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Abstract An upper bound is derived on the capacity of a cognitive radio system by con-
sidering the effects of path loss and log-normal shadowing simultaneously for a single-cell
network. Assuming that the cognitive radio is informed only of the shadow fading between
the secondary (cognitive) transmitter and primary receiver, the capacity is achieved via the
water-filling power allocation strategy under an average primary signal to secondary inter-
ference plus noise ratio loss constraint. Contrary to the perfect channel state information
requirement at the secondary system (SS), the transmit power control of the SS is accom-
plished in the absence of any path loss estimates. For this purpose, a method for estimating
the instantaneous value of the shadow fading is also presented. A detailed analysis of the
proposed power adaptation strategy is conducted through various numerical simulations.

Keywords Cognitive radio · Capacity · Water-filling · Power control · Shadowing ·
Path loss

1 Introduction

As pointed out by the Federal Communications Commission (FCC), the main cause of spec-
trum scarcity is the inefficient spectrum allocation policy [1]. Majority of the frequency bands
are devoted to specific users with exclusive licenses, and stringent limits are imposed on their
maximum transmitted power levels to prevent mutual interference over all times. With the
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advent of technology, sophisticated transmitters with adaptable parameters are manufactured
and receivers become more immune to inter-system interference. This process has brought
the necessity to adapt new spectrum usage policies over already allocated frequency bands
to enhance the performance of current systems and make room for new technologies.

Mitola introduced the concept of cognitive radio (CR) which relies on permitting sec-
ondary system (SS) users to utilize the resources devoted to the primary system (PS) oppor-
tunistically [2]. The current approaches can be grouped under two categories: (a) Oppor-
tunistic spectrum access, and (b) Spectrum sharing [3]. In the first approach, an SS user tries
to detect the absence of PS users and makes use of the spectrum holes. On the other hand,
the second approach allows an SS user to operate simultaneously with PS users under the
condition that the interference from the SS user should not compromise the reception qual-
ity of the licensed PS users. In the latter scenario, it is crucial to adjust the transmit power
and rate of the SS user in an adaptive manner to maximize the throughput while restrict-
ing the interference to PS users. More explicitly, the SS user may utilize the channel more
efficiently (with higher power) when the path between the secondary system transmitter and
primary system receiver is subject to deep fading. As a result, ergodic (Shannon) and outage
capacities of cognitive radio are studied extensively in the literature under different fading
environments (Rayleigh, Hoyt, Rice, Nakagami-m, Log-normal, etc). Several performance
metrics have been proposed to optimize secondary spectrum utilization, including but not
limited to peak/average interference at the PS receiver, minimum outage capacity of PS,
maximum transmission outage probability of PS, peak/average transmit power of SS and
bandwidth available to SS. First, we present an outline of the results obtained so far in this
field.

1.1 Prior Work

In [4], the capacity for the SS user is derived for different types of single-user and multiuser
AWGN channels under constraints on the average received power at the PS user (a.k.a. the
interference temperature (IT) constraint). In the absence of fading, it is shown that a solution
similar to the achievable rate under channel inversion based power adaptation policy can be
obtained for point-to-point AWGN channels. The similarity of the solution to the transmit
power-constrained case is evident since the received power is a deterministic multiple of
the transmitted power for a non-fading AWGN channel. The discussion is also extended to
network cases including relay networks, multiple access channels with dependent sources
and feedback, and collaborative communications scenarios. The case for time-varying PS and
SS channels due to fading is investigated in [5] by employing the methods already introduced
in [6–8] about the capacity of fading channels under various transmit power constraints. The
ergodic capacity of the SS is evaluated in the case of perfect channel state information (CSI)
and interference constraints at the PS user’s receiver for different fading scenarios. Contrary
to the case when the transmit power is constrained, it is found out that channel capacity in
severe fading conditions (e.g., Rayleigh or log-normal fading) exceeds that of the non fading
AWGN channel. This result is attributed to the fact that the SS user may utilize the channel
more efficiently (with higher power) when the path between SS transmitter and PS receiver
is subject to deep fading. By considering average and peak interference power constraints,
the authors derive the optimal power allocation schemes which turn out to be time-varying
versions of the water-filling algorithm. In [9], the authors derive the outage capacity with its
optimum power allocation policy for Rayleigh flat-fading channel under both average and
peak received power constraints at the PS receiver. In [10], more power constraints related to
the transmit power limitation of the SS user are incorporated in addition to the interference
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power constraint at the PS receiver, and the corresponding optimal power allocation strategies
are studied to achieve the ergodic capacity and the outage capacity of the SS user under block
fading (BF) channel conditions. A capacity increase is noted for the case of average over
peak transmission/interference power constraints.

In [11], an information-theoretic analysis is presented to characterize the optimal trans-
mission strategy and the corresponding channel capacity for an SS user operating under both
transmit and interference power constraints imposed at a set of PS receivers. It is shown that
by employing multi-antennas at the secondary transmitter, significant capacity improvements
can be attained even under stringent power constraints. In [12], single-input multiple-output
multiple access channels (SIMO-MAC) are considered under interference constraints at the
PS users and individual peak transmit power constraints at the SS users. In [13], an upper
bound on the capacity for a cognitive user is derived by prohibiting any cooperation between
primary and secondary users. It is shown that the capacity under average and peak secondary
to primary interference to signal ratio (ISR) constraints can be achieved via the water-filling
power allocation strategy when all the links are subject to identical and independent Rayleigh
fading. In addition to channel fading, a simplified path loss model is employed to incorporate
effects due to network geometry in a more realistic scenario. Finally, the case of multiple
primary receivers is addressed and it is demonstrated numerically that the capacity of cogni-
tive radio grows with triple-log scaling if opportunistic transmission scheduling is employed
inside the PS.

Various attempts have been made to replace IT constraint at the PS receiver with more
advanced techniques to enhance PS and SS performances. In [14], the authors suggest the
use of minimum-PS-outage-capacity requirement instead of the IT constraint to adjust the
SS transmission. Despite its improved performance, this new constraint requires additional
knowledge about the PS CSI at the SS transmitter. To reduce the operational complexity of
the cognitive user, this novel minimum outage capacity requirement for the PS is converted
into an approximate interference power constraint that has to be satisfied by the SS user in
[15]. In [16], the achievable transmission rate of the SS user is maximized without inflicting
any outage capacity loss at the PS via opportunistically adapting the transmit power. Another
novel constraint that utilizes the additional CSI of the PS fading channel is proposed to
replace the IT condition in [17]. In addition to the average/peak transmit power constraints,
the maximum transmission outage probability of the PS user is limited to stay below a
desired target value. As a result, excess interference from the SS user can be accommodated
by exploiting the non-zero outage probability margin. The corresponding optimal power
allocation strategies of the SS are determined to maximize its ergodic and outage capacity.
It is reported that significant capacity gains can be obtained for the SS user with respect to
the conventional IT constraint under the same PS user outage probability. In [18], a cognitive
radio network is considered where multiple SS users benefit from the spectrum of the PS
under fading channels via the frequency division multiple access scheme. A total bandwidth
constraint is introduced in addition to the peak/average transmit power constraints at the
SS users and the peak/average IT constraints at the PS receiver. Closed-form solutions for
optimal bandwidth allocation are determined for any given power allocation.

1.2 Our Contribution

Most of the prior analysis in this subject focuses on fading channels while paying compar-
atively less attention to the effect of network geometry on the capacity of cognitive user,
mainly due to inherent analytical difficulties associated with the latter [13]. In practice, it is
of utmost importance to take into account the relative distances between respective nodes in

123



154 B. Dulek et al.

a communications network since path loss constitutes the most important determinant of the
achievable rates.

In the following analysis, we derive an upper bound on the ergodic capacity of the cogni-
tive radio by considering detailed interference scenarios due to network geometry in addition
to log-normal shadowing for a single-cell network system. Assuming that the secondary
(cognitive) user is only informed of the shadow fading between secondary transmitter and
primary receiver, a closed form expression is obtained for the SS power transmission strat-
egy under an average primary signal to secondary interference plus noise ratio (SINR) loss
constraint. Contrary to perfect CSI requirement at the SS transmitter, the transmission power
control of the SS can be accomplished in the absence of any path loss estimates. To that aim,
a method to estimate the instantaneous value of the shadow fading is also given.

The remainder of the paper is organized as follows. In Sect. 2, we state the system model
and assumptions for the analysis of the single-cell network. Then, secondary system transmis-
sion power control problem is studied under an average SINR loss constraint in the absence
of any path loss estimates in Sect. 3. Section 4 discusses the approaches on how to estimate
the instantaneous value of the shadow fading, which is the sole determinant of the proposed
strategy. Next, we conduct a number of numerical simulations to obtain an in-depth analysis
of the suggested power adaptation method in Sect. 5. Concluding remarks are made in Sect. 6.

2 System Model

For the PS model, a single-cell environment is assumed in our analysis as shown in Fig. 1.
The inter-node distance state vector is denoted by r = [

rss, rsp, rps, rpp
]
, where subscript s

and p denote primary and secondary, respectively. The first subscript indicates the transmitter

Fig. 1 Geographical parameters among the PS and SS nodes in a single-cell network system
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while the second corresponds to the receiver. A primary transmitter (base station PSBS) is
located at the center of the primary network with radius RC . It is assumed that primary system
receiver (PSRX) and secondary system receiver (SSRX) are independently uniformly dis-
tributed inside the primary service area. Furthermore, secondary system transmitter (SSTX)
is assumed to reside uniformly anywhere on a circle centered at the SSRX with radius rss .
Under this probabilistic setting, the joint probability density function (PDF) of the inter-node
distances and angles can be expressed as

Pr(rps, rpp, θ, φ) = 2 rps rpp

π2 R4
C

, (1)

for 0 ≤ rps, rpp ≤ RC , 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π , where θ is the angle between rpp and
rps , and φ is the angle between rss and rps . Both angles are uniformly distributed in their
respective domains. From the network topology depicted in Fig. 1, rsp can be determined for
each realization of these random variables as rsp = ∣

∣rppeiθ − (
rps + rssei(π−φ)

)∣∣, where rss

is assigned different values for capacity computations.
We denote the state vector for node locations with n = [rps, rpp, θ, φ]. Using the same

notation, the state vector for shadow fading is represented by ξ = [
ξss, ξsp, ξps, ξpp

]
. Ele-

ments of ξ are modeled as independent and identically distributed (i.i.d.) Gaussian random
variables with zero mean and standard deviation σd B , where subscript d B relates to the
well-known log-normal shadowing model [19]. ξ and n are assumed to be statistically inde-
pendent, meaning that shadow fading is independent of the distribution of the nodes within
the primary network. Hence, the combined effect of path loss and shadow fading is modeled
as follows

G(r, ξT X,R X ) = GT X G path,T X,R X (r) 10
ξT X,R X

10 G R X , (2)

where G path,T X,R X (r) is the contribution of path gain (≤ 1) alone, 10ξT X,R X /10 is the gain due
to log-normal shadowing, GT X and G R X are antenna gains at the transmitter and receiver,
respectively. When one of the nodes in the transmitter-receiver link is the base station, the path
gain model is denoted by G path,BS,U E (r), which is computed based on ITU-R M. 1225 Pedes-
trian [20]. For the remaining links, a common path gain model based on IEEE 802.11n Model
F is assumed and represented by G path,U E,U E (r), where UE means user equipment [21].

The primary transmit power Pp is fixed, as is usually the case for base stations [19].
The allocation policy for the secondary transmit power Ps will be determined in this paper
relying only on the instantaneous value of the shadow fading between secondary transmitter
and primary receiver in the absence of any path loss estimates.1 Although only partial CSI is
required at the SS, the information regarding the instantaneous shadow fading should still be
communicated between PS and SS through reliable links (e.g., a wired backbone channel, a
wireless channel such as a cognitive pilot channel, or a common database server). For clarity
of discussion, thermal noise at the SS receiver is assumed to be negligible in comparison with
the interference from PS user. Finally, this discussion can be generalized easily to multiple
primary receivers by restricting primary transmitter to communicate with a single primary
receiver at any given time; hence, the interference within the PS due to primary agents is
avoided.

1 Section 4 discusses the approaches on how to estimate the instantaneous value of the shadow fading.
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3 Secondary System Transmission Power Control under Average SINR Loss
Constraint

When the SS utilizes the downlink (DL) resources of the PS, the victim of the interference
from the SS is a PS user equipment (PSRX) as shown in Fig. 1. To control the interference
level for the target PS, a method of transmission power control is needed for the SSTX. If the
PS can tolerate an average SINR loss SINRloss,tol , caused by the interference from the SS,
the value SINRloss,tol can be regarded as the SINR margin of the PS. For example, the SINR
margin of the PS could be obtained from the difference between the actual SINR of the target
primary link and the required SINR in accordance with the Quality of Service (QoS) level of
the target primary link. Alternatively, an interference level for the target primary link that is
considered to be negligible could be regarded as the SINR margin of the PS. Hence, the value
SINRloss,tol , which corresponds to the SINR margin of the PS, is an important parameter in
this method.

The ergodic capacity maximization problem for the SS under an average SINR loss con-
straint can be written as

max
Ps (n,ξ)

En,ξ

{
log2 (1 + SIRs)

}

subject to En,ξ

{
SINRp,loss

} ≤ SINRloss,tol , (3)

where Ps (n, ξ) denotes the power transmission strategy of the SS assuming full CSI is
available, SIRs represents secondary signal to primary interference ratio at the secondary
receiver, SINRp,loss denotes primary signal to secondary interference plus noise ratio at the
primary receiver, and SINRloss,tol represents the average SINR loss tolerance at the primary
receiver.

The instantaneous SINR loss at the primary receiver is given as

SINRp,loss = 1 + Ps (n, ξ) G
(
rsp, ξsp

)

Np
, (4)

where Np denotes the thermal noise power at the PS receiver. The detailed derivation of (4) is
shown in the section“Derivation of Instantaneous SINR Loss at PS receiver” of “Appendix”.
It is noted that SINRp,loss is independent of the primary signal power Pp . Similarly, we have

SIRs = Ps (n, ξ) G (rss, ξss)

Pp G
(
rps, ξps

) , (5)

Using the method of Lagrange multipliers [19, Chapter 4], the optimal transmission power
allocation policy for SS is given as

Ps (n, ξ) =
[

c
Np

G
(
rsp, ξsp

) − Pp G
(
rps, ξps

)

G (rss, ξss)

]+
, (6)

where [x]+ = max(0, x) and c is a constant that should be determined from the average
SINR loss constraint in (3). Since the expectation needs to be taken over both n and ξ , it is
very difficult to compute in general. Even if it is solved, optimal strategy requires perfect
CSI at the secondary transmitter which is not practically desirable.

In the following, we assume that the only CSI available to SS is the instantaneous value
of the shadow fading between secondary transmitter and primary receiver. Based on this
assumption, we show that an upper bound on the capacity can be obtained by invoking
Jensen’s inequality [22]. Let Ps

(
rss, ξsp

)
denote secondary transmission power as a function
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of ξsp when secondary transmitter and receiver are separated by a distance rss . Since r and
ξ are independent, average SINR loss at the primary receiver can be expressed as

SINRp,loss = 1 + κ (rss)

∞∫

−∞
Ps (rss, ξ) 10

ξ
10 fξsp (ξ) dξ , (7)

where κ (rss) � G2
U E/Np En

{
G path,U E,U E

(
rsp
)}

, fξsp (ξ) is the zero mean Gaussian dis-
tribution with standard deviation σd B for shadow fading exponent, and the expectation is
computed over the joint PDF of the inter-node distances as stated in (1). Subsequently, aver-
age SIR at the secondary receiver can be obtained as a function of the shadow fading exponent

ξsp and the distance rss as SIRs
(
rss, ξsp

) = Ps
(
rss, ξsp

)
χ (rss), where

χ (rss) �
GU E e

(
ln 10
10 σd B

)2

Pp G BS
G path,U E,U E (rss) En

{
1

G path,BS,U E
(
rps
)

}

. (8)

From Jensen’s inequality, an upper bound on the ergodic capacity can now be obtained as

Cup
s (rss) =

∞∫

−∞
log2

(
1 + SIRs(rss, ξsp)

)
fξsp (ξ) dξ bps/Hz. (9)

In the following discussion, the subscripts are dropped to preserve notational simplicity. In
order to obtain transmit power strategy maximizing the upper bound on the capacity for SS,
the following constrained optimization problem is constructed

max
Ps (ξ)

∞∫

−∞
log2

(
1 + Ps(ξ) · χ

)
f (ξ) dξ

subject to

∞∫

−∞
Ps(ξ) 10

ξ
10 f (ξ) dξ ≤ γ , (10)

where γ �
(
SINRloss,tol − 1

)
/κ is obtained from the constraint on the average SINR loss.

We can write the Lagrangian as

L(Ps(ξ), λ) = −
∞∫

−∞
log2

(
1 + Ps(ξ) · χ

)
f (ξ) dξ + λ

⎛

⎝
∞∫

−∞
Ps(ξ) 10

ξ
10 f (ξ) dξ − γ

⎞

⎠ ,

(11)

and differentiating with respect to Ps(ξ), we get

∂L(Ps(ξ), λ)

∂ Ps(ξ)
= − 1

ln 2

χ

1 + Ps(ξ)χ
f (ξ) + λ 10

ξ
10 f (ξ) = 0

�⇒ Ps(ξ) = 1

10
ξ
10 λ ln 2

− 1

χ
. (12)

Solving for Ps(ξ) with the constraint that Ps(ξ) ≥ 0 yields the familiar water-filling solution
as

Ps(rss, ξsp) =
⎧
⎨

⎩

1
χ

(
10

ξ0−ξsp
10 − 1

)
if ξsp < ξ0

0 if ξsp ≥ ξ0

(13)
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for some cut-off value ξ0. It is noted that SS transmission is stopped whenever the shadow
fading exponent ξsp between secondary transmitter and primary receiver exceeds the cut-off
value ξ0 (in dB) in order to satisfy the average SINR loss constraint at the primary receiver.
ξ0 can be solved numerically from the interference constraint, i.e.,

ξ0∫

−∞

(
10

ξ0
10 − 10

ξ
10

)
f (ξ) dξ = χ · γ . (14)

Since normal distribution with zero mean and standard deviation σd B is assumed for the
shadow gain ξsp between SSTX and PSRX, the cut-off value can be solved equivalently from

10ξ0/10
(

1 − Q
(

ξ0

σd B

))
− e

(
ln 10
10 σd B

)2
/2
(

1 − Q
(

ξ0

σd B
− ln 10

10
σd B

))
= χ · γ (15)

where Q(·) represents the Q-function for the tail probability of the standard normal distrib-
ution. It should be emphasized that since χ is a function of rss, ξ0 also depends on rss by the
above equation.

The power adaptation strategy given in (13) allows SSTX to adjusts its transmit power
based only on the instantaneous value of the shadow fading exponent between SSTX and
PSRX. In other words, the power adaptation can be performed in the absence of any path loss
estimates which would require additional knowledge of the distance between the respective
nodes. Section 4 discusses the approaches on how to estimate the instantaneous value of the
shadow fading.

4 Estimation of Shadow Fading

In this part, we present a method for estimating the instantaneous value of the shadow fading
exponent which does not require the knowledge of the distance between secondary transmitter
and primary receiver (hence, it is applicable in the absence of any path loss estimates). Our
approach is based on the modification of the least-squares shadow fading estimation method
that is discussed in the references [23,24]. We begin by summarizing the method proposed
in [23,24].

4.1 Least Squares Based Shadow Fading Estimation

The first step in the estimation of the shadow fading is to eliminate the multipath effect in the
received signal power. Since the fast fading due to multipath scattering varies with a distance
on the order of a wavelength, averaging the received power over segments of 30λ can remove
small-scale effects such as multipath fading while large-scale effects such as distance loss
and shadow fading can be assumed to stay constant [25].

Next, a deterministic distance dependent path loss model similar to Okumura-Hata model
[26] is assumed in order to extract the shadow fading component:

10 log10 (hloss(d)) = A + B log10(d)

where d is the distance between secondary transmitter and primary receiver (in km), hloss

is the deterministic long term distance dependent path loss. Together with contribution from
the shadow fading, the integral (overall) path loss is expressed as

10 log10 (hch(d)) = A + B log10(d) + 10 log10(hsh) (16)
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where hsh is the channel’s shadow fading component (modeled with log-normally distributed
random variable) that is responsible for the slow variation in the received signal power due
to obstacles and obstruction in the propagation path. Recalling that the random variable
describing the shadow fading component is modelled as

hsh = 10Z σsh/10 (17)

where Z is a zero-mean Gaussian random variable with unit variance, we have

E
{
10 log10(hsh)

} = 0 dB (18)

Measurement of the integral path loss is obtained over each segment and the data set{
10 log10 (hch(di )) ; di

}
is constructed. When a large number of measurements are collected,

the distance loss component can be estimated by calculating the least squares fit to the average
received powers from all 30λ segments against log-distance. In other words, the parameters
A and B can be obtained as the least squares estimate (c.f. least squares line fitting problem
[27]). Using the regression equation (i.e., parameters A and B), the shadow fading component
can be extracted as the vertical distance between the estimated distance dependent path loss
component (i.e., the regression line) and the average received power measurement over each
local area [23,24].

4.2 Proposed Shadow Fading Estimation Method

In this part, we adapt the least squares based shadow fading estimation method described in
the previous paragraphs so that it does not require the knowledge of the exact distance between
transmitter and receiver. Instead, we assume that the average received powers from all 30λ

segments are measured with respect to an unknown baseline distance d0 between transmitter
and receiver.2 Using the same path loss model as above, the following relationship is obtained:

10 log10 (hch(d)) = A + B log10(d0 + di ) + 10 log10(hsh) (19)

= A + B log10(d0) + B log10

(
1 + di

d0

)
+ 10 log10(hsh) (20)

By the following Taylor expansion identity, ln(1 + x) = x − x2

2 + x3

3 − x4

4 + · · · for
−1 < x ≤ 1 and keeping the first two terms in the above expression, we obtain the second
order Taylor approximation:

log10

(
1 + di

d0

)
≈ 1

ln 10

(
di

d0
− d2

i

2d2
0

)

(21)

By defining a0 � A + B log10(d0), a1 � B
d0 ln 10 and a2 � −B

2d2
0 ln 10

, the integral path loss can

be expressed as

10 log10 (hch(d)) ≈ a0 + a1di + a2d2
i + 10 log10(hsh) (22)

or similarly by keeping the first n terms, the integral path loss can be approximated by the
following nth order polynomial:

10 log10 (hch(d)) ≈ a0 + a1di + a2d2
i + · · · + andn

i + 10 log10(hsh) (23)

2 Contrary to the previous case, in this framework it is necessary that the secondary transmitter moves along
the line connecting the secondary transmitter to primary receiver in order to express the total distance as d0 +di

123



160 B. Dulek et al.

Consequently, with a large number of measurements, we can obtain a new least squares fit
to the average powers over all 30λ segments (corresponding to various di values such that
|di | < d0). Contrary to the previous case, this estimate depends on the distances between
the initial measurement location of the secondary transmitter and the consecutive segments
over which measurements are conducted instead of the exact distance between secondary
transmitter and primary receiver at each successive measurement segment.

In matrix notation,
⎡

⎢
⎢
⎢
⎣

P1

P2
...

Pm

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
p

=

⎡

⎢
⎢
⎢
⎣

1 d1 d2
1 · · · dn

1
1 d2 d2

2 · · · dn
2

...
...

...

1 dm d2
m · · · dn

m

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
D

⎡

⎢
⎢
⎢
⎣

a0

a1
...

an

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
a

(24)

where p represents the average received power measurements, D is the matrix of relative
distances of the measurement locations with respect to the initial reference point, and a is
the regression polynomial coefficients. When the number of measurements m is much larger
than the number of regression coefficients n + 1, the least squares solution is given by

â =
(

DT D
)−1

DT p (25)

As discussed previously, once the regression coefficients {a0, a1, a2, . . . , an} are computed,
the shadow fading component 10 log10(hshadow) can be determined from the vertical dis-
tance between the measured average received power and the distance dependent path loss
estimate calculated from the regression polynomial for a given relative distance di . Implicit
in the derivations, it is assumed that the transmitter power is fixed while the received power
measurement are taken.

It should be pointed out that the above approach takes into account the effect of distance
dependent path loss over the segments where average (over the multipath fading) received
power measurements are collected. This analysis can be simplified even further if we can
assume that the distance dependent path loss can be safely assumed constant across these
segments while assuring that they are well-separated to obtain uncorrelated shadow fading
measurements. In this case, the regression operation which basically provides us with the
distance dependent path loss information is no longer necessary. In other words, after the local
power measurements are obtained by averaging over the multipath effect in each segment,
the distance dependent path loss value can be computed by carrying out a final averaging
operation over the values returned from each segment. Lastly, the instantaneous shadow
fading component can be determined by subtracting the received power measurement from
the computed mean value. Using the same notation as above, the mean received power due to
distance dependent path loss effect (averaged over multipath and shadow fading) is calculated
by the sample average over the dB values as follows

P̄ =
∑m

k=1 Pk

m
(26)

Next, let Pinst denote the instantaneous local received power averaged over the multipath
fading. The instantaneous shadow fading loss is given by

10 log10(hshadow) = Pinst − P̄ (27)
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Table 1 System model
parameters

Parameter Value

PS service area (RC ) 500 m

Operating frequency ( f ) 2,500 MHz

Average SINR loss (SINRloss,tol ) 0.01 dB

Transmission power of PSBS (Pp) 20, 30, 40 dBm

PSRX noise power (Np) −96.8 dBm

BS/UE antenna gain (G BS/GU E ) 10/0 dB

Shadow fading SD (σd B ) 10 dB

4.3 Related Resources

In the previous paragraphs, we have focused on the estimation of the instantaneous shadow
fading component from the received power measurements using the least squares approach.
The first step in this method was to average the instantaneous received power to remove the
fast multipath fading while following the variations of the slower shadow fading. Based on
the work in [23,24], the averaging window size was selected to be 30λ. However, depending
on the relative velocity between transmitter and receiver, shadow fading correlation and other
considerations, the averaging filter bandwidth may need to be updated [28, Sec. 12.3]. For
a more detailed discussion on window-based estimators, we refer the reader to the review
paper [29]. Window-based estimators are designed assuming constant shadow power over
the duration of an averaging window [30–32]. There are also Kalman filter based power
estimation and prediction algorithms with superior performance in comparison to window-
based approaches [33]. The non-Gaussian nature of the received log-powers requires special
consideration in wireless radio environments. To that aim, a sequential Bayesian method is
proposed in [34] for dynamic estimation and prediction of local mean powers from instan-
taneous signal powers in composite fading-shadowing channels with a Nakagami-m fading
component and AR(1) shadowing component.

5 Numerical Results

In this section, we present several numerical simulations in order to evaluate the performance
of the proposed power adaptation strategy under the average SINR loss constraint. System
model parameters are selected as shown in Table 1.

The distance gain G path,BS,U E (r) between BS and UE is modeled based on ITU-R M.
1225 [20]. Since path gain should always be less than the free space gain, we have slightly
modified this model to prevent the formula resulting in high gain factors for small values of
the distance r . The resulting path gain formula can be expressed as a piecewise function

G path,BS,U E (r) =
⎧
⎨

⎩

107.1

r4 f 3 if r ≥ r1

107.1

r4
1 f 3 if r < r1

(28)

where r is in meters and f is in MHz. r1 can be chosen as a small fraction of the PS cell
radius. In our analysis, r1 = 0.01 RC is employed.

The distance gain G path,U E,U E (r) between UEs is modeled according to IEEE 802.11n
model F [21], which is described by the following piecewise function (after the slight modi-
fication explained above)

123



162 B. Dulek et al.

G path,U E,U E (r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
c

4π 106 f

)2 · 301.5

r3.5 if r ≥ 30
(

c
4π 106 f r

)2
if r1 ≤ r < 30

(
c

4π 106 f r1

)2
if r < r1

(29)

where r, f, r1 are as defined above, and c is the speed of light in meters/sec.
The next constituent of the path gain, i.e., the shadow gain ξi j between any two nodes

i and j is modeled as a Gaussian random variable with zero mean and standard deviation
σd B = 10 dB. No correlation is assumed among shadow gains corresponding to distinct node
pairs, hence implying independent yet identical Gaussian models with the following PDF

pξi j (ξ) = 1√
2πσd B

e−ξ2/2σ 2
d B , (30)

for −∞ < ξ < ∞.

The exact ergodic capacity as a function of rss can then be computed numerically from

Cexact
s (rss) = En,ξ

{
log2 (1 + SIRs)

}

= En,ξ

{

log2

(

1 + Ps
(
rss, ξsp

)
G (rss, ξss)

Pp G
(
rps, ξps

)

)}

(31)

where Ps
(
rss, ξsp

)
is substituted from (13). The multiple integral over the joint pdf of the

inter-node distances, angles and shadow fading distributions are evaluated numerically by
averaging the results from a total of 107 realizations of each random quantity using Monte
Carlo integration techniques [35].

5.1 Exact Ergodic Capacity Analysis

In Table 2, the parameters necessary for calculating the proposed power adaptation strategy
while satisfying the average SINR loss constraint are provided for downlink communications.
For a given value of rss , transmit power of SS is determined by substituting the parameters
supplied in the corresponding row of the table into (13).

Next, we provide the plots for the exact ergodic capacity curves which are obtained by
computing the instantaneous SIR from (31) based on the power adaptation parameters given
in Table 2. Using this quantity, we obtain the corresponding instantaneous capacity values
which are then averaged over the joint PDF of the inter-node distances and the shadow fading
distribution as suggested by (31).

The resulting exact Shannon capacity curves are depicted in Fig. 2. Relatively small
capacity values can be attributed to the fact that the power adaptation strategy utilizes only
the knowledge of instantaneous shadow fading whereas full CSI of the links in the single-cell
environment is required to attain higher capacity values.

Further insight can be obtained by inspecting Fig. 2 in more detail. As the transmit power
of PSBS increases, SS ergodic capacity decreases due to higher levels of interference from
PS. More evidently, SS ergodic capacity decreases with increasing distance between SSTX
and SSRX due to higher path loss.

5.2 Effect of Shadow Fading Exponent Standard Deviation

In this part, we try to find out how the performance of the proposed power adaptation strat-
egy responds to changes in the standard deviation of the shadow fading exponent. To that
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Table 2 Power adaptation parameters for DL communications scenario in Fig. 2

rss (m) Pp = 20 dBm Pp = 30 dBm Pp = 40 dBm

χ ξ0 χ ξ0 χ ξ0

10 4,737,420 30.49 473,742 20.74 47,374 11.66

20 1,192,817 24.60 119,282 15.19 11,928 6.71

30 536,380 21.26 53,638 12.13 5,364 4.03

40 199,296 17.22 19,930 8.51 1,993 0.88

50 93,130 14.23 9,313 5.87 931 −1.42

60 50,453 11.90 5,045 3.83 505 −3.19

70 30,259 10.01 3,026 2.18 303 −4.63

80 19,595 8.45 1,960 0.83 196 −5.81

90 13,453 7.13 1,345 −0.32 135 −6.82

100 9,662 5.99 966 −1.31 97 −7.69

110 7,219 5.01 722 −2.16 72 −8.44

120 5,563 4.15 556 −2.91 56 −9.10

130 4,403 3.38 440 −3.58 44 −9.69

140 3,561 2.70 356 −4.17 36 −10.22

150 2,940 2.09 294 −4.70 29 −10.69

160 2,468 1.54 247 −5.19 25 −11.12

170 2,102 1.04 210 −5.62 21 −11.51

180 1,814 0.59 181 −6.02 18 −11.86

190 1,585 0.18 159 −6.38 16 −12.18

200 1,398 −0.20 140 −6.72 14 −12.48
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Fig. 2 Exact ergodic capacity versus distance between SSTX and SSRX under average SINR loss con-
straint using the power adaptation strategy depicted in Table 2 for downlink communications, (SINRloss,tol
= 0.01 dB)
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Fig. 3 Exact ergodic capacity versus distance between SSTX and SSRX for various values of the shadow
fading exponent standard deviation using the power adaptation strategy for downlink communications under
the same average SINR loss constraint (SINRloss,tol = 0.01 dB)

aim, we let the standard deviation of the shadow fading exponent to take values in the set
{4, 6, 8, 10, 12, 14} dB. Assuming i.i.d. shadow fading between the nodes, the proposed
power adaptation strategy is implemented assuming this information is available at the SS.
Same procedure is repeated for all values of the standard deviation of the shadow fading expo-
nent. The resulting average ergodic capacity values are plotted versus the distance between
SSTX and SSRX in Fig. 3. It is observed that the performance of the power adaptation strat-
egy improves as the standard deviation of the shadow fading exponent is increased. This
fact can be partly anticipated by noting that as the variance of the shadow fading increases,
some of the instantaneous shadow fading measurements that are smaller than the threshold
value ξ0 may have much lower values which will in turn have significant contribution to the
ergodic capacity due to the exponential nature of the power assignment function given in
(13). As a conclusion, we can state that the water filling power adaptation strategy favors the
shadowing processes with higher variances over shadowing processes with lower variances
under the same average SINR loss constraint on the condition that the instantaneous shadow
fading measurements are error-free.

5.3 Effect of Shadow Fading Exponent Estimation Error

In this part, we analyze the effect of erroneously estimating the instantaneous value of the
shadow fading exponent on the performance of our power adaptation strategy. We try to
find out the effects on the ergodic capacity of the secondary system as well as the effects
on the SINR loss induced at the primary system receiver. To that aim, the error incurred
in estimating the instantaneous value of the shadow fading exponent between SSTX and
PSRX is modeled as a white uniform random variable added independently to true value
of the instantaneous shadow fading exponent. The proposed power adaptation strategy is
obtained based on the true value of the shadow fading standard deviation, but the resulting
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hard-coded power assignment function is supplied with the noise corrupted instantaneous
shadow fading exponent measurements. The resulting ergodic capacity of the SS and the
SINR loss at the PS are calculated by integrating the respective formulae over the joint PDF
of the inter-node distances and the true shadow fading distribution. Since both the shadow
fading exponent and the estimation error are modeled as independently distributed random
variables, the measured shadow fading exponent (which is defined as the sum of the two
aforementioned quantities) is also a random variable with variance equal to the sum of the
component variances.

The standard deviation of the shadow fading exponent estimation error is controlled
through a multiplicative constant q . More explicitly, the variance of the measured shadow
fading exponent is given as

σ 2
sh,measured = q · σ 2

err + σ 2
sh,true (32)

The variance of the uniformly generated estimation errors is chosen to be equal to the true
variance of the shadow fading exponent, i.e., σ 2

err = σ 2
sh,true. By assigning different values

to the parameter q , the intensity of the shadow fading estimation error is adjusted. Evidently,
q = 0 results in error-free instantaneous shadow fading measurements (or estimates), and it
is enough to consider only the positive values for q since the estimation errors are generated
as zero-mean uniform random variables.

In Fig. 4a, we plot the effect of the shadow fading exponent estimation error on the exact
ergodic capacity of the link between SSTX and SSRX for downlink communications with
Pp = 20 dBm. It is observed that the capacity drops gracefully for a given value of the
distance between SSTX and SSRX as the variance of the estimation error is increased. This
is somewhat expected because estimation errors are uniformly distributed zero mean random
variables whereas true shadow fading exponent values are zero mean Gaussian random vari-
ables. With a positive value for the threshold ξ0, as the variance of estimation error increases,
more shadow fading samples will exceed the threshold ξ0 when added to the estimation
errors (causing the transmission to be aborted, i.e. Ps = 0) than the ones shifted below the
threshold.

In Fig. 4b, the average SINR loss of the primary system due to SS transmission is depicted
as the variance of the estimation error is changed for various distance values between SSTX
and SSRX. Although the ergodic capacity is decreasing with increasing estimation error, it is
noted that the average SINR loss induced at the PSRX changes very little (close to the target
value SINRp,loss = 0.01 dB) as we increase the power of the noise up to twice the variance of
the shadow fading exponent. If the noise power is increased to even higher values with respect
to the true value of the shadow fading exponent’s variance, we expect that the average SINR
loss would rise to intolerable values jeopardizing the robust behavior of the power assignment
strategy. This is mainly due to the fact that in this case, measurement noise would dominate
the shadow fading measurements and negative values of high magnitude would result in
exponentially increasing power assignments and cause significant interference to PS receiver
as can be deduced from the power adaptation strategy given in (13). However, we have plotted
up to twice the shadow fading variance (∼1.41 of the shadow fading standard deviation) in
dB. This choice is due to the fact that higher measurement noise power values do not conform
with practical cases. Also, note that the z-axis corresponding to average SINR loss is not in
dB units.

In order to thoroughly understand the probabilistic structure of the SINR loss at the PSRX
due to SS transmission, the empirical cumulative distribution function and some important
statistics of the SINR loss are presented for rss = 50 m and measurement noise coefficient
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Fig. 4 Effects of shadow fading estimation error on a the ergodic capacity of the link between SSTX and
SSRX, b average SINR loss at the PSRX versus normalized standard deviation of the estimation error and the
distance between SSTX and SSRX for downlink communications

q ∈ {0, 1} corresponding to the cases of noise-free shadow fading estimation and estimation
under noise with 10 dB variance, respectively. These are depicted in Fig. 5a, b.

5.4 Effect of Average SINR Loss Constraint at the PS receiver

In Sect. 5.3, we have employed a strict constraint on the average SINR loss, namely
SINRp,loss = 0.01 dB. In this part, we repeat the analysis in the previous section by relaxing
the constraint on the average SINR loss at the primary system receiver. The exact ergodic
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capacity performance of the proposed power adaptation strategy under the relaxed SINR loss
constraint of 1 dB is presented for both noiseless and noisy measurement cases in Figs. 6, 7a, b.

6 Conclusion

A novel power adaptation strategy has been proposed to maximize the ergodic capacity of
the secondary system subject to an average SINR loss constraint at the primary system for a
single-cell network. The closed form water-filling solution can operate in the absence of any
path loss estimates depending solely on the instantaneous value of the shadow gain between
secondary transmitter and primary receiver. Numerical simulations have been provided to
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corroborate the theoretical results. More explicitly, we have provided plots for the exact
ergodic capacity of the proposed strategy and discussed the effect of the shadow fading
exponent’s variance on the performance. By employing uniformly distributed estimation
errors for the shadow fading on the link between SS transmitter and PS receiver, we have
analyzed the effects on the ergodic capacity of the SS and the probabilistic structure of the
SINR loss at the PS receiver. Furthermore, we have shown how the proposed strategy behaves
as the average SINR loss constraint is relaxed.

Appendix

Derivation of Instantaneous SINR Loss at PS receiver

When no SS user is present in the PS service area, the SNR at the PS receiver can be written
as

SNRp = Pp G
(
rpp, ξpp

)

Np
(33)

where Pp is the transmission power of the PS, G
(
rpp, ξpp

)
is the combined shadowing and

path gain between PS transmitter and receiver, and Np is the noise power at the PS receiver.
When an SS transmitter is present and interferes with the PS receiver, the SINR at the PS
receiver can be written as

SINRp = Pp G
(
rpp, ξpp

)

Ps (r, ξ) G
(
rsp, ξsp

)+ Np
(34)
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where Ps (r, ξ) is the transmission power of the SS and G
(
rsp, ξsp

)
is the combined shad-

owing and path gain between SS transmitter and PS receiver. From (33) and (34), the instan-
taneous SINR loss at the PS receiver due to the SS transmission is given as

SINRp,loss = SNRp

SINRp
= 1 + Ps (r, ξ) G

(
rsp, ξsp

)

Np
. (35)

Equation (35) indicates that SINRp,loss depends on the interference level from the SS and the
thermal noise at the PS victim, and it is independent of the PS tranmit power.
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