Then Problem III.1 is equivalent to Problem III.3 with the interpolation
data .
Furthermore, a solution to Problem III.1 and a solution to

Problem III.3 satisfy the following equations:

(III.3)

Proof: Let be ameromorphic solution to Problem
III.1. Define by (III.3). Then and belong to [13],
Lemma III.1 and

Thus is a solution to Problem III.3 with the interpolation data
.

Conversely, let be a solution to Problem III.3 with
the interpolation data . Define by (III.3). Then
satisfies ,

(III.4)

and

(III.5)

We prove by (III.4) and (III.5) as follows. Define
. Then by (III.4) and by (III.5).

Since we have by Cramer’s rule

(III.6)

it follows from the definition of that

(III.7)

Also, we obtain the following equation:

(III.8)

This is because every row of is a constant multiple of . To
see this, let be the -th row of . Since

by (III.6), we have for . Thus, the
uniqueness of in Assumption III.2 implies that
for some .
Since the unit have no unstable zero, (III.7) and(III.8) show

(III.9)

Thus it suffices to prove from the following
three conditions: The unstable zeros of are simple;

; and (III.9) holds.
Suppose . Then, since , the unstable

poles of must be the zeros of . Let be one of such poles. Since
has only simple zeros in , it follows that . This

contradicts (III.9), and hence .
Prasanth [17] presents a method to find a unimodular matrix in

satisfying tangential interpolation conditions. In [17], a
result similar to Theorem III.4 is also developed for finite dimensional
systems. The argument there makes use of the results of [10] and a
state-space realization of the plant. Hence it is not applicable to the
present situation. On the other hand, using Cramer’s rule, we prove
Theorem III.4 in a transfer-function approach.
Remark III.5: In [13], we have considered matrix-valued interpola-

tion conditions . This interpolation leads to the strin-
gent assumption that all unstable zeros of the plant be blocking zeros,
enabling us to handle such multivariable zeros in a way similar to that
used for zeros of SISO systems. On the other hand, here we address
tangential interpolation conditions so that the
plant is allowed to have unstable transmission zeros.

B. Strong Stabilization With Sensitivity Reduction

Let us next proceed to the problem of strong stabilization with sen-
sitivity reduction. We further place the next assumptions on , ,
and :
Assumption III.6: All elements of All and are meromor-

phic functions in . Both and belong to . Let
have a factorization where is
co-outer and is co-inner. and also be-
long to .
By extending the results of the previous subsection, we shall prove

that Problem II.1 is equivalent to the following Problem III.7 under As-
sumptions III.2 and III.6. The only difference between Problems III.3
and III.7 is that the latter problem requires that the norm of a so-
lution be less than one.
1) Problem III.7: Suppose are distinct.

Let . Find a unimodular matrix
such that all elements of are meromorphic in

, , and

(III.10)

Theorem III.8: Consider Problem II.1. Suppose there exist
such that , and let Assumptions III.2 and III.6

hold. Define the vector pairs by

(III.11)

for . If there exists a solution to Problem III.7 with the
interpolation data , then a solution to Problem II.1 is
given by

(III.12)

conversely, if there exists a solution to Problem II.1 and if all entries
of are meromorphic in , then

(III.13)

is a solution to Problem III.7 with the interpolation data
.
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Proof: Let a unimodular matrix be a solution to
Problem III.7 with the interpolation data . Define by
(III.12).
To prove C , it suffices to show, by Theorem

III.4, that defined by

(III.14)

satisfies , and

for .
Since , , and are unimodular, it follows from (III.14)

that . Additionally, since , we
have

Hence we obtain C .
Moreover, simple calculations show

(III.15)

Thus is a solution to Problem II.1.
Conversely, suppose is a solution to Problem II.1 and all the en-

tries are meromorphic. Define by (III.13). Then, since in (III.14)
satisfies , by Theorem III.4, it follows that ,

. also satisfies by (III.15). In addition,
since

by (III.11),(III.14), and(III.2), we obtain(III.10). Thus is a solution
to Problem III.7 with the interpolation data .
Theorem III.8 suggests that the problem of strong stabilization with

sensitivity reduction is equivalent to Problem III.7. The natural ques-
tion then arises: Is this interpolation problem solvable? Since the solu-
tion to Problem III.7 must be unimodular, it is difficult to give a nec-
essary and sufficient condition. Here we derive a sufficient condition
and a necessary condition for Problem III.7 via the tangential Nevan-
linna-Pick interpolation.
To proceed, we recall the tangential Nevanlinna-Pick interpolation

with boundary conditions:
2) Problem III.9 [10]: Suppose and

are distinct. Let vector pairs
and in satisfy

Find such that and

Problem III.9 is solvable if and only if the Pick matrix consisting
of the interpolation data at the interior points of
is positive definite [10]. Calculation methods of the interpolant are
developed in [10], [18].

First we derive a necessary condition. Define

C

(III.16)

FromTheorem III.8, we deduce the next result providing a lower bound
of .
Corollary III.10: Consider Problem II.1 under the same hy-

potheses of Theorem III.8. For a given , if there does not exist
such that and for

, then in (III.16) satisfies .
Let us next develop a sufficient condition and a design method of

stable stabilizing controllers that achieve low sensitivity. We extend
the technique of [13], [19] to the tangential interpolation case.
Lemma III.11: Consider Problem III.7. Let and define

(III.17)

If satisfies and

(III.18)

then defined by

(III.19)

is unimodular and satisfies and the interpolation con-
straints (III.10).

Proof: Since , it follows that is unimodular
by the small gain theorem, and that by the triangle
inequality . Therefore and belong
to , and . By (III.17),(III.18), and(III.19), also
satisfies (III.10).
Combining Theorem III.8 with Lemma III.11, we obtain an upper

bound of and a stable controller achieving it.
Theorem III.12: Consider Problem II.1 under the same assumptions

and definitions as in Theorem III.8 and Lemma III.11. If there exists
such that and (III.18) holds, then in

(III.16) satisfies and a solution to Problem II.1 is given by

Note that Theorem III.12 and Corollary III.10 give upper and lower
bounds of the minimum sensitivity by iterative computations of
the associated Pick matrices.
We conclude this section with two remarks on Assumption III.2.
Remark III.13:
1) In this section, we have assumed that all functions are meromor-
phic in because functions do not necessarily have a finite
value on the imaginary axis. If the unstable zeros of are not
on the imaginary axis, then we remove the assumption that all el-
ements of the transfer matrices are meromorphic.

2) We have assumed that has only simple zeros in , but
the results in this section can be generalized to the case in which

has unstable zeros of higher order. In this case, we need
to introduce interpolation conditions involving derivatives of
and .

For example, let be a unstable zero of order 2 of , and sup-
pose that and are unique vectors such that and

. Then the interpolation conditions of in
Theorem III.4 are given by
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Also, if we take for simplicity, in Theorem III.8 must
satisfy

where

Since these interpolation conditions are immediate consequences of

and

we omit the details of the proof.

IV. NUMERICAL EXAMPLES

In this section, we present a numerical example to show the effec-
tiveness of the results. We also apply the proposed method to a repet-
itive control system [20], [21] with a coprime factorization technique
on MIMO systems whose infinite dimensional part is scalar. See [22]
for the applications of repetitive control systems.
1) Example IV.1: We consider sensitivity reduction by a stable sta-

bilizing controller for the following infinite dimensional system and
weighting functions:

where are distinct.
Let us begin by finding left coprime such that

. First, applying the factorization method of [23] to each
element of , we show that can be factored as , where

The unstable zeros of are and . The vectors given by

satisfy and they are unique up to multiplication by a
constant complex number.
Next, from the same argument leading to in

Theorem III.4, we see that and are left coprime if and only if
there exists satisfying the interpolation conditions

for . This problem is called the tangential
Lagrange interpolation [10], Chapter 16. We can check the existence
of such by the tangential Nevanlinna-Pick interpolation with the
scaling of the interpolation data.
We take and . Fig. 2 shows the relationship be-

tween the unstable transmission zero and the minimum sensitivity
in (III.16). In Fig. 2, the solid line indicates an upper bound of

derived by Theorem III.12. The dashed line shows a lower bound of
obtained by Corollary III.10. From Fig. 2, we see that an unstable

Fig. 2. Unstable zero versus minimum sensitivity .

Fig. 3. Repetitive control system.

pole-zero cancellation at in does not affect strong stabi-
lization with sensitivity reduction. This is because is not a blocking
zero but a simple transmission zero and it is not in the same input nor
output channel as the pole at .
2) Example IV.2: (Application to repetitive control systems)
Consider the repetitive control system in Fig. 3, where is a finite

dimensional plant and is the internal model of
any periodic signals with period .
Note that if we use the internal model of the type ,

then the closed-loop internal stability cannot be achieved for strictly
proper plant [21, Theorem 5.12]. Also, such an internal model leads to
the potential loss of the w-stability [24, Section 8] of the closed-loop
system. So it is practical to construct modified repetitive controllers
[20]–[22]. To illustrate our results, however, we do not proceed along
this line.
For a given and , we design to meet performance require-

ments. Here let us find yielding exponential stability
and low sensitivity of the closed loop system. By the same argument
as in [13], in order to do this, we study Problem II.1 with

for some . If we find the solution to
the problem, then we design by . Since

, it follows that is analytic and bounded in the region
.

When we apply the proposed method to infinite dimensional sys-
tems, we first raise the following question: How do we obtain a left
coprime factorization of general MIMO infinite dimensional systems?
If the infinite dimensional part of the systems is scalar, we can answer
this question affirmatively by using a factorization of the finite dimen-
sional part.
Theorem IV.3: Let Assumption III.2 hold for .

Suppose is meromorphic in and satisfies for
every . Then and are left coprime.

Proof: By (I.1) and (III.6), we have
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Additionally, for every , the -th row of is with
some by the proof of Theorem III.4. Hence

(IV.1)

or , i.e., .
Let us first prove (IV.1) holds. Suppose . Then there

exists such that . By
Assumption III.2, there is also such that

and . Therefore, since

by (III.6), we have

This contradicts and ; hence (IV.1) always
holds.
Next we observe a sufficient condition for the left coprimeness of
and . Let satisfy

(IV.2)

Define

Then satisfies the Bezout identity

In addition, we have . This proof follows the same
line as that of in Theorem III.4, so it is omitted. Thus
if there is satisfying (IV.2), and are left coprime.
The argument given above suggests that, to show the left coprime-

ness of and , it suffices to prove the following: If there exists
such that for , then there

also exists such that

(IV.3)

where , , and .
Since , we construct by the Lagrange interpolation

[25] a rational function such that for
. Now define . Then, since

it follows that satisfies (IV.3). Therefore, and are left co-
prime.
Theorem IV.3 asserts that if there is no unstable hidden modes in

the product , then has the following left
coprime factorization:

(IV.4)

where , are left coprime and satisfy
.

Finally, taking , , and

(IV.5)

we study Problem II.1 for in (IV.4), , and . Note that this ex-
ample is different from that in [13], where all unstable zeros of must
be blocking zeros. The plant in (IV.5) has two unstable transmission
zeros: 0.846 and 0.291.
By Theorem III.12 and Corollary III.10, we compute both upper and

lower bounds of in (III.16) with ; .

A solution achieving the upper bound is
given by , where is a co-outer matrix
of and is a solution to Problem III.7. and are given by

V. CONCLUDING REMARKS

We have studied the problem of strong stabilization with sensitivity
reduction for MIMO infinite dimensional systems. The systems are al-
lowed to have infinitely many poles in but finitely many transmis-
sion zeros in . Since we have derived only a sufficient condition
and a necessary condition, the problem has not yet been fully solved.
However the proposed method gives both upper and lower bounds of
the minimum sensitivity via the tangential Nevanlinna-Pick interpola-
tion. Hence we can obtain these bounds by iterative computations of
the associated Pick matrices. We have also designed stable controllers
attaining such an upper bound. In addition, we have presented two nu-
merical examples. The second example illustrates practical application
to a repetitive control system. Sensitivity minimization may not al-
ways lead to robust controllers, so future works include bounding other
closed-loop transfer functions in (II.1) as well, e.g., mixed sensitivity
reduction.
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A Limiting Property of the Matrix Exponential
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Abstract—A limiting property of the matrix exponential is proven: if the
(1,1)-block of a 2-by-2 block matrix becomes “arbitrarily small” in a lim-
iting process, the matrix exponential of that matrix tends to zero in the
(1,1)-, (1,2)-, and (2,1)-blocks. The limiting process is such that either the log
norm of the (1,1)-block goes to negative infinity, or, for a certain polynomial
dependency, the matrix associated with the largest power of the variable
that tends to infinity is stable. The limiting property is useful for simpli-
fication of dynamic systems that exhibit modes with sufficiently different
time scales. The obtained limit then implies the decoupling of the corre-
sponding dynamics.

Index Terms—Limiting property, logarithmic norm, matrix exponential,
time-scale separation.

I. INTRODUCTION

The subject of study in this paper is the matrix exponential
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Fig. 1. Linear system with feedback on the first part of the state vector, the
“fast” states .

in the limit as grows large for in some sense to be made
precise later. All matrices are complex, and is a real parameter. For
different classes of , we derive sufficient (and in one case also
necessary) conditions on such that, for all

(2)

That is, we are interested in conditions guaranteeing that the coupling
blocks (1,2) and (2,1) vanish (in addition to the (1,1)-block).
In addition to being an interesting matrix problem, the result can

be applied to control systems that exhibit significantly different time
scales, such as systems with high-gain feedback on some states. For
example, consider the system

(3)

(4)

with static feedback on the states (index f for “fast” and s for
“slow”),

(5)

The matrix function then represents the feedback gain parame-
trized by . The feedback system is depicted in Fig. 1. A more general
multi-loop feedback system with additional reference inputs is consid-
ered in [1].
The matrix exponential (1) is a fundamental matrix (see e.g., [2])

of the feedback system (3)–(5). The limit (2) means that the dynamics
of and are decoupled in the limit as grows large.
In this context, we seek to determine what type of feedback yields a
decoupling of the states in feedback from the remaining ones in the
limit as the feedback gains become arbitrarily large.
This question is of interest, for example, when designing multi-loop

control systems with high-gain inner loops, since a decoupling of the
states allows for a simplified system description and, hence, a simpli-
fied control design. The matrix result herein is applied in [1] to de-
rive a time-scale separation algorithm for a cascaded control system
with high-gain inner feedback loops. The algorithm yields a system
description that includes the plant dynamics and the effect of the inner
feedback loops. The obtained representation is useful, for example, for
designing an outer-loop controller. This methodology is applied in the
design of a cascaded feedback control system for an inverted pendulum
in [1] and for a balancing cube (a multi-body 3-D inverted pendulum)
in [3].
Related to the problem studied herein is the work by Campbell et al.,

[4], [5]. The authors consider the matrix exponential with its argument
being a polynomial in and derive conditions for its convergence
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