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Abstract. We use Markov risk measures to formulate a risk-averse version of the undiscounted
total cost problem for a transient controlled Markov process. Using the new concept of a multikernel,
we derive conditions for a system to be risk transient, that is, to have finite risk over an infinite time
horizon. We derive risk-averse dynamic programming equations satisfied by the optimal policy and
we describe methods for solving these equations. We illustrate the results on an optimal stopping
problem and an organ transplantation problem.
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1. Introduction. The optimal control problem for transient Markov processes
is a classical model in operations research (see Veinott [50], Pliska [35], Bertsekas and
Tsitsiklis [7], Hernández-Lerma and Lasserre [19], and the references therein). The
research is focused on the expected total undiscounted cost model, with increased
state and control space generality.

Our objective is to consider a risk-averse model. So far, risk-averse problems for
transient Markov models were based on the arrival probability criteria (see, e.g., Nie
and Wu [27] and Ohtsubo [29]) and utility functions (see Denardo and Rothblum
[12] and Patek [33]). We plan to use the recent theory of dynamic risk measures
(see Scandolo [45], Fritelli and Scandolo [16], Riedel [37], Ruszczyński and Shapiro
[42, 44], Cheridito, Delbaen and Kupper [8], Artzner et al. [3], Klöppel and Schweizer
[23], Pflug and Römisch [34], and the references therein) to develop and solve new risk-
averse formulations of the stochastic optimal control problem for transient Markov
models. Specific examples of such models are stochastic shortest path problems (Bert-
sekas and Tsitsiklis [7]) and optimal stopping problems (cf. Çınlar [11], Dynkin and
Yushkevich [13, 14], Puterman [36]).

A systematic approach to Markov decision problems with coherent dynamic mea-
sures of risk was initiated by Ruszczyński [41], who considered risk-averse finite hori-
zon and discounted infinite horizon models. This was further extended to nonconvex
criteria by Lin and Marcus in [26]. Shen, Stannat, and Obermayer [48] considered
risk-sensitive discounted and average cost models where the coherence assumptions
were relaxed.

Some applications of stochastic shortest path problems concerned with expected
performance criteria are given in the survey paper by White [52] and the references
therein. However, in many practical problems, the expected values may not be ap-
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3936 ÖZLEM ÇAVUŞ AND ANDRZEJ RUSZCZYŃSKI

propriate to measure performance, because they implicitly assume that the decision
maker is risk neutral. Below, we provide examples of such real-life problems which
were modeled before as a discrete-time Markov decision process with expected value as
the objective function. Alagoz et al. [1] suggested a discounted, infinite horizon, and
absorbing Markov decision process model to find the optimal time of liver transplanta-
tion for a risk-neutral patient under the assumption that the liver is transplanted from
a living donor. However, referring to Chew and Ho [9], they state that the risk neu-
trality of the patient is not a realistic assumption. Kurt and Kharoufeh [25] proposed
a discounted, infinite horizon Markov decision process model for optimal replacement
time of a system under Markovian deterioration and Markovian environment. So and
Thomas [49] employed a discrete-time Markov decision process to model profitability
of credit cards.

Our theory of risk-averse control problems for transient models applies to these
and many other models. Our results complement and extend the results of Ruszczyński
[41], where infinite-horizon discounted models were considered. We consider undis-
counted models for transient Markov systems. The paper is organized as follows.

In section 2, we quickly review some basic concepts of controlled Markov models.
In section 3, we adapt and extend our earlier theory of Markov risk measures. In sec-
tion 4, we introduce and analyze the concept of a multikernel (a multivalued kernel),
which is essential for our theory. General assumptions and technical issues associated
with measurability of decision rules are discussed in section 5. Section 6 is devoted
to the analysis of a finite horizon model. The main model with infinite horizon and
dynamic risk measures is analyzed in section 7. We introduce in it the concept of
a risk-transient model and develop equations for evaluating policies in such models.
In section 8, we derive risk-averse versions of dynamic programming equations for
risk-transient models. Section 9 compares randomized and deterministic polices. Fi-
nally, section 10 illustrates our results on risk-averse versions of an optimal stopping
problem of Karlin [22] and of the organ transplantation problem of Alagoz et al. [1].

2. Controlled Markov processes. We quickly review the main concepts of
controlled Markov models and we introduce relevant notation (for details, see [15, 18,
19]). Let X be a state space, and U a control space. We assume that X and U
are Borel spaces (Borel subsets of Polish spaces), with Borel σ-algebras B(X ) and
B(U ). A control set is a measurable multifunction U : X ⇒ U ; for each state
x ∈ X the set U(x) ⊆ U is a nonempty set of possible controls at x. A controlled
transition kernel Q is a measurable mapping from the graph of U to the set P(X )
of probability measures on X (equipped with the topology of weak convergence);
Q(x, u) is a probability measure on (X ,B(X )), for all x ∈ X and u ∈ U(x).

The cost of transition from x to y, when control u is applied, is represented by
c(x, u, y), where c : X × U × X → R. Only u ∈ U(x) and those y ∈ X to which
transition is possible matter here, but it is convenient to consider the function c(·, ·, ·)
as defined on the product space.

A stationary controlled Markov process is defined by a state space X , a control
space U , a control set U , a controlled transition kernel Q, and a cost function c.

For t = 1, 2, . . . , we define the space of state and control histories up to time t as
Ht = graph(U)t−1×X . Each history is a sequence ht = (x1, u1, . . . , xt−1, ut−1, xt) ∈
Ht.

We denote by P(U ) and P(U(x)) the sets of probability measures on U and
U(x), respectively. A randomized policy is a sequence of measurable functions πt :
Ht → P(U ), t = 1, 2, . . . , such that πt(ht) ∈ P(U(xt)) for all ht ∈ Ht. In words, the
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RISK-AVERSE CONTROL OF TRANSIENT MARKOV MODELS 3937

distribution of the control ut is supported on a subset of the set of feasible controls
U(xt). A Markov policy is a sequence of measurable functions πt : X → P(U ),
t = 1, 2, . . . , such that πt(x) ∈ P(U(x)) for all x ∈ X . The function πt(·) is called
the decision rule at time t. A Markov policy is stationary if there exists a function
π : X → P(U ) such that πt(x) = π(x) for all t = 1, 2, . . . , and all x ∈ X . Such a
policy and the corresponding decision rule are called deterministic, if for every x ∈ X
there exists u(x) ∈ U(x) such that the measure π(x) is supported on {u(x)}. In this
paper, we focus on deterministic policies.

Consider the canonical sample space Ω = X ∞ with the product σ-algebra F .
Let P1 be the initial distribution of the state x1 ∈ X . Suppose we are given a
deterministic policy Π = {πt}∞t=1. The Ionescu Tulcea theorem (see, e.g., [6]) states
that there exists a unique probability measure PΠ on (Ω,F ) such that for every
measurable set B ⊂ X and all ht ∈ Ht, t = 1, 2, . . . ,

PΠ(x1 ∈ B) = P1(B),

PΠ(xt+1 ∈ B |ht) = Q
(
B |xt, πt(ht)

)
.

To simplify our notation, from now on we assume that the initial state x1 is fixed. It
will be obvious how to modify our results for a random initial state. For a stationary
decision rule π, we write Qπ to denote the corresponding transition kernel.

Our interest is in transient Markov models. We assume that some absorbing
state xA ∈ X exists such that Q

({xA}∣∣xA, u) = 1 and c(xA, u, xA) = 0 for all
u ∈ U(xA). Thus, after the absorbing state is reached, no further costs are incurred.1

To analyze such Markov models, it is convenient to consider the effective state space

X̃ = X \ {xA}, and the effective controlled substochastic kernel Q̃ whose argu-

ments are restricted to X̃ and whose values are nonnegative measures on X̃ , so that

Q̃
(
B
∣∣x, u) = Q

(
B
∣∣x, u), for all Borel sets B ⊂ X̃ , all x ∈ X̃ , and all u ∈ U(x).

Our point of departure is the expected total cost problem, which is to find a policy
Π = {πt}∞t=1 so as to minimize the expected cost until absorption:

min
Π

E
Π

[ ∞∑
t=1

c(xt, ut, xt+1)

]
.

Here EΠ
[ · ] denotes the expected value with respect to the measure PΠ . Under

appropriate assumptions, the problem has a solution in the form of a stationary
Markov policy (see, e.g., [19, section 9.6]). The optimal policy can be found by
solving appropriate dynamic programming equations.

Our intention is to introduce risk aversion to the problem, and to replace the
expected value operator by a dynamic risk measure. We do not assume that the costs
are nonnegative, and thus our approach applies also, among others, to stochastic
longest path problems and optimal stopping problems with positive rewards.

3. Markov risk measures. Suppose T is a fixed time horizon. Each policy
Π = {π1, π2, . . . } results in a cost sequence Zt = c(xt−1, ut−1, xt), t = 2, . . . , T + 1,
on the probability space (Ω,F , PΠ). We define the σ-subalgebras Ft on X t, and
vector spaces Z Π

t of Ft-measurable random variables on Ω, t = 1, . . . , T .

1The case of a larger class of absorbing states easily reduces to the case of one absorbing state.
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3938 ÖZLEM ÇAVUŞ AND ANDRZEJ RUSZCZYŃSKI

To evaluate the risk of this sequence we use a dynamic time-consistent risk mea-
sure of the following form:

(3.1)

JT (Π,x1) = ρΠ1

(
c(x1, π1(x1), x2) + ρΠ2

(
c(x2, π2(x2), x3) + · · ·

+ ρΠT−1

(
c(xT−1, πT−1(xT−1), xT )

+ ρΠT (c(xT , πT (xT ), xT+1))
) · · ·)).

Here, ρΠt : Z Π
t+1 → Z Π

t , t = 1, . . . , T , are one-step conditional risk measures.
Ruszczyński [41, section 3] derives the nested formulation (3.1) from general prop-
erties of monotonicity and time consistency of dynamic measures of risk.

It is convenient to introduce vector spaces Z Π
t,θ = Z Π

t ×Z Π
t+1 × · · · ×Z Π

θ , where

1 ≤ t ≤ θ ≤ T + 1 and the conditional risk measures ρΠt,θ : Z Π
t,θ → Z Π

t is defined as
follows:

(3.2) ρΠt,θ(Zt, . . . , Zθ) = Zt + ρΠt

(
Zt+1 + ρΠt+1

(
Zt+2 + · · ·+ ρΠθ−1(Zθ) · · ·

))
.

As indicated in [41], the fundamental difficulty of formulation (3.1) is that at time t
the value of ρΠt (·) is Ft-measurable and is allowed to depend on the entire history ht of
the process. In order to overcome this difficulty, in [41, section 4] a new construction of
a one-step conditional measure of risk was introduced. Its arguments are functions on
the state space X , rather than on the probability spaceΩ. We adapt this construction
to our case, with a slightly more general form of the cost function.

Let V = Lp(X ,B, P0), where B is the σ-field of Borel sets on X , P0 is some
reference probability measure on X , and p ∈ [1,∞). It is convenient to think of the
dual space V ′ as the space of signed measures m on (X ,B), which are absolutely
continuous with respect to P0, with densities (Radon–Nikodym derivatives) lying
in the space Lq(X ,B, P0), where 1/p + 1/q = 1. We make the following general
assumption.

(G0) For all x ∈ X and u ∈ U(x) the probability measure Q(x, u) is an element
of V ′.

In the case of finite state and control spaces P0 may be the uniform measure; in other
cases P0 should be chosen in such a way that condition (G0) is satisfied. The existence
of the measure P0 is essential for the pairing of V and its dual space V ′, as discussed
below.

We consider the set of probability measures in V ′:

M = {m ∈ V ′ : m(X ) = 1, m ≥ 0} .
We also assume that the spaces V and V ′ are endowed with topologies that make
them paired topological vector spaces with the bilinear form

〈ϕ,m〉 =
∫

X

ϕ(y) m(dy), ϕ ∈ V , m ∈ V ′.

The space V ′ (and thus M ) will be endowed with the weak∗ topology. We may endow
V with the strong (norm) topology, or with the weak topology.

Definition 3.1. A measurable function σ : V × X × M → R is a transition
risk mapping if for every x ∈ X and every m ∈ M , the function ϕ �→ σ(ϕ, x,m) is
a coherent measure of risk on V .
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RISK-AVERSE CONTROL OF TRANSIENT MARKOV MODELS 3939

Recall that σ(·) is a coherent measure of risk on V (we skip the other two argu-
ments for brevity), if (see [2])

(A1) σ(αϕ + (1− α)ψ) ≤ ασ(ϕ) + (1− α)σ(ψ) ∀ α ∈ (0, 1), ϕ, ψ ∈ V ;
(A2) If ϕ ≤ ψ then σ(ϕ) ≤ σ(ψ) ∀ ϕ, ψ ∈ V ;
(A3) σ(a+ ϕ) = a+ σ(ϕ) ∀ ϕ ∈ V , a ∈ R;
(A4) σ(βϕ) = βσ(ϕ) ∀ ϕ ∈ V , β ≥ 0.
Example 3.1. Consider the first-order mean–semideviation risk measure analyzed

by Ogryczak and Ruszczyński [30, 31], and Ruszczyński and Shapiro [43, Example 4.2],
[44, Example 6.1]), but with the state and the underlying probability measure as its
arguments. We define

(3.3) σ(ϕ, x,m) = 〈ϕ,m〉+ κ
〈
(ϕ− 〈ϕ,m〉)+,m

〉
,

where κ ∈ [0, 1]. We can verify directly that conditions (A1)–(A4) are satisfied. In a
more general setting, κ : X → [0, 1] may be a measurable function.

Example 3.2. Another important example is the average value at risk (see, inter
alia, Ogryczak and Ruszczyński [32, section 4], Pflug and Römisch [34, sections 2.2.3,
3.3.4], Rockafellar and Uryasev [39], Ruszczyński and Shapiro [43, Example 4.3], [44,
Example 6.2]), which has the following transition risk counterpart:

σ(ϕ, x,m) = inf
η∈R

{
η +

1

α

〈
(ϕ− η)+,m

〉}
, α ∈ (0, 1).

Again, the conditions (A1)–(A4) can be verified directly. In a more general setting
α : X → [αmin, αmax] ⊂ (0, 1) may be a measurable function.

We shall use the property of law invariance of a transition risk mapping. For
a function ϕ ∈ V and a probability measure μ ∈ M we can define the distribution
function Fμϕ : R → [0, 1] as follows:

Fμϕ (η) = μ
{
y ∈ X : ϕ(y) ≤ η

}
.

Definition 3.2. A transition risk mapping σ : V ×X ×M → R is law invariant
if for all ϕ, ψ ∈ V and all μ, ν ∈ M such that Fμϕ ≡ F νψ , we have σ(ϕ, x, μ) =
σ(ψ, x, ν) for all x ∈ X .

The concept of law invariance corresponds to a similar concept for coherent mea-
sures of risk, but here we additionally need to take into account the variability of the
probability measure. The transition risk mappings of Examples 3.1 and 3.2 are law
invariant.

The concept of law invariance is important in the context of Markov decision
processes, where the model essentially defines the distribution of the state process
for every policy Π . It also greatly simplifies the analysis of specific problems, as
illustrated in section 10.1.

Transition risk mappings allow for convenient formulation of risk-averse pref-
erences for controlled Markov processes, where the cost is evaluated by formula
(3.1). Consider a controlled Markov process {xt} with a deterministic Markov policy
Π = {π1, π2, . . . }. For a fixed time t and a measurable function g : X ×U ×X → R

the value of Zt+1 = g(xt, ut, xt+1) is a random variable. We assume that g is w-
bounded, that is,∣∣g(x, u, y)∣∣ ≤ C

(
w(x) + w(y)

) ∀ x ∈ X , u ∈ U(x), y ∈ X

for some constant C > 0 and for the some weight (bounding) function w : X → [1,∞),
w ∈ V (see, [5, section 2.4], [19, section 7.2], and [51] for the role of weight functions in
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Markov decision processes). Then Zt+1 is an element of Z Π
t+1. Let ρ

Π
t : Z Π

t+1 → Z Π
t

be a family of conditional risk measures satisfying (A1)–(A4) for every deterministic
policy Π . By definition, ρΠt

(
g(xt, ut, xt+1)

)
is an element of Z Π

t , that is, it is an
Ft-measurable function on (Ω,F ). In the definition below, we restrict it to depend
on the past only via the current state xt.

Definition 3.3. A family of one-step conditional risk measures ρΠt : Z Π
t+1 →

Z Π
t is a Markov risk measure with respect to the controlled Markov process {xt} if

there exists a law invariant transition risk mapping σ : V × X × M → R such that
for all w-bounded measurable functions g : X × U × X → R and for all feasible
deterministic Markov policies Π we have

(3.4) ρΠt
(
g(xt, πt(xt), xt+1)

)
= σ

(
g(xt, πt(xt), ·), xt, Q(xt, πt(xt))

)
a.s.

Observe that the right-hand side of formula (3.4) is parametrized by xt, and thus
it defines a special Ft-measurable function of ω, whose dependence on the past is
carried only via the state xt. The quantifier “a.s.” means “almost surely with respect
to the measure PΠ .”

4. Stochastic multikernels. In order to analyze Markov measures of risk, we
need to introduce the concept of a multikernel.

Definition 4.1. A multikernel is a measurable multifunction M from X to
the space of regular measures on (X ,B(X)). It is stochastic if its values are sets
of probability measures. It is substochastic if 0 ≤ M(B|x) ≤ 1 for all M ∈ M(x),
B ∈ B(X ), and x ∈ X . It is convex ( closed) if for all x ∈ X its value M(x) is a
convex (closed) set.

The concept of a multikernel is thus a multivalued generalization of the concept
of a kernel. A measurable selector of a stochastic multikernel M is a stochastic kernel
M such that M(x) ∈ M(x) for all x ∈ X . We symbolically write M �M to indicate
that M is a measurable selector of M.

Recall that a composition M1M2 of (sub)stochastic kernels M1 and M2 is given
by the formula

(4.1)
[
M1M2

](
B
∣∣x) = ∫

X

M2(B|y)M1(dy|x), B ∈ B(X ), x ∈ X .

It is also a (sub)stochastic kernel. Multikernels, in particular substochastic multiker-
nels, can be composed in a similar fashion.

Definition 4.2. If M1 and M2 are multikernels, then their composition M1M2

is defined as follows:[
M1M2

](
B
∣∣x) = {[

M1M2]
(
B
∣∣x) : Mi �Mi, i = 1, 2

}
.

It follows from Definition 4.2 that a composition of (sub)stochastic multikernels is
a (sub)stochastic multikernel. We may compose a substochastic multikernel M with
itself several times, to obtain its “power”:

(M)k = M M · · · M︸ ︷︷ ︸
k times

.

Multikernels can be added by employing the Minkowski sum of their values:[
M1+M2

]
(x) = M1(x)+M2(x) =

{
μ : μ = μ1+μ2, μi ∈ Mi(x), i = 1, 2

}
, x ∈ X .

The sum of stochastic multikernels is a multikernel with nonnegative values.
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The concept of a multikernel and the composition operation arise in a natural
way in the context of Markov risk measures. If σ(·, ·, ·) is a transition risk mapping,
then the function σ(·, x,m) is lower semicontinuous for all x ∈ X and m ∈ M (see
Ruszczyński and Shapiro [43, Proposition 3.1]). Then it follows from [43, Theorem 2.2]
that for every x ∈ X and m ∈ M a closed convex set A (x,m) ⊂ M exists, such
that for all ϕ ∈ V we have

(4.2) σ(ϕ, x,m) = max
μ∈A (x,m)

〈ϕ, μ〉.

In fact, we also have

(4.3) A (x,m) = ∂ϕσ(0, x,m),

that is, A (x,m) is the subdifferential of σ(·, x,m) at 0 (for the foundations of conju-
gate duality theory, see [38]). In many cases, the multifunction A : X × M ⇒ M
can be described analytically.

Example 4.1. For the mean-semideviation model of Example 3.1, following the
derivations of [43, Example 4.2], we have
(4.4)

A (x,m) =

{
μ ∈ M : ∃(h ∈ L∞(X ,B, P0)

) dμ
dm

=1 + h− 〈h,m〉, ‖h‖∞ ≤ κ, h ≥ 0

}
.

Similar formulas can be derived for higher-order measures.
Example 4.2. For the conditional average value at risk of Example 3.2, following

the derivations of [43, Example 4.3], we obtain

(4.5) A (x,m) =

{
μ ∈ M :

dμ

dm
≤ 1

α

}
.

Consider formula (3.4) with ut = πt(xt). Using the representation (4.2) we can
express the Markov risk measure as follows:

(4.6) ρΠt
(
g(xt, πt(xt), xt+1)

)
= max

μ∈A
(
xt,Q(xt,πt(xt))

) ∫
X

g(xt, πt(xt), y) μ(dy) a.s.

Suppose policy Π is stationary and πt = π for all t. For every x ∈ X we can define
the set of probability measures

(4.7) Mπ(x) = A
(
x,Q(x, π(x))

)
, x ∈ X .

The multifunction Mπ : X ⇒ P(X ), assigning to each x ∈ X the set Mπ(x), is
a closed convex stochastic multikernel. We call it a risk multikernel, associated with
the transition risk mapping σ(·, ·, ·), the controlled kernel Q, and the decision rule π.
Its measurable selectors Mπ �Mπ are transition kernels.

It follows that formula (4.6) for stationary policies Π can be rewritten as follows:

(4.8) ρΠt
(
g(xt, πt(xt), xt+1)

)
= max

M∈Mπ (xt)

∫
X

g(xt, πt(xt), y)M(dy).

In the risk-neutral case we have

ρΠt
(
g(xt, πt(xt), xt+1)

)
= E

Π
[
g(xt, πt(xt), xt+1)

∣∣xt]
=

∫
X

g(xt, πt(xt)y) Q
(
dy
∣∣xt, π(xt)).D
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The comparison of the last two displayed equations reveals that in the risk-neutral
case we have

(4.9) Mπ(x) =
{
Q(x, π(x))

}
, x ∈ X ,

that is, the risk multikernel Mπ is single valued, and its only selector is the kernel
Q(·, π(·)). In the risk-averse case, the risk multikernel Mπ is a closed convex-valued
multifunction, whose measurable selectors are transition kernels. It is evident that
properties of this multifunction are germane for our analysis. We return to this issue
in section 7, where we calculate some examples of risk multikernels.

Remark 4.1. If m ∈ A (x,m) for all x ∈ X and m ∈ M , then it follows from
(4.7) that Q(·, π(·)) is a measurable selector of Mπ. Moreover, it follows from (4.2)
that for any function ϕ ∈ V we have

ρΠt
(
ϕ(xt+1)

) ≥ ∫
X

ϕ(y) Q
(
dy
∣∣xt, π(xt)) = E

Π
[
ϕ(xt+1)

∣∣xt].
It follows that the dynamic risk measure (3.1) is bounded from below by the expected
value of the total cost. The condition m ∈ A (x,m) is satisfied by the measures of
risk in Examples 4.1 and 4.2.

Interestingly, uncertain transition matrices were used by Nilim and El Ghaoui
in [28] to increase robustness of control rules for Markov models. There is also an
intriguing connection to Markov games (see, e.g., [17, 21]). In our theory, controlled
multikernels arise in a natural way in the analysis of risk-averse preferences.

5. General assumptions. Semicontinuity and measurability. We call the
controlled kernel Q setwise (strongly) continuous if for all Borel sets B ⊂ X and all
convergent sequences {(xk, uk)}, k = 1, 2, . . . ,

lim
k→∞

Q(B|xk, uk) = Q(B|x, u),

where x = limk→∞ xk and u = limk→∞ uk. We call Q weakly∗ continuous if for all
functions v ∈ V

lim
k→∞

∫
X

v(y) Q(dy|xk, uk) =
∫

X

v(y) Q(dy|x, u).

Under condition (G0), setwise and weak∗ continuity concepts are equivalent, because
the set of piecewise constant functions is dense in V .

In the product space X ×M we always consider the product topology of strong
convergence in X and weak∗ convergence in M . In all our analyses we make the
following assumptions:

(G1) The transition kernel Q(·, ·) is setwise continuous.
(G2) The multifunction A (·, ·) ≡ ∂ϕσ(0, ·, ·) is lower semicontinuous.
(G3) The function c(·, ·, ·) is measurable, w-bounded, and c(·, ·, y) is lower semi-

continuous for all y ∈ X .
(G4) The multifunction U(·) is measurable and compact valued.
We need the following semicontinuity property of a transition risk mapping.
Proposition 5.1. Suppose (G0)–(G3) and let v ∈ V . Then the mapping

(x, u) �→ σ
(
c(x, u, ·) + v(·), x,Q(x, u)

)
is lower semicontinuous on graph(U).

Proof. Let ϕ(x, u, y) = c(x, u, y)+ v(y). Consider the dual representation (4.2) of
the transition risk mapping

(5.1) σ(ϕ(x, u, ·), x,Q(x, u)) = max
μ∈A (x,Q(x,u))

∫
X

ϕ(x, u, y) μ(dy).
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By (G0), (G1), and (G2), the multifunction (x, u) �→ A (x,Q(x, u)) is lower semi-
continuous. Owing to condition (G3), the function (x, u, μ) �→ ∫

X ϕ(x, u, y) μ(dy) is
lower semicontinuous on graph(U) × M . The assertion follows now from [4, Theo-
rem 1.4.16], whose proof remains valid in our setting as well.

Some comments on the assumptions of Proposition 5.1 are in order. Continuity
assumptions of the kernel Q are standard in the theory of risk-neutral Markov control
processes (see, e.g., [18, App. C], [46]). If the transition risk mapping σ(·, ·, ·) is con-
tinuous, then its subdifferential (4.3) is upper semicontinuous. However, in Proposi-
tion 5.1 we assume lower semicontinuity of the mapping (x,m) �→ ∂ϕσ(0, x,m), which
is not trivial and should be verified for each case.

Example 5.1. Let us verify the lower semicontinuity assumption for the multi-
function A given in (4.4). Consider an arbitrary μ ∈ A (x,m) and suppose xk → x,
mk → m, as k → ∞. We need to find μk ∈ A (xk,mk) such that μk → μ. Let h be
the function for which, according to (4.4), dμ

dm = 1+ h− ∫
h(z)m(dz). We define the

μk by specifying their Radon–Nikodym derivatives: dμk

dmk
= 1+h− ∫

h(z)mk(dz). By

construction, μk ∈ A (xk,mk). Then, for any function v ∈ V we obtain∫
X

v(y) μk(dy) =

∫
X

v(y)

(
1 + h(y)−

∫
X

h(z)mk(dz)

)
mk(dy)

=

∫
X

v(y)
(
1 + h(y)

)
mk(dy)−

∫
X

h(z) mk(dz)

∫
X

v(y) mk(dy).

As mk → m, we conclude that for all v ∈ V

lim
k→∞

∫
X

v(y) μk(dy)

=

∫
X

v(y)
(
1 + h(y)

)
m(dy)−

∫
X

h(z) m(dz)

∫
X

v(y) m(dy) =

∫
X

v(y) μ(dy),

which is the weak∗ convergence of μk to μ.
In the following result we use the concept of a normal integrand, that is, a function

f : X × U → R ∪+∞ such that that its epigraphical mapping

x �→ {(u, α) ∈ U × R : f(x, u) ≤ α}
is a closed-valued and measurable multifunction (see Rockafellar and Wets [40, sec-
tion 14.D]).

Proposition 5.2. Suppose (G0)–(G4) and let v ∈ V . Then the function

ψ(x) = inf
u∈U(x)

σ
(
c(x, u, ·) + v(·), x,Q(x, u)

)
, x ∈ X ,

is measurable and w-bounded, and a measurable selector π � U exists, such that

ψ(x) = σ
(
c(x, π(x), ·) + v(·), x,Q(x, π(x))

) ∀ x ∈ X .

Proof. Owing to Proposition 5.1, the function (x, u) �→ σ(c(x, u, ·)+v(·), x,Q(x, u))
is lower semicontinuous, and is thus a normal integrand [40, Ex. 14.31]. Consider the
function f : X × U → R ∪+∞ defined as follows:

f(x, u) =

{
σ
(
c(x, u, ·) + v(·), x,Q(x, u)

)
if u ∈ U(x),

+∞ otherwise.
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Due to (G4), it is a normal integrand as well. It follows from [40, Thm. 14.37] that
the function ψ(x) = infu f(x, u) is measurable and that the optimal solution mapping
Ψ(x) = {u ∈ U : ψ(x) = f(x, u)} is measurable. By (G4), the set U(x) is compact,
and thus Ψ(x) �= ∅ for all x ∈ X . Ψ is also compact valued. By virtue of [24], a
measurable selector π � Ψ exists. Let us recall the dual representation (5.1) again:

ψ(x) = max
μ∈A (x,Q(x,π(x)))

∫
X

ϕ(x, π(x), y) μ(dy)

with ϕ(x, u, y) = c(x, u, y)+v(y). As the set A (x,Q(x, π(x))) contains only probabil-
ity measures, and the function ϕ(·, ·, ·) is w-bounded, the function ψ(·) is w-bounded
as well.

6. Finite horizon problem. We consider the Markovmodel at times 1, 2, . . . , T+
1 under deterministic policies Π = {π1, π2, . . . , πT }. The cost at the last stage is given
by a function vT+1(xT+1). Consider the problem

(6.1) min
Π

JT (Π,x1),

where JT (Π,x1) is defined by formula (3.1), with Markov conditional risk measures
ρΠt , t = 1, . . . , T :

(6.2)

JT (Π,x1) = ρΠ1

(
c(x1, u1, x2) + ρΠ2

(
c(x2, u2, x3) + · · ·

+ ρΠT
(
c(xT , uT , xT+1) + vT+1(xT+1)

) · · ·)).
In the formula above, we have ut = πt(xt), t = 1, . . . , T . We assume that every
one-step measure has the form (3.4), with some transition risk mapping σ(·, ·, ·).

Theorem 6.1. Assume that the general conditions (G0)–(G4) are satisfied, and
that the function vT+1(·) is measurable and w-bounded. Then problem (6.1) has an
optimal solution and its optimal value v1(x) is the solution of the following dynamic
programming equations:

(6.3) vt(x) = min
u∈U(x)

σ
(
c(x, u, ·) + vt+1(·), x,Q(x, u)

)
, x ∈ X , t = T, . . . , 1.

Moreover, an optimal Markov policy Π̂ = {π̂1, . . . , π̂T } exists and satisfies the equa-
tions

(6.4) π̂t(x) ∈ argmin
u∈U(x)

σ
(
c(x, u, ·) + vt+1(·), x,Q(x, u)

)
, x ∈ X , t = T, . . . , 1.

Conversely, every solution of (6.3)–(6.4) defines an optimal Markov policy Π̂.
Proof. Our proof is based on the ideas of the proof of Ruszczyński [41, Thm. 2],

but with refinements rectifying some technical inaccuracies.2

Consider two policies Π = {π1, . . . , πT−1, πT } and Π ′ = {π1, . . . , πT−1, π
′
T }, dif-

fering in the last decision rule. The corresponding state and control sequences,

{x1, u1, . . . , xT , uT , xT+1} and {x1, u1, . . . , xT , u′T , x′T+1},
2In [41, Thm. 2] we missed the measurability condition on U(·) and the assumptions of joint

continuity (lower semicontinuity) of the kernel and the cost functions.
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differ in the last control and the final state. Since the risk measures are Markov and
share the same transition risk mapping σ, we have

ρΠT
(
c(xT , uT , xT+1) + vT+1(xT+1)

)
= σ

(
c(xT , πT (xT ), ·) + vT+1(·), xT , Q(xT , πT (xT ))

)
,

ρΠ
′

T

(
c(xT , u

′
T , x

′
T+1) + vT+1(x

′
T+1)

)
= σ

(
c(xT , π

′
T (xT ), ·) + vT+1(·), xT , Q(xT , π

′
T (xT ))

)
.

Moreover, the distribution of xT , which depends only on π1, . . . , πT−1, is the same in
both cases. If

σ
(
c(xT , πT (xT ), ·) + vT+1(·), xT , Q(xT , πT (xT ))

)
≤ σ

(
c(xT , π

′
T (xT ), ·) + vT+1(·), xT , Q(xT , π

′
T (xT ))

)
a.s.,

then using the monotonicity condition (A2) for t = T − 1, . . . , 1 we obtain

ρΠ1

(
c(x1, u1, x2) + · · ·+ ρΠT

(
c(xT , uT , xT+1) + vT+1(xT+1)

) · · ·)
≤ ρΠ

′
1

(
c(x1, u1, x2) + · · ·+ ρΠ

′
T

(
c(xT , u

′
T , x

′
T+1) + vT+1(x

′
T+1)

) · · ·).
Therefore, we can move the optimization with respect to πT inside, and rewrite prob-
lem (6.1) as follows:

inf
π1,...,πT

{
ρΠ1

(
c(x1, π1(x1), x2) + · · ·+ ρΠT

(
c(xT , πT (xT ), xT+1) + vT+1(xT+1)

) · · ·)}
= inf
π1,...,πT−1

{
ρΠ1

(
c(x1, π1(x1), x2) + · · ·

+ inf
πT

ρΠT
(
c(xT , πT (xT ), xT+1) + vT+1(xT+1)

) · · ·)}.
Owing to the Markov structure of the conditional risk measure ρT , the innermost
optimization problem can be rewritten as follows:

(6.5) inf
πT

σ
(
c(xT , πT (xT ), ·) + vT+1(·), xT , Q(xT , πT (xT ))

)
= inf
u∈U(xT )

σ
(
c(xT , u, ·) + vT+1(·), xT , Q(xT , u)

)
.

The problem becomes equivalent to (6.3) for t = T , and its solution is given by (6.4)
for t = T . By Proposition 5.2, a measurable selector π̂T (·) exists, such that π̂T (xT ) is
the minimizer in (6.5) for any xT . Finally, the optimal value in (6.5), which we denote
by vT (xT ), is measurable and w-bounded. It follows from the above considerations
that for every fixed x,

vT (x) = min
πT

σ
(
c(x, πT (x), ·) + vT+1(·), x,Q(x, πT (x))

)
= σ

(
c(x, π̂T (x), ·) + vT+1(·), x,Q(x, π̂T (x))

)
is the optimal value of the problem starting at time T from xT = x. It is achieved by
the control π̂T (x).

After that, the horizon T+1 is decreased to T , and the final cost becomes vT (xT ).
Proceeding in this way for T, T−1, . . . , 1 we obtain the assertion of the theorem.
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It follows from our proof that the functions vt(·) calculated in (6.3) are the optimal
values of tail subproblems formulated for a fixed xt = x as follows:

vt(x) = min
πt,...,πT

ρΠt

(
c(xt, πt(xt), xt+1) + ρΠt+1

(
c(xt+1, πt+1(xt+1), xt+2) + · · ·

+ ρΠT
(
c(xT , πT (xT ), xT+1) + vT+1(xT+1)

) · · · )).
We call them value functions, as in risk-neutral dynamic programming. It is obvious
that we may have nonstationary costs, transition kernels, and transition risk mappings
in this case. Also, the assumption that the process is transient is not needed.

Equations (6.3)–(6.4) provide a computational recipe for solving finite horizon
problems.

7. Evaluation of stationary Markov policies in infinite horizon prob-
lems. Consider a stationary policy Π = {π, π, . . . } and define the cost until absorp-
tion as follows:

(7.1) J∞(Π,x1) = lim
T→∞

JT (Π,x1),

where each JT (Π,x1) is defined by the formula
(7.2)

JT (Π,x1) = ρΠ1,T+1

(
0, c(x1, π(x1), x2), c(x2, π(x2), x3), . . . , c(xT , π(xT ), xT+1)

)
= ρΠ1

(
c(x1, π(x1), x2) + ρΠ2

(
c(x2, π(x2), x3) + · · ·

+ ρΠT
(
c(xT , π(xT ), xT+1)

) · · ·))
with Markov conditional risk measures ρΠt , t = 1, . . . , T , sharing the same transition
risk mapping σ(·, ·, ·). We assume all conditions of Theorem 6.1.

The first question to answer is when this cost is finite. This question is nontrivial,
because even for uniformly bounded costs Zt = c(xt−1, π(xt−1), xt), t = 2, 3, . . . , and
for a transient finite-state Markov chain, the limit in (7.1) may be infinite, as the
following example demonstrates.

Example 7.1. Consider a transient Markov chain with two states and with the
following transition probabilities: Q11 = Q12 = 1

2 , Q22 = 1. Only one control is
possible in each state, the cost of each transition from state 1 is equal to 1, and
the cost of the transition from 2 to 2 is 0. Clearly, the time until absorption is a
geometric random variable with parameter 1

2 . Let x1 = 1. If the limit (7.1) is finite,
then (skipping the dependence on Π) we have

J∞(1) = lim
T→∞

JT (1) = lim
T→∞

ρ1
(
1 + JT−1(x2)

)
= ρ1

(
1 + J∞(x2)

)
.

In the last equation we used the continuity of ρ1(·). Clearly, J∞(2) = 0.
Suppose that we are using the average value at risk from Example 3.2 with 0 <

α ≤ 1
2 to define ρ1(·). Using standard identities for the average value at risk (see, e.g.,

[47, Thm. 6.2]), we obtain

(7.3)

J∞(1) = inf
η∈R

{
η +

1

α
E
[(
1 + J∞(x2)− η

)
+

]}
= 1 + inf

η∈R

{
η +

1

α
E
[(
J∞(x2)− η

)
+

]}
= 1 +

1

α

∫ 1

1−α
F−1(β) dβ,
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where F (·) is the distribution function of J∞(x2). As all β-quantiles of J∞(x2) for
β ≥ 1

2 are equal to J∞(1), the last equation yields J∞(1) = 1+J∞(1), a contradiction.
It follows that a composition of average values at risk has no finite limit, if 0 < α ≤ 1

2 .
On the other hand, if 1

2 < α < 1, then

F−1(β) =

{
J∞(2) = 0 if 1− α ≤ β < 1

2 ,

J∞(1) if 1
2 ≤ β ≤ 1.

Formula (7.3) then yields J∞(1) = 1+ 1
2αJ∞(1). This equation has a solution J∞(1) =

2α/(2α− 1).
If we use the mean-semideviation model of Example 3.1, we obtain

J∞(1) = E
[
1 + J∞(x2)

]
+ κE

[(
1 + J∞(x2)− E

[
1 + J∞(x2)

])
+

]
= 1 +

1

2
J∞(1) + κ

1

2

(
J∞(1)− 1

2
J∞(1)

)
= 1 +

2 + κ

4
J∞(1).

Thus J∞(1) = 4/(2− κ), which is finite for all κ ∈ [0, 1], that is, for all values of κ for
which the model defines a coherent measure of risk.

It follows that deeper properties of the measures of risk and their interplay with
the transition kernel need to be investigated to answer the question about finiteness
of the dynamic measure of risk in this case.

Recall that with every transition risk mapping σ(·, ·, ·), every controlled kernel
Q, and every decision rule π, a multikernel Mπ is associated, as defined in (4.7).
Similar to the expected value case, it is convenient to consider the effective state space

X̃ = X \ {xA}, and the effective substochastic multikernel M̃π whose arguments are

restricted to X̃ and whose values are convex sets of nonnegative measures on X̃

defined by the identity: M̃π(B|x) ≡ Mπ(B|x) for all B ∈ B(X̃ ) and x ∈ X̃ .

A function v ∈ V with v(xA) = 0 can be identified with a function ṽ on X̃ ; we
shall write ‖ṽ‖ for the norm ‖v‖ in V ; we shall also write ṽ ∈ V to indicate that the
corresponding extension v is an element of V . Recall that the norm ‖ · ‖w associated
with a weight function w is defined as follows:

‖v‖w = sup
x∈ ˜X

|v(x)|
w(x)

.

The corresponding operator norm ‖A‖w of a substochastic kernel A is defined as
follows:

‖A‖w = sup
x∈ ˜X

1

w(x)

∫
˜X

w(y) A(dy|x).

Hernández-Lerma and Lasserre [19] extensively discuss the role of weighted norms in
dynamic programming models.

Definition 7.1. We call the Markov model with a transition risk mapping σ(·, ·, ·)
and with a stationary Markov policy {π, π, . . . } risk transient if a weight function

w : X̃ → [1,∞), w ∈ V , and a constant K exist such that

(7.4)
∥∥M∥∥

w
≤ K for all M �

T∑
j=1

(
M̃π

)j
and all T ≥ 0.
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3948 ÖZLEM ÇAVUŞ AND ANDRZEJ RUSZCZYŃSKI

If the estimate (7.4) is uniform for all Markov policies, the model is called uniformly
risk transient.

In the special case of a risk-neutral model, owing to (4.9), Definition 7.1 reduces
to the condition that

(7.5)

∥∥∥∥∥∥
∞∑
j=1

(
Q̃π

)j∥∥∥∥∥∥
w

≤ K,

which has been analyzed by Pliska [35] and [19, section 9.6].
Example 7.2. Consider the simple transient chain of Example 7.1 with the average

value at risk from Examples 3.2 and 4.2, where 0 < α ≤ 1. From (4.5) we obtain

A (i,m) =
{
(μ1, μ2) : 0 ≤ μj ≤ mj

α
, j = 1, 2; μ1 + μ2 = 1

}
.

As only one control is possible, formula (4.7) simplifies to

M(i) =

{
(μ1, μ2) : 0 ≤ μj ≤ Qij

α
, j = 1, 2; μ1 + μ2 = 1

}
, i = 1, 2.

The effective state space is just X̃ = {1}, and we conclude that the effective multi-
kernel is the interval

M̃ =

[
0,min

(
1,

1

2α

)]
.

For 0 < α ≤ 1
2 we can select M̃ = 1 ∈ M̃ to show that 1 ∈ (

M̃
)j

for all j, and
thus condition (7.4) is not satisfied. On the other hand, if 1

2 < α ≤ 1, then for every

M̃ ∈ M̃ we have 0 ≤ M̃ < 1, and condition (7.4) is satisfied.
Consider now the mean-semideviation model of Examples 3.1 and 4.1. From (4.4)

we obtain

A (i,m) =
{
(μ1, μ2) : μj = mj (1 + hj − (h1m1 + h2m2)) , 0 ≤ hj ≤ κ, j = 1, 2

}
,

M(i) =
{
(μ1, μ2) : μj = Qij (1 + hj − (h1Qi1 + h2Qi2)) , 0 ≤ hj ≤ κ, j = 1, 2

}
,

i = 1, 2.

Calculating the lowest and the largest possible values of μ1 we conclude that

M̃ =

[
1

2

(
1− κ

2

)
,
1

2

(
1 +

κ

2

)]
.

For every κ ∈ [0, 1], Definition 7.1 is satisfied.
We can now provide sufficient conditions for the finiteness of the limit (7.1).
Theorem 7.2. Suppose a stationary policy Π = {π, π, . . . } is applied to the

controlled Markov model with a transition risk mapping σ(·, ·, ·). If the model satisfies
conditions (G0)–(G3) and is risk transient for the policy Π, then the limit

(7.6) J∞(Π, ·) = lim
T→∞

JT (Π, ·)

exists in V and is w-bounded. If the model is additionally uniformly risk transient,
then ‖J∞(Π, ·)‖w is uniformly bounded for all Π and the limit function (π, x) �→
J∞(Π,x) is lower semicontinuous.
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Proof. By Conditions (A1)–(A4), each conditional risk measure ρ1,T (·) is convex
and positively homogeneous, and thus subadditive. For any 1 < T1 < T2 we obtain
the following estimate of (7.2):

(7.7)

JT2−1(Π,x1) = ρΠ1,T2
(0, Z2, . . . , ZT2)

≤ ρΠ1,T2
(0, Z2, . . . , ZT1 , 0, . . . , 0) + ρΠ1,T2

(0, . . . , 0, ZT1+1, . . . , ZT2)

= ρΠ1,T1
(0, Z2, . . . , ZT1) + ρΠ1,T2

(0, . . . , 0, ZT1+1, . . . , ZT2)

= JT1−1(Π,x1) + ρΠ1,T2
(0, . . . , 0, ZT1+1, . . . , ZT2).

As the cost function is w-bounded, Zj+1 ≤ C(w̄(xj) + w̄(xj+1)), where w̄(x) = w(x)

if x ∈ X̃ , and w̄(xA) = 0. Owing to the monotonicity and positive homogeneity of
the conditional risk mappings,

(7.8)

ρΠ1,T2
(0, . . . , 0, ZT1+1, . . . , ZT2) ≤ 2CρΠ1,T2

(0, . . . , 0, w̄(xT1+1), . . . , w̄(xT2 ))

= 2CρΠ1

(
ρΠ2

(
· · · ρΠT1

(
w̄(xT1+1) + ρΠT1+1

(
w̄(xT1+2) + · · ·

+ ρΠT2−1

(
w̄(xT2 )

) · · · )) · · ·
))
.

If xT2−1 �= xA, applying (4.8) to the innermost expression, we obtain

ρΠT2−1

(
w̄(xT2 )

)
= max

m∈˜Mπ (xT2−1)

∫
˜X

w(y) m(dy).

It is a function of xT2−1, which we denote as vT2−1(xT2−1). Consider the function

(7.9) vT2−1(x) = max
m∈˜Mπ (x)

∫
˜X

w(y) m(dy), x ∈ X̃.

Owing to the weak∗ compactness of the values of the multikernel M̃π , the maximizers
in (7.9) exist and can be chosen to depend in a measurable way on x. Thus, they

form a measurable selector M̃T2−1 of M̃π . Therefore,

(7.10) vT2−1 = M̃T2−1w, M̃T2−1 � M̃π .

One step earlier, we obtain
(7.11)

ρΠT2−2

(
w̄(xT2−1) + ρΠT2−1

(
w̄(xT2 )

))
= ρΠT2−2

(
w̄(xT2−1) + vT2−1(xT2−1)

)
= max
m∈˜Mπ (xT2−2)

∫
X

[
w(y) + vT2−1(y)

]
m(dy).

Again, the maximizers M̃T2−2(xT2−2) in (7.11) exist, and they can be chosen in a
measurable way. Denoting the optimal value by vT2−2(xT2−2), we obtain a relation
similar to (7.10):

(7.12)
vT2−2 = M̃T2−2

(
w + vT2−1

)
=

(
M̃T2−2 + M̃T2−2M̃T2−1

)
w, M̃T2−2 � M̃π , M̃T2−1 � M̃π .
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Proceeding in this way, we can calculate the function

vT1(xT1 ) = ρΠT1

(
w̄(xT1+1) + ρΠT1+1

(
w̄(xT1+2) + ρΠT1+2

(
w̄(xT1+3) + · · ·

+ ρΠT2−1

(
w̄(xT2)

) · · · )))
on X̃ as follows:

vT1 =
(
M̃T1 + M̃T1M̃T1+1 + · · ·+ M̃T1M̃T1+1 · · · M̃T2−1

)
w

with M̃j � M̃π , j = T1, . . . , T2 − 1. In the formula above, we restrict the domains of

the functions to X̃ ; at xA their values are zero. Finally, defining

v1(x1) = ρΠ1

(
ρΠ2

(
· · · ρΠT1

(
w̄(xT1+1) + ρΠT1+1

(
w̄(xT1+1) + · · ·

+ ρΠT2−1

(
w̄(xT2 )

) · · · )) · · ·
))
,

we obtain the representation

(7.13) v1 = M̃1M̃2 · · · M̃T1−1

(
M̃T1 + M̃T1M̃T1+1 + · · ·+ M̃T1M̃T1+1 . . . M̃T2−1

)
w

with M̃j � M̃π , j = 1, . . . , T2 − 1. This combined with (7.7)–(7.8) yields an estimate

(7.14) JT2−1(Π, ·)− JT1−1(Π, ·)
≤ 2CM̃1M̃2 · · · M̃T1−1

(
M̃T1 + M̃T1M̃T1+1 + · · ·+ M̃T1M̃T1+1 · · · M̃T2−1

)
w.

Consider now the sequence of costs Z1, . . . , ZT1 ,−ZT1+1, . . . ,−ZT2 , in which we
flip the sign of the costs Zt+1 = c(xt, ut, xt+1) for t ≥ T1. From subadditivity, in a
similar way (7.7), we obtain

(7.15) ρΠ1,T2
(0, Z2, . . . , ZT1 ,−ZT1+1, . . . ,−ZT2)

≤ ρΠ1,T1
(0, Z2, . . . , ZT1) + ρΠ1,T2

(0, . . . , 0,−ZT1+1, . . . ,−ZT2).

By convexity of ρ1,T2(·),
2ρΠ1,T1

(0, Z2, . . . , ZT1) ≤ ρΠ1,T2
(0, Z2, . . . , ZT1 , ZT1+1, . . . , ZT2)

+ ρΠ1,T2
(0, Z2, . . . , ZT1 ,−ZT1+1, . . . ,−ZT2).

Substituting the estimate (7.15), we deduce that

ρΠ1,T2
(0, Z2, . . . , ZT2) ≥ ρΠ1,T1

(0, Z2, . . . , ZT1)− ρΠ1,T2
(0, . . . , 0,−ZT1+1, . . . ,−ZT2).

As the |Zt+1| are bounded by C(w̄(xt) + w̄(xt+1)), the estimate (7.8) applies to
the last element on the right-hand side. We obtain

JT2−1(Π,x1)− JT1−1(Π,x1)

= ρΠ1,T2
(0, Z2, . . . , ZT2)− ρΠ1,T1

(0, Z2, . . . , ZT1)

≥ −2CρΠ1

(
ρΠ2

(
· · · ρΠT1

(
w̄(xT1+1) + ρΠT1+1

(
w̄(xT1+1) + · · ·

+ ρΠT2−1

(
w̄(xT2)

) · · · )) · · ·
))

= −2Cv1(x1),
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where v1(·) has representation (7.13). This combined with (7.14) yields∣∣JT2−1(Π,x1)− JT1−1(Π,x1)
∣∣ ≤ 2C|v1(x1)|, x1 ∈ X̃ .

This pointwise estimate implies the relations between the norms∥∥JT2−1(Π, ·)− JT1−1(Π, ·)
∥∥
w
≤ 2C

∥∥v1∥∥w.
In view of representation (7.13), we obtain the estimate∥∥JT2−1(Π, ·)− JT1−1(Π, ·)

∥∥
w

≤ 2C
∥∥∥M̃1M̃2 · · · M̃T1−1

(
M̃T1 + M̃T1M̃T1+1 + · · ·+ M̃T1M̃T1+1 · · · M̃T2−1

)
w
∥∥∥
w
.

By Definition 7.1, ‖M̃T1 + M̃T1M̃T1+1 + · · · + M̃T1M̃T1+1 · · · M̃T2−1‖w ≤ K. Since
‖w‖w = 1, we infer that

(7.16)
∥∥JT2−1(Π, ·)− JT1−1(Π, ·)

∥∥
w
≤ 2CK

∥∥M̃1M̃2 · · · M̃T1−1

∥∥
w
.

Observe that M̃1M̃2 · · · M̃T1−1�(M̃π)T1−1. It follows from Definition 7.1 that for any

sequence of selectors Aj�(M̃π)j we have ‖∑∞
j=1 Aj‖w ≤ K. Therefore, ‖Aj‖w → 0 as

j → ∞. Consequently, the right-hand side of (7.16) converges to 0 when T1, T2 → ∞,
T1 < T2. Hence, the sequence of functions JT (Π, ·), T = 1, 2, . . . , is convergent to
some w-bounded limit J∞(Π, ·) ∈ V . The convergence is w-uniform, that is,

lim
T→∞

sup
x∈ ˜X

∣∣JT (Π,x)− J∞(Π,x)
∣∣

w(x)
= 0.

If the model is uniformly risk transient, then the estimate (7.16) is the same for all
Markov policies Π , and thus ‖J∞(Π, ·)‖w is uniformly bounded. Moreover,

lim
T→∞

sup
x∈ ˜X

Π∈ΠDM

∣∣JT (Π,x) − J∞(Π,x)
∣∣

w(x)
= 0,

where ΠDM is the set of all stationary deterministic Markov policies. As each of
the functions (π, x) �→ JT (Π,x) is lower semicontinuous, so is the limit function
(π, x) �→ J∞(Π,x).

Remark 7.1. It is clear from the proof of Theorem 7.2 that

(7.17) J∞(Π,x1) = lim
T→∞

ρΠ1,T
(
0, Z2, . . . , ZT + f(xT )

)
for any w-bounded measurable function f : X → R, because c(xT−1, ut, xT ) + f(xT )
is still w-bounded.

This analysis allows us to derive policy evaluation equations for the infinite hori-
zon problem in the case of a fixed Markov policy.

Theorem 7.3. Suppose a controlled Markov model with a transition risk mapping
σ(·, ·, ·) is risk transient for the stationary Markov policy Π = {π, π, . . . } with some
weight function w(·). If condition (G3) is satisfied, then a w-bounded function v ∈ V
satisfies the equations

v(x) = σ
(
c(x, π(x), ·) + v(·), x,Q(x, π(x))

)
, x ∈ X̃ ,(7.18)

v(xA) = 0(7.19)

if and only if v(x) = J∞(Π,x) for all x ∈ X .
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Proof. Suppose a w-bounded function v ∈ V satisfies (7.18)–(7.19). By (G3),
the function c(x, π(x), ·) ∈ V , and thus the right-hand side of (7.18) is well-defined.
Iterating (7.18), we obtain for all x1 ∈ X the following equation:

v(x1) = ρΠ1

(
c(x1, π(x1), x2) + ρΠ2

(
c(x2, π(x2), x3) + · · ·

+ ρΠT
(
c(xT , π(xT ), xT+1) + v(xT+1)

) · · ·)).
Denote Zt = c(xt−1, π(xt−1), xt). Using subadditivity and monotonicity of the condi-
tional risk measures we deduce that

(7.20)

v(x1) = ρΠ1,T+1

(
0, Z2, . . . , ZT+1 + v(xT+1)

)
≤ ρΠ1,T+1

(
0, Z2, . . . , ZT+1

)
+ ρΠ1,T+1

(
0, 0, . . . , v(xT+1)

)
≤ ρΠ1,T+1

(
0, Z2, . . . , ZT+1

)
+ ρΠ1,T+1

(
0, 0, . . . , |v(xT+1)|

)
.

By convexity of ρΠ1,T+1(·),
(7.21)

2ρΠ1,T+1

(
0, Z2, . . . , ZT+1

)
≤ ρΠ1,T+1

(
0, Z2, . . . , ZT+1 + v(xT+1)

)
+ ρΠ1,T+1

(
0, Z2, . . . , ZT+1 − v(xT+1)

)
= v(x1) + ρΠ1,T+1

(
0, Z2, . . . , ZT+1 − v(xT+1)

)
.

In a similar way to (7.20),

ρΠ1,T+1

(
0, Z2, . . . , ZT+1 − v(xT+1)

)
≤ ρΠ1,T+1

(
0, Z2, . . . , ZT+1

)
+ ρΠ1,T+1

(
0, 0, . . . ,−v(xT+1)

)
≤ ρΠ1,T+1

(
0, Z2, . . . , ZT+1

)
+ ρΠ1,T+1

(
0, 0, . . . , |v(xT+1)|

)
.

Substituting into (7.21) we obtain

v(x1) ≥ ρΠ1,T+1

(
0, Z2, . . . , ZT+1))− ρΠ1,T+1

(
0, 0, . . . , |v(xT+1)|

)
.

Combining this estimate with (7.20), we conclude that

(7.22)
∣∣v(x1)− JT (Π,x1)

∣∣ ≤ ρΠ1,T+1

(
0, 0, . . . , |v(xT+1)|

)
.

Consider the function

d1,T (x1) = ρΠ1,T+1

(
0, 0, . . . , |v(xT+1)|

)
.

Proceeding exactly as in the proof of Theorem 7.2, we obtain a representation similar
to (7.13):

d1,T = M̃1 · · · M̃T |v|

with M̃j�M̃π , j = 1, . . . , T . Thus, d1,T = AT |v| with AT�(M̃π)T . By Definition 7.1,

for any sequence of selectors At � (M̃π)t, t = 1, 2 . . . , we have
∥∥∑∞

t=1At
∥∥
w

≤ K.

Therefore,
∥∥At∥∥w → 0 and

∥∥d1,t‖w → 0, as t → ∞. Using this in (7.22) we conclude
that v(·) ≡ J∞(Π, ·), as postulated.
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To prove the converse implication we can use the fact that all conditional risk
measures ρΠt (·) share the same transition risk mapping σ(·, ·, ·) to rewrite (7.2) as
follows:

JT (Π,x1) = σ
(
c(x1, π(x1), ·) + JT−1(Π, ·), x1, Q(x1, π(x1))

)
.

The function σ(·, x1, μ), as a finite-valued coherent measure of risk on a Banach lattice
V , is continuous (see [43, Prop. 3.1]). By Theorem 7.2, the sequence

{
JT (Π, ·)

}
is

convergent to J∞(Π, ·) in the space V , and J∞(Π, ·) is w-bounded. Therefore,
lim
T→∞

JT (Π,x1) = σ
(
c(x1, π(x1), ·) + lim

T→∞
JT−1(Π, ·), x1, Q(x1, π(x1))

)
.

This is identical to (7.18) with v(·) ≡ J∞(Π, ·). Equation (7.19) is obvi-
ous.

8. Dynamic programming equations for infinite-horizon problems. We
shall now focus on the optimal value function

(8.1) J∗(x) = inf
Π∈ΠDM

J∞(Π,x), x ∈ X ,

where ΠDM is the set of all stationary deterministic Markov policies. To simplify
notation, we define the operators D : V → V and Dπ : V → V as follows:

[Dv](x) = min
u∈U(x)

σ
(
c(x, u, ·) + v(·), x,Q(x, u)

)
, x ∈ X ,(8.2)

[Dπv](x) = σ
(
c(x, π(x), ·) + vk(·), x,Q(x, π(x))

)
, x ∈ X ,(8.3)

where π�U . Owing to the monotonicity of σ(·, x, μ), both operators are nondecreas-
ing. By construction, Dv ≤ Dπv for all v ∈ V and all π � U .

Theorem 8.1. Assume that conditions (G0)–(G4) are satisfied and that the
model is uniformly risk transient. Then a measurable w-bounded function v : X → R

satisfies the equations

v(x) = inf
u∈U(x)

σ
(
c(x, u, ·) + v(·), x,Q(x, u)

)
, x ∈ X ,(8.4)

v(xA) = 0(8.5)

if and only if v(x) = J∗(x) for all x ∈ X . Moreover, a measurable minimizer π∗(x),
x ∈ X , on the right-hand side of (8.4) exists and defines an optimal deterministic
Markov policy Π∗ = {π∗, π∗, . . . }.

Proof. Consider a sequence of Markov deterministic policies Πk = {πk, πk, . . . },
k = 1, 2, . . . , constructed in the following way. We choose any π1 � U . Its value
v1(·) = J∞(Π1, ·) is then given by (7.18)–(7.19). For k = 1, 2, . . . we determine
πk+1(·) as the measurable solution of the problem

(8.6) min
u∈U(x)

σ
(
c(x, u, ·) + vk(·), x,Q(x, u)

)
, x ∈ X ,

which exists by Proposition 5.2. The corresponding value of the policy Πk+1 =
{πk+1, πk+1, . . . } is the function vk+1(·) = J∞(Πk+1, ·), and the iteration continues.
By construction, the sequences {πk} and {vk} satisfy the relations

(8.7) Dπk+1vk = Dvk ≤ Dπkvk = vk.
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Applying the operator Dπk+1 to this relation, we deduce from its monotonicity that

(8.8) [Dπk+1 ]T−1vk ≤ Dπk+1vk = Dvk ≤ vk, T = 2, 3, . . . .

Relation (8.8) can be equivalently written as

ρΠ
k+1

1,T

(
0, Z2, . . . , ZT + vk(xT )

)
≤ [Dvk](x1) ≤ vk(x1),

where Zt = c(xt−1, ut−1, xt), t = 2, 3, . . . , T , is the cost sequence resulting from the
policy Πk+1. Passing to the limit with T → ∞, from Remark 7.1 we conclude that
the sequence {vk} is nonincreasing:

(8.9) vk+1(x) = J∞(Πk+1, x) ≤ [Dvk](x) ≤ vk(x), x ∈ X , k = 0, 1, 2, . . . .

Since vk ≥ J∗, the sequence {vk} is monotonically convergent to some limit v∞ ≥ J∗.
By the Lebesgue theorem, it is also convergent in the space V . As the function
σ
(·, x, μ) is a coherent measure of risk, it follows from [43, Prop. 3.1] that it is

continuous on V and thus

(8.10) σ
(
c(x, u, ·) + vk(·), x,Q(x, u)

) ↓ σ(c(x, u, ·) + v∞(·), x,Q(x, u)
)
,

as k → ∞ ∀ u ∈ U(x).

The left inequality in (8.9) also implies that

(8.11) vk+1(x) ≤ σ
(
c(x, u, ·) + vk(·), x,Q(x, u)

) ∀ u ∈ U(x).

Passing to the limit with k → ∞ on both sides of (8.11) and using (8.10), we conclude
that

v∞(x) ≤ σ
(
c(x, u, ·) + v∞(·), x,Q(x, u)

) ∀ u ∈ U(x).

Since this is true for all x ∈ X and all u ∈ U(x), it follows that

(8.12) v∞(x) ≤ [Dv∞](x) = min
u∈U(x)

σ
(
c(x, u, ·) + v∞(·), x,Q(x, u)

)
, x ∈ X .

Iterating this inequality, we conclude that for every feasible decision rule π and every
T = 1, 2, . . . ,

v∞ ≤ [D]T v∞ ≤ [Dπ]
T v∞.

Owing to Remark 7.1, the right-hand side of this inequality is convergent to J∞(Π, ·)
when T → ∞. Since Π was arbitrary, v∞ ≤ J∗, and thus v∞ = J∗. It remains to
show that v∞ satisfies (8.4). It follows from the monotonicity of the operator D and
relation (8.7) that

Dv∞ ≤ Dvk ≤ vk.

Passing to the limit with k → ∞ we conclude that Dv∞ ≤ v∞. This combined
with (8.12) yields v∞ = Dv∞, which is (8.4). Denoting by π∗(x) the (measurable)
minimizer on the right-hand side of (8.12), we also see that v∞ = Dπ∗v∞. By
Theorem 7.3, v∞(·) = J∞(Π∗, ·).
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To prove the converse implication, suppose v ∈ V satisfies (8.4)–(8.5) and ‖v‖w <
∞. By Proposition 5.2, a measurable minimizer π̂(x) on the right-hand side of (8.4)
exists. We obtain the equation

v(x) = σ
(
c(x, π̂(x), ·) + v(·), x,Q(x, π̂(x))

)
, x ∈ X .

Due to Theorem 7.3,

(8.13) v(x) = J∞(Π̂, x) ≥ J∗(x), x ∈ X ,

where Π̂ = {π̂, π̂, . . . }. On the other hand, it follows from (8.4) that for any stationary
deterministic Markov policy Π = {π, π, . . . } we have

(8.14) v(x) ≤ σ
(
c(x, π(x), ·) + v(·), x,Q(x, π(x))

)
, x ∈ X .

The transition risk mapping σ is nondecreasing with respect to the first argument.
Therefore, iterating inequality (8.14) we obtain the following inequality:

v(x1) ≤ ρΠ1,T
(
0, Z2, . . . , ZT + v(xT )

)
.

Passing to the limit with T → ∞ and applying Remark 7.1, we obtain for all stationary
deterministic Markov policies Π = {π, π, . . . } the inequality v(·) ≤ J∞(Π, ·). The last
estimate together with (8.13) implies that v(·) ≡ J∗(·) and that the stationary policy
Π̂ is optimal.

Remark 8.1. The construction of the sequence of stationary Markov policies
{Πk} and their corresponding values {vk} employed in the first part of the proof of
Theorem 8.1 can be interpreted as a risk-averse version of the policy iteration method.
For more information on the risk-averse policy iteration method, the reader is referred
to Çavuş and Ruszczyński [10], where methods for risk-averse models with finite state
and control spaces are considered.

We can now address the case of nonstationary deterministic policies. For a deter-
ministic policy Λ = {λ1, λ2, . . . } we define

J∞(Λ, x1) = lim inf
T→∞

JT (Λ, x1) and Ĵ(x1) = inf
Λ
J∞(Λ, x1).

In the theorem below, we make an additional technical assumption that the function
Ĵ(·) is measurable. It is obviously satisfied for a finite or countable state space. In
general, its verification, even in the expected value case, requires additional assump-
tions (see, e.g., [19, section 9.3]). We discuss some sufficient conditions after the
theorem.

Theorem 8.2. Assume that conditions (G0)–(G4) are satisfied and that the
model is uniformly risk transient. Additionally, assume that the function Ĵ(·) is mea-
surable and a constant C exists such that J∞(Λ, x) ≥ −Cw(x) for all x ∈ X and for
all policies Λ. Then a w-bounded function v ∈ V satisfies the equations (8.4)–(8.5)
if and only if v(x) = Ĵ(x) for all x ∈ X . Moreover, a measurable minimizer π∗(x),
x ∈ X , on the right-hand side of (8.4) exists and defines an optimal deterministic
policy Π∗ = {π∗, π∗, . . . }.

Proof. As for stationary Markov policies Π we have ‖J∞(Π, ·)‖w < ∞, in view
of the additional assumption we have ‖Ĵ‖w < ∞. Denote Λ2 = {λ2, λ3, . . . }. Due to
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the monotonicity and continuity of ρΠ1 (·) we obtain the chain of relations

Ĵ(x1) = inf
λ1,λ2,...

lim inf
T→∞

ρλ1
1

(
c(x1, λ1(x1), x2) + JT−1(Λ

2, x2)
)

≥ inf
λ1,λ2,...

lim inf
T→∞

ρλ1
1

(
c(x1, λ1(x1), x2) + inf

τ≥T−1
Jτ (Λ

2, x2)
)

= inf
λ1,λ2,...

lim
T→∞

ρλ1
1

(
c(x1, λ1(x1), x2) + inf

τ≥T−1
Jτ (Λ

2, x2)
)

= inf
λ1,λ2,...

ρλ1
1

(
c(x1, λ1(x1), x2) + lim inf

T→∞
JT−1(Λ

2, x2)
)

= inf
λ1,λ2,...

ρλ1
1

(
c(x1, λ1(x1), x2) + J∞(Λ2, x2)

)
.

Owing to the monotonicity of ρ1(·), we can move the minimization with respect to
Λ2 inside:

Ĵ(x1) ≥ inf
λ1

ρλ1
1

(
c(x1, λ1(x1), x2)+inf

Λ2
J∞(Λ2, x2)

)
= inf

λ1

ρλ1
1

(
c(x1, λ1(x1), x2)+Ĵ(x2)

)
.

Observe that we assumed Ĵ(·) to be measurable, and thus the right-hand side of the
last inequality is well-defined. Thus Ĵ(·) satisfies the inequality

(8.15) Ĵ(x) ≥ inf
u∈U(x)

σ
(
c(x, u, ·) + Ĵ(·), x,Q(x, u)

)
, x ∈ X .

We can now repeat the argument from the proof of Theorem 8.1. Denote by λ̂(x) the
minimizer in (8.15), which exists by Proposition 5.2. Iterating inequality (8.15), and
passing to the limit we conclude that

Ĵ(x) ≥ J∞(Λ̂, x), x ∈ X ,

where Λ̂ = {λ̂, λ̂, . . . } is a stationary Markov policy. Therefore, optimization with
respect to stationary Markov policies is sufficient, and the result follows from Theo-
rem 8.1.

To prove that our additional technical assumption that Ĵ(·) is measurable is true
for nonnegative costs c(·, ·, ·), we shall represent Ĵ(·) as a limit of functions vk(·)
defined by the value iteration method :

(8.16) vk+1 = Dvk, k = 0, 1, 2, . . . ,

where v0 = 0. For details on the risk-averse value iteration method, the reader is
referred to Çavuş and Ruszczyński [10], where methods for risk-averse models with
finite state and control spaces are considered.

Proposition 8.3. Assume that conditions (G0)–(G4) are satisfied, the map-
ping σ(·, x, ·) is continuous, c(·, ·, ·) is nonnegative, and the model is uniformly risk
transient. Then the sequence {vk} defined by the value iteration method satisfies the
relation

Ĵ(x) = lim
k→∞

vk(x), x ∈ X .

Moreover, Ĵ ∈ V .
Proof. Owing to the nonnegativity of the costs and to the monotonicity of

σ(·, x,m), the sequence {vk} satisfies the inequalities

(8.17) vk ≤ vk+1 ≤ Ĵ ≤ J∗, k = 0, 1, 2, . . . ,
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where J∗ is the best value of stationary Markov policies. Hence, this sequence has a
pointwise limit v∞, which is also (by the Lebesgue theorem) a limit in V . As σ(·, x, ·)
is continuous, due to [4, Thm. 1.4.16], the operator D is continuous. It follows that

v∞ = lim
k→∞

vk+1 = lim
k→∞

Dvk = Dv∞.

By Theorem 8.1 and relations (8.17), v∞ = Ĵ = J∗.

9. Randomized decision rules. Although we focus on deterministic policies
in this paper, it may be of use to provide preliminary discussion of models with ran-
domized policies. If randomized policies are allowed, we need to revise our definition
of the transition risk mapping, to account for the fact that for a given state xt = x,
both ut and xt+1 are random. In this case, it is convenient to consider functions on
the product space U × X equipped with its product Borel σ-algebra B.

Suppose the current state is x and we use a randomized decision rule π. This
control, together with the transition kernel Q defines a probability measure [πQ]x on
the product space U × X as follows:

(9.1) [π ◦Q]x(Bu ×By) =

∫
Bu

Q(By|x, u) π(du|x), Bu ∈ B(U), By ∈ B(X ).

The measure is extended to other sets in B in the usual way.
The cost incurred at the current stage is given by the function c(x, ·, ·) on the

product space U × X .
The construction below parallels our earlier presentation in section 3, but with

notational complication resulting from the need to deal with the product space U ×X .
We define V = Lp(U × X ,B, P0), where p ∈ [1,∞), where P 0 is some reference

probability measure on U ×X . The dual space V
′
is the space of signed measures m

on (U × X ,B), which are absolutely continuous with respect to P 0, with densities
(Radon–Nikodym derivatives) lying in the space Lq(U ×X ,B, P0), where 1/p+1/q =

1. We consider the set of probability measures in V
′
:

M =
{
m ∈ V

′
: m(U × X ) = 1, m ≥ 0

}
.

We also assume that the spaces V and V
′
are endowed with topologies that make

them paired topological vector spaces with the bilinear form

〈ϕ,m〉 =
∫

U ×X

ϕ(u, y) m(du × dy), ϕ ∈ V , m ∈ V
′
.

We can now define a transition risk mapping as a measurable function σ : V ×X ×
M → R , such that for every x ∈ X and every m ∈ M , the function ϕ �→ σ(ϕ, x,m)
is a coherent measure of risk on V .

Consider a controlled Markov process {xt} with some randomized Markov policy
Π = {π1, π2, . . . }. For a fixed time t and a measurable w-bounded function g :
X × U × X → R, the value of Zt+1 = g(xt, ut, xt+1), where ut is distributed
according to πt(xt), is a random variable.

We define now a Markov one-step conditional risk measure ρt(·) by requiring that

ρt
(
g(xt, ut, xt+1)

)
= σ

(
g(xt, ·, ·), xt, [πt ◦Q]xt

)
a.s.

This is analogous to (3.4).
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With these modifications, we can repeat the analysis presented in sections 3–8,
with formal adjustments accounting for the use of randomized policies. For example,
the dynamic programming equations (8.4)–(8.5) would take on the form:

v(x) = inf
λ(x)∈P(U(x))

σ
(
c(x, ·, ·) + v(·), x, [λ ◦Q]x

)
, x ∈ X ,(9.2)

v(xA) = 0.(9.3)

Justification of these equations, though, is straightforward only in the case of finite
control sets U(x). Otherwise, serious technical difficulties arise, associated with the
nonlinearity of the mapping in (9.2). With the present state of our knowledge, though,
we may already make an observation that a randomized policy may be strictly better
than a deterministic policy.

Observe that the mapping λ(x) �→ σ
(
c(x, ·, ·) + v(·), x, [λ ◦ Q]x

)
, which plays

the key role in the dynamic programming equation (9.2), is nonlinear, in general, as
opposed to the expected value model, where

σ
(
c(x, ·, ·) + v(·), x, [λ ◦Q]x

)
=

∫
U(x)

∫
X

(
c(x, u, y) + v(y)

)
Q(dy|x, u) λ(du|x).

In the expected value case, it is sufficient to consider only the extreme points of the set
P

(
U(x)

)
, which are the measures assigning unit mass to one of the controls u ∈ U(x):

inf
λ∈P(U(x))

∫
U(x)

∫
X

(
c(x, u, y) + v(y)

)
Q(dy|x, u) λ(du|x)

= inf
u∈U(x)

∫
X

(
c(x, u, y) + v(y)

)
Q(dy|x, u).

In the risk-averse case, this simplification is not justified and a randomized policy
may be strictly better than any deterministic policy.

A question arises whether it is possible to identify cases in which deterministic
policies are sufficient. It turns out that we can prove this for the conditional average
value at risk from Example 3.2, which in our setting takes on the following form:

(9.4) σ(ϕ, x, μ) = inf
η∈R

{
η +

1

α

∫
U(x)×X

(
ϕ(u, y)− η

)
+
μ(du× dy)

}
, α ∈ (0, 1).

Lemma 9.1. If the transition risk mapping has the form (9.4) then the dynamic
programming equations (9.2) have a solution in deterministic decision rules.

Proof. Interchanging the integration and the infimum in (9.4), we obtain a lower
bound

σ(ϕ, x, [λ ◦Q]x) = inf
η∈R

∫
U(x)

∫
X

{
η +

1

α

(
ϕ(u, y)− η

)
+

}
Q(dy|x, u) λ(du|x)

≥
∫
U(x)

inf
η∈R

∫
X

{
η +

1

α

(
ϕ(u, y)− η

)
+

}
Q(dy|x, u) λ(du|x).

The above inequality becomes an equation for every Dirac measure λ. On the right-
hand side of (9.2) we have

inf
λ(x)∈P(U(x))

σ
(
c(x, ·, ·) + v(·), x, [λ ◦Q]x

)
≥ inf
λ∈P(U(x))

∫
U(x)

inf
η∈R

∫
X

{
η +

1

α

(
ϕ(u, y)− η

)
+

}
Q(dy|x, u) λ(du|x).D
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As the right-hand side achieves its minimum over λ ∈ P(U(x)) at a Dirac measure
concentrated at an extreme point of U(x), and both sides coincide in this case, the
minimum of the left-hand side is also achieved at such a measure. Consequently, for
transition risk mappings of form (9.4) deterministic Markov policies are optimal.

In general, randomized policies may be better, as the example in section 10.2
illustrates.

10. Illustrative examples. We illustrate our models and results on two exam-
ples.

10.1. Asset selling. Let us at first consider the classical example of asset selling
originating from Karlin [22]. Offers St arriving in time periods t = 1, 2, . . . are inde-
pendent integer-valued integrable random variables, distributed according to measure
P . At each time we may accept the highest offer received so far, or we may wait,
in which case a waiting cost c0 > 0 is incurred. Denoting the random stopping time
by τ we see that the total “cost” equals Z = c0(τ − 1)−max1≤t≤τ St. The problem
is an example of an optimal stopping problem, a structure of considerable theoretical
and practical relevance (see, e.g., Çınlar [11], Dynkin and Yushkevich [13, 14], and
Puterman [36]).

Formally, we introduce the state space X = {xA} ∪ {0, 1, 2, . . .}, where xA is
the absorbing state reached after the transaction, and the other states represent the
highest offer received so far. The control space is U = {0, 1}, with 0 representing
“wait” and 1 representing “sell.” The state evolves according to the equation

xt+1 =

{
max(xt, St+1) if ut = 0,

xA if ut = 1.

Denoting by FS(·) the distribution function of S, we can write the controlled transition
kernel Q as follows:

Q(y|x, 0) =

⎧⎪⎨⎪⎩
P (y) if y > x,

FS(x) if y = x,

0 if y < x,

Q(y|x, 1) =
{
1 if y = xA,

0 if y �= xA.

The cost function is

c(x, u, y) =

{
c0 if u = 0,

−x if u = 1.

The expected value version of this problem has a known solution: accept the first
offer greater than or equal to the solution x̂ of the equation

(10.1) c0 =

∞∑
s=0

(s− x̂)+ P (s).

We shall solve the risk-averse version of the problem. We choose P0(y) = P (y)/2
for y ∈ �, and P0(xA) = 1/2. The space V is the space of P0-integrable functions
v : X → R. The space M is the space of probability measures μ on X , for which

sup

{
μ(y)

P0(y)
: P0(y) > 0, y ∈ X

}
<∞.

Observe that all measures Q(·, x, u) are elements of M .
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Suppose σ : V × X × M → R is a transition risk mapping. Owing to (A3), and
to the fact that v(xA) = 0, we have

σ
(
c(x, u, ·) + v(·), x,Q(x, u)

)
=

{
c0 + σ

(
v(·), x,Q(x, 0)

)
if u = 0,

−x if u = 1.

Equation (8.4) takes on the form

(10.2) v(x) = min
{
− x, c0 + σ

(
v(·), x,Q(x, 0)

)}
, x = 0, 1, 2, . . . .

Suppose σ is law invariant (Definition 3.2). As the distribution of v(·) with respect
to the measure Q(x, 0) on � is the same as the distribution of v

(
max(x, S)

)
under

the measure P of S, we obtain

σ
(
v(·), x,Q(x, 0)

)
= σ

(
v
(
max(x, ·)), x, P ).

Suppose our attitude to risk does not depend on the current state, that is, σ(·, ·, ·) does
not depend on its second argument. Using (4.2), we may rewrite the last equation as
follows:

σ
(
v(·), x,Q(x, 0)

)
= max

μ∈A

∞∑
s=0

v
(
max(x, s)

)
μ(s).

The convex closed set of probability measures A is fixed, because σ(·, ·, ·) does not
depend on its second argument, and the third argument, P , is now fixed. Equation
(10.2) takes on the form

(10.3) v(x) = min

{
−x, c0 +max

μ∈A

∞∑
s=0

v
(
max(x, s)

)
μ(s)

}
, x = 0, 1, 2 . . . .

Observe that v(x) ≤ −x and thus v
(
max(x, s)

) ≤ −max(x, s). The last displayed
inequality implies that

v(x) ≤ min

{
−x, c0 +max

μ∈A

∞∑
s=0

[−max(x, s)
]
μ(s)

}

= min

{
−x, c0 − min

μ∈A

∞∑
s=0

max(x, s) μ(s)

}
, x = 0, 1, 2, . . . .

If the offer at level x is accepted, then v(x) = −x. After simplifications, we obtain
the inequality

min
μ∈A

∞∑
s=0

(s− x)+ μ(s) ≤ c0.

This suggests the solution: accept any offer that is greater or equal to the solution x∗

of the equation

(10.4) min
μ∈A

∞∑
s=0

(s− x)+ μ(s) = c0;
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if x < x∗, then wait. The corresponding value function is v∗(x) = −max(x, x∗).
Equation (10.3) can be verified by direct substitution.

Let us check whether the solution of (10.4) exists and is unique. To guarantee
that a solution of (10.4) exists, it is sufficient to assume that Eμ[S] =

∑∞
s=0 sμ(s) > c0

for all μ ∈ A . Since the left-hand side of (10.4), as a function of x, is continuous,
nonincreasing, and converges to 0, when x → ∞, it must attain the value c0 at
some point x∗. Define μ∗ as the measure in A for which the minimum in (10.4)
with x = x∗ is attained. It exists, because A is weakly∗ compact. We thus have∑∞

s=0(s − x∗)+ μ∗(s) = c0. Since c0 > 0, we see that μ∗{s : s > x∗} > 0. Therefore,
for every x > x∗ we obtain

min
μ∈A

∞∑
s=0

(s− x)+ μ(s)

≤
∞∑
s=0

(s− x)+ μ∗(s) =
∑
s>x

(s− x) μ∗(s) ≤
∑
s>x∗

(s− x) μ∗(s)

=
∑
s>x∗

(s− x∗) μ∗(s)− (x− x∗) μ∗{s : s > x∗} <
∑
s>x∗

(s− x∗) μ∗(s) = c0.

Consequently, x∗ is the largest solution of (10.4). No other solution may exist, because
they cannot both be the largest.

The solution (10.4) of the risk-averse problem is closely related to the solution
(10.1) of the expected value problem. The only difference is that we have to account
for the least favorable distribution of the offers. If P ∈ A (which is the typical
situation), then the critical level x∗ ≤ x̂.

10.2. Organ transplantation. We illustrate our results on a risk-averse and
simplified version of an organ transplantation problem discussed by Alagoz et al. [1].
We consider the discrete-time absorbing Markov chain depicted in Figure 1. State S,
which is the initial state, represents a patient in need of an organ transplantation.
State L represents life after a successful transplantation. State D (absorbing state)

Fig. 1. The organ transplantation model.
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Fig. 2. The survival model.

represents death. Two control values are possible in state S: W (for “Wait”), in which
case transition to state D or back to state S may occur, and T (for “Transplant”),
which results in a transition to states L or D. The probability of death is lower for
W than for T, but successful transplantation may result in a longer life, as explained
below. In the other two states only one (formal) control value is possible: “Continue.”

The rewards collected at each time step are months of life. In state S a reward
equal to 1 is collected, if the control is W; otherwise, the immediate reward is 0. In
state L the reward r(L) is collected, representing the sure equivalent of the random
length of life after transplantation. In state D the reward is 0.

Generally, in a cost minimization problem, the value of a dynamic measure of
risk (3.1) is the “fair” sure charge one would be willing to incur, instead of a random
sequence of costs. In our case, which will be a maximization problem, we shall work
with the negatives of the months of life as our “costs.” The value of the measure
of risk, therefore, can be interpreted as the negative of a sure life length which we
consider to be equivalent to the random life duration faced by the patient.

Let us start by describing the way the deterministic equivalent length of life r(L)
at state L is calculated. The state L is in fact an aggregation of n states in a survival
model representing months of life after transplantation, as depicted in Figure 2.

In state i = 1, . . . , n, the patient dies with probability pi and survives with proba-
bility 1−pi. The probability pn = 1. The reward collected at each state i = 1, . . . , n is
equal to 1. In order to follow the notation of our paper, we define the cost c(·) = −r(·).
For illustration, we apply the mean–semideviation model of Example 3.1 with κ = 1.

The transition risk mapping has the form

(10.5) σ(ϕ, i, ν) = Eν [ϕ]︸ ︷︷ ︸
expected value

+κEν
[(
ϕ− Eν [ϕ]

)
+

]︸ ︷︷ ︸
semideviation

.

Owing to the monotonicity property (A2), σ(ϕ, i, ν) ≤ 0, whenever ϕ(·) ≤ 0.
In (10.5), the measure ν is the transition kernel at the current state i, and the

function ϕ(·) is the cost incurred at the current state and control plus the value
function at the next state. At each state i = 1, . . . , n− 1 two transitions are possible:
to D with probability pi and ϕ = −1, and to i + 1 with probability 1 − pi and
ϕ = −1 + vi+1(i + 1). At state i = n the transition to D occurs with probability 1,
and ϕ = −1. Therefore, vn(n) = −1.

The survival problem is a finite horizon problem, and thus we apply (6.3). As
there is no control to choose, the minimization operation in (6.3) is eliminated. The
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Table 1

Transition probabilities from state S.

Control S L D
W 0.99882 0 0.00118
T 0 0.90782 0.09218

equation has the form:

vi(i) = σ(ϕ, i,Qi), i = 1, . . . , n− 1,

with ϕ and Qi as explained above. By induction, vi(i) ≤ 0, for i = n− 1, n− 2, . . . , 1.
Let us calculate the mean and semideviation components of (10.5) at all states

i = 1, . . . , n− 1:

EQi [ϕ] = −pi + (1− pi)
(− 1 + vi+1(i + 1)) = −1 + (1− pi)vi+1(i+ 1),

EQi

[(
ϕ− EQi [ϕ]

)
+

]
= EQi

[(
ϕ+ 1− (1− pi)vi+1(i+ 1)

)
+

]
= pi

(− 1 + 1− (1 − pi)vi+1(i + 1)
)
+

+ (1− pi)
(− 1 + vi+1(i+ 1) + 1− (1− pi)vi+1(i+ 1)

)
+

= pi
(− (1 − pi)vi+1(i + 1)

)
+
+ (1− pi)

(
pivi+1(i + 1)

)
+

= −pi(1 − pi)vi+1(i + 1).

In the last equation we used the fact that vi+1(i + 1) ≤ 0. For i = 1, . . . , n − 1, the
dynamic programming equations (6.3) take on the form

vi(i) = −1 + (1− pi)vi+1(i+ 1)︸ ︷︷ ︸
expected value

−κ pi(1 − pi)vi+1(i + 1)︸ ︷︷ ︸
semideviation

, i = n− 1, n− 2, . . . , 1.

The value v(1) is the negative of the risk-adjusted length of life with a new organ.
For κ = 0 the above formulas give the negative of the expected length of life with a
new organ.

In our calculations we used the transition data provided in Table 1. They have
been chosen for purely illustrative purposes and do not correspond to any real medical
situation.

For the survival model, we used the distribution function, F (x), of lifetime of the
American population from Jasiulewicz [20]. It is a mixture of Weibull, lognormal, and
Gompertz distributions:

F (x) = w1

(
1− exp

(
−
(x
δ

)β))
+ w2Φ

(
log x−m

σ

)
+ w3

(
1− exp

(
− b

α
(eαx − 1)

))
, x ≥ 0.

The values of the parameters and weights, provided by Jasiulewicz [20], are given in
Table 2.

Then, we calculated the probability of dying at age k (in months) as follows:

pk =
F (k/12 + 1/24)− F (k/12− 1/24)

1− F (k/12− 1/24)
, k = 1, 2, . . . .

The maximum lifetime of the patient was taken to be 1200 months, and that the pa-
tient after transplantation has survival probabilities starting from k = 300. Therefore,
n = 900 in the survival model used for calculating r(L).
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Table 2

Values of parameters for F (x).

Distribution Parameters Weights
Weibull δ = 0.297, β = 0.225 w1 = 0.0170

Lognormal m = 3.11, σ = 0.218 w2 = 0.0092
Gompertz b = 0.0000812, α = 0.0844 w3 = 0.9737

Let λ = (λ
W
, λ

T
) be the randomized policy in the state S and let

Λ =
{
λ ∈ R

2 : λ
W
+ λ

T
= 1, λ ≥ 0

}
.

The dynamic programming equation (8.4) at S takes on the form

v(S) =

min
λ∈Λ

{
λW

[
qS,S(W)

(
v(S)− 1)

)
+ qS,D(W)

(
v(D)− 1

)]
+ λT

[
qS,L(T)v(L) + qS,D(T)v(D)

]︸ ︷︷ ︸
expected value μ

+ κ
(
λ

W

[
q
S,S

(W)
(
v(S)− 1− μ

)
+
+ q

S,D
(W)

(
v(D)− 1− μ

)
+

]︸ ︷︷ ︸
semideviation . . .

+ λ
T

[
q
S,L

(T)
(
v(L)− μ

)
+
+ q

S,D
(T)

(
v(D)− μ

)
+

])
︸ ︷︷ ︸

. . . semideviation

}
.

In the semideviation parts, we wrote μ for the expectation of the value function in
the next state, which is given by the first underbraced expression, and which is also
dependent on λ. Of course, the above expression can be simplified, by using the fact
that v(L) < v(S) < v(D) = 0, but we prefer to leave it in the above form to illustrate
the way it has been developed.

We compared two optimal control models for this problem. The first one was
the expected value model (κ = 0), which corresponds to the expected reward r(L) =
610.46 in the survival model. Standard dynamic programming equations were solved,
and the optimal decision in state S turned out to be W.

The second model was the risk-averse model using the mean–semideviation tran-
sition risk mapping with κ = 1. This changed the reward at state L to 515.35. We
considered two versions of this model. In the first version, we restricted the feasible
policies to be deterministic. In this case, the optimal action in state S was T. In the
second version, we allowed randomized policies, as in our general model. Then the
optimal policy in state S was W with probability λW = 0.9873 and T with probability
λ

T
= 0.0127.
How can we interpret these results? The optimal randomized policy results in

a random waiting time before transplanting the organ. This is due to the fact that
immediate transplantation entails a significant probability of death, and a less risky
policy is to “dilute” this probability in a long waiting time. This cannot be derived
from an expected value model, no matter what the data, because deterministic policies
are optimal in such a model: either transplant immediately or never.

This paradoxical conclusion follows from the assumption of a Markov structure
of the model, and is hard to accept in a medical setting. Our aim here is to indicate
intriguing properties of risk-averse models, rather than to recommend a particular
course of action in real-life situations. Undoubtedly, more research is needed to fully
understand all issues arising in this context.
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11. Conclusion. In this paper, we used dynamic measures of risk to model
a risk-averse version of the undiscounted transient Markov control process under the
assumption of infinite state space and compact control sets. We showed that transient
models may still have infinite risk. Using the concept of a multikernel, we introduced
the class of risk-transient models. We derived dynamic programming equations for the
case of deterministic feasible policies. Also, a preliminary discussion of the extension
of this study to randomized policies was provided. We illustrated our theory with two
examples: asset selling and organ transplantation. We showed that the solution of
the risk-neutral asset selling problem has a counterpart in the risk-averse setting. In
the organ transplantation example, we showed the usefulness of randomized policies.

REFERENCES

[1] O. Alagoz, L. M. Maillart, A. J. Schaefer, and M. S. Roberts, The optimal timing of
living-donor liver transplantation, Management Sci., 50 (2004), pp. 1420–1430.

[2] P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, Coherent measures of risk, Math.
Finance, 9 (1969), pp. 203–228.

[3] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, and H. Ku, Coherent multiperiod risk
adjusted values and Bellmans principle, Ann. Oper. Res., 152 (2007), pp. 5–22.

[4] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
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[25] M. Kurt and J. P. Kharoufeh, Monotone optimal replacement policies for a Markovian
deteriorating system in a controllable environment, Oper. Res. Lett., 38 (2010), pp. 273–
279.

[26] K. Lin and S. I. Marcus, Dynamic programming with non-convex risk-sensitive measures, in
IEEE American Control Conference, IEEE, 2013, pp. 6778–6783.

[27] Y. Nie and X. Wu, Shortest path problem considering on-time arrival probability, Transporta-
tion Res. B, 43 (2009), pp. 597–613.

[28] A. Nilim and L. El Ghaoui, Robust control of Markov decision processes with uncertain
transition matrices, Oper. Res., 53 (2005), pp. 780–798.

[29] Y. Ohtsubo, Minimizing risk models in stochastic shortest path problems, Math. Methods
Oper. Res., 57 (2003), pp. 79–88.
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