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We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM). Nonlinear stiffness matrices
are constructed usingGreen-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded
from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to
examine the differences between them.We verified our nonlinear formulationwith different applications and achieved considerable
speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.

1. Introduction

Mesh deformations have widespread usage areas, such as
computer games, computer animations, fluid flow, heat
transfer, surgical simulations, cloth simulations, and crash
test simulations. The major goal in mesh deformations is
to establish a good balance between the accuracy of the
simulation and the computational cost; achieving this balance
depends on the application. The speed of the simulation is
far more important than the accuracy in computer games.
The simulation needs to be real-time in order to be used in
games so free-form deformation or fast linear FEM solvers
can be used. However, high computation cost gives much
more accurate results when we are working with life-critical
applications such as car crash tests, surgical simulators, and
concrete analysis of buildings; even linear FEM solvers are
not adequate enough for these types of applications in terms
of the accuracy.

For realistic and highly accurate deformations, one can
use the finite element method (FEM), a numerical technique
to find approximate solutions to engineering and mathemat-
ical physics problems. FEM could be used to solve problems

in areas such as structural analysis, heat transfer, fluid flow,
mass transport, and electromagnetics [1, 2].

We propose a fast stiffness matrix calculation technique
for nonlinear FEM. We derive nonlinear stiffness matri-
ces using Green-Lagrange strains, themselves derived from
infinitesimal strains by adding the nonlinear terms discarded
from infinitesimal strain theory.

We mainly focus on the construction of the stiffness
matrices because change in material parameters and change
in boundary conditions can be directly represented and
applied without choosing a proper FEM [3]. Joldes et al.
[4] and Taylor et al. [5] achieve real-time computations of
soft tissue deformations for nonlinear FEM using GPUs;
however, they do not describe how they compute stiffness
matrices; thus, we cannot implement their methods and
compare them with our proposed method. Cerrolaza and
Osorio describe a simple and efficient method to reduce the
integration time of nonlinear FEM for dynamic problems
using hexahedral 8-noded finite elements [6]. We compare
our stiffness matrix calculations with Pedersen’s method [3]
to measure performance and verify correctness.We achieve a
142% speedup in calculating the stiffness matrices and a 15%
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speedup in solving the whole system on average, compared to
Pedersen’s method.

2. The Nonlinear FEM with
Green-Lagrange Strains

We use tetrahedral elements for modeling meshes in the
experiments. Overall, there are 12 unknown nodal displace-
ments in a tetrahedral element. They are given by [2]
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det(V) is 6𝑉, where 𝑉 is the volume of the tetrahedron. If we
substitute (4) into (2), we obtain
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𝛼, 𝛽, 𝛾, 𝛿, and the volume 𝑉 are calculated by
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Because of the differentials in strain calculation, 𝛼 is not used
in the following stages. If we expand (6), we obtain
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For tetrahedral elements, to express displacements in simpler
form, shape functions are introduced (𝜓
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In our method, nonlinear stiffness matrices are derived
using Green-Lagrange strains (large deformations), which
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Figure 1: 2D element before and after deformation.

themselves are derived directly from infinitesimal strains
(small deformations), by adding the nonlinear terms dis-
carded in infinitesimal strain theory.The proposed nonlinear
FEM uses the linear FEM framework but it does not require
the explicit use of weight functions and differential equations.
Hence, numerical integration is not needed for the solution of
the proposed nonlinear FEM. Instead of using weight func-
tions and integrals, we use displacement gradients and strains
to make the elemental stiffness matrices space-independent
in order to discard the integral. We extend the linear FEM
to the nonlinear FEM by extending the linear strains to the
Green-Lagrange strains.

We constructed our linear FEM by extending Logan’s 2D
linear FEM to 3D [2]. To understandGreen-Lagrange strains,
wemust first see how they differ from the infinitesimal strains
used to calculate the global stiffness matrices in a linear FEM.
Figure 1 shows a 2D element before and after deformation,
where the element edge 𝐴𝐵 with initial length 𝑑𝑥 becomes
𝐴
󸀠
𝐵
󸀠. The engineering normal strain is calculated as the

change in the length of the line
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The final length of the elemental edge can be calculated using
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By neglecting the higher-order terms in (11), 2D infinitesimal
strains are defined by
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By the definition, the nonlinear FEM differs from the
linear FEM because of the nonlinearity that arises from the
higher-order term neglected in calculation of strains. The
strain vector used in the linear FEM relies on the assumption
that the displacements at the 𝑥-axis, 𝑦-axis, and 𝑧-axis are
very small. The initial and final positions of a given particle
are practically the same; thus, the higher-order terms are
neglected [7]. When the displacements are large, however,
this is no longer the case and one must distinguish between
the initial and final coordinates of the particles; thus the
higher-order terms are added into the strain equations. By
adding these high-order terms, 3D strains are defined as [8]
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𝜕𝑥
+

𝜕𝑢
𝑥

𝜕𝑧
)

+
1

2
[(

𝜕𝑢
𝑥

𝜕𝑧

𝜕𝑢
𝑥

𝜕𝑥
) + (

𝜕𝑢
𝑦

𝜕𝑧

𝜕𝑢
𝑦

𝜕𝑥
) + (

𝜕𝑢
𝑧

𝜕𝑧

𝜕𝑢
𝑧

𝜕𝑥
)] ,

𝜂
𝑦𝑧

=
1

2
(

𝜕𝑢
𝑦

𝜕𝑧
+

𝜕𝑢
𝑧

𝜕𝑦
)

+
1

2
[(

𝜕𝑢
𝑥

𝜕𝑦

𝜕𝑢
𝑥

𝜕𝑧
) + (

𝜕𝑢
𝑦

𝜕𝑦

𝜕𝑢
𝑦

𝜕𝑧
) + (

𝜕𝑢
𝑧

𝜕𝑦

𝜕𝑢
𝑧

𝜕𝑧
)] ,

(13)

which leads to

{𝑛} =

{{{{{{{{

{{{{{{{{

{

𝜂
𝑥𝑥

𝜂
𝑦𝑦

𝜂
𝑧𝑧

2 (𝜂
𝑥𝑦

+ 𝜂
𝑦𝑥

)

2 (𝜂
𝑥𝑧

+ 𝜂
𝑧𝑥

)

2 (𝜂
𝑦𝑧

+ 𝜂
𝑧𝑦

)

}}}}}}}}

}}}}}}}}

}

=

{{{{{{{

{{{{{{{

{

𝜂
𝑥𝑥

𝜂
𝑦𝑦

𝜂
𝑧𝑧

2𝜂
𝑥𝑦

2𝜂
𝑧𝑥

2𝜂
𝑦𝑧

}}}}}}}

}}}}}}}

}

. (14)

The Green-Lagrange strain tensor is represented in matrix
notation as

{𝜂} = [𝐵
𝑇

𝐿
] {𝑑} +

1

2
{𝑑}
𝑇
[𝐵NL] {𝑑} , (15)

where {𝑑} is the nodal displacement, [𝐵
𝐿
] is the linear, and

[𝐵NL] is the nonlinear part of the [𝐵0]matrix [3]. For a specific
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element, [𝐵
𝐿
] and [𝐵NL] are constant, as with the [𝐵] matrix

in the linear FEM.With the variation of {𝑑} [9], (15) becomes

{𝜂} = [𝐵
𝑇

𝐿
] {𝑑} + {𝑑}

𝑇
[𝐵NL] {𝑑} . (16)

Gathering the strain components together, we can rewrite
(15) and (16) as

{𝜂} = ([𝐵
𝐿
] +

1

2
{𝑑
𝑇
} [𝐵NL]) {𝑑} = [𝐵

0
] {𝑑} ,

{𝜂} = ([𝐵
𝐿
] + {𝑑

𝑇
} [𝐵NL]) {𝑑} = [𝐵

0
] {𝑑} .

(17)

The linear part of the [𝐵
0
]matrix ([𝐵

𝐿
]) is the same as the

[𝐵]matrix in the linear FEM. Calculating [𝐵
0
] becomesmore

complex with the introduction of the nonlinear terms. After
finding the nonlinear strains, these equations are combined
with the shape functions to find matrix [𝐵

0
]:

{𝜂} = [𝐵
0
] {𝑑} . (18)

The most frequently used terms, which are the nine dis-
placement gradients for calculating the nonlinear strains, are
𝜕𝑢
𝑥
/𝜕𝑥, 𝜕𝑢

𝑥
/𝜕𝑦, 𝜕𝑢

𝑥
/𝜕𝑧, 𝜕𝑢

𝑦
/𝜕𝑥, 𝜕𝑢

𝑦
/𝜕𝑦, 𝜕𝑢

𝑦
/𝜕𝑥, 𝜕𝑢

𝑧
/𝜕𝑥,

𝜕𝑢
𝑧
/𝜕𝑦, and 𝜕𝑢

𝑧
/𝜕𝑧. Using (8) for displacements, we can con-

struct the displacement gradients using the partial derivatives
of the shape functions. They are represented by

𝑢
𝑥𝑥

=
1

6𝑉
(𝛽
1
𝑢
1
+ 𝛽
2
𝑢
2
+ 𝛽
3
𝑢
3
+ 𝛽
4
𝑢
4
) ,

𝑢
𝑦𝑥

=
1

6𝑉
(𝛽
1
V
1
+ 𝛽
2
V
2
+ 𝛽
3
V
3
+ 𝛽
4
V
4
) ,

𝑢
𝑧𝑥

=
1

6𝑉
(𝛽
1
𝑤
1
+ 𝛽
2
𝑤
2
+ 𝛽
3
𝑤
3
+ 𝛽
4
𝑤
4
) ,

𝑢
𝑥𝑦

=
1

6𝑉
(𝛾
1
𝑢
1
+ 𝛾
2
𝑢
2
+ 𝛾
3
𝑢
3
+ 𝛾
4
𝑢
4
) ,

𝑢
𝑦𝑦

=
1

6𝑉
(𝛾
1
V
1
+ 𝛾
2
V
2
+ 𝛾
3
V
3
+ 𝛾
4
V
4
) ,

𝑢
𝑧𝑦

=
1

6𝑉
(𝛾
1
𝑤
1
+ 𝛾
2
𝑤
2
+ 𝛾
3
𝑤
3
+ 𝛾
4
𝑤
4
) ,

𝑢
𝑥𝑧

=
1

6𝑉
(𝛿
1
𝑢
1
+ 𝛿
2
𝑢
2
+ 𝛿
3
𝑢
3
+ 𝛿
4
𝑢
4
) ,

𝑢
𝑦𝑧

=
1

6𝑉
(𝛿
1
V
1
+ 𝛿
2
V
2
+ 𝛿
3
V
3
+ 𝛿
4
V
4
) ,

𝑢
𝑧𝑧

=
1

6𝑉
(𝛿
1
𝑤
1
+ 𝛿
2
𝑤
2
+ 𝛿
3
𝑤
3
+ 𝛿
4
𝑤
4
) ,

(19)

where 𝑢
𝑥𝑥

represents 𝜕𝑢
𝑥
/𝜕𝑥.

We can evaluate the partial derivatives of the shape
functions as follows (for the 1st node of [𝐵NL]):

[(
𝜕𝑢
𝑥

𝜕𝑥

𝜕𝑢
𝑥

𝜕𝑥
) + (

𝜕𝑢
𝑦

𝜕𝑥

𝜕𝑢
𝑦

𝜕𝑥
) + (

𝜕𝑢
𝑧

𝜕𝑥

𝜕𝑢
𝑧

𝜕𝑥
)]

=
1

6𝑉
(𝛽
1
(𝑢
𝑥𝑥

+ 𝑢
𝑦𝑥

+ 𝑢
𝑧𝑥

)) ,

[(
𝜕𝑢
𝑥

𝜕𝑦

𝜕𝑢
𝑥

𝜕𝑦
) + (

𝜕𝑢
𝑦

𝜕𝑦

𝜕𝑢
𝑦

𝜕𝑦
) + (

𝜕𝑢
𝑧

𝜕𝑦

𝜕𝑢
𝑧

𝜕𝑦
)]

=
1

6𝑉
(𝛾
1
(𝑢
𝑥𝑦

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑦

)) ,

[(
𝜕𝑢
𝑥

𝜕𝑧

𝜕𝑢
𝑥

𝜕𝑧
) + (

𝜕𝑢
𝑦

𝜕𝑧

𝜕𝑢
𝑦

𝜕𝑧
) + (

𝜕𝑢
𝑧

𝜕𝑧

𝜕𝑢
𝑧

𝜕𝑧
)]

=
1

6𝑉
(𝛿
1
(𝑢
𝑥𝑧

+ 𝑢
𝑦𝑧

+ 𝑢
𝑧𝑧

)) ,

[(
𝜕𝑢
𝑥

𝜕𝑥

𝜕𝑢
𝑥

𝜕𝑦
) + (

𝜕𝑢
𝑦

𝜕𝑥

𝜕𝑢
𝑦

𝜕𝑦
) + (

𝜕𝑢
𝑧

𝜕𝑥

𝜕𝑢
𝑧

𝜕𝑦
)]

=
1

6𝑉
(𝛾
1
(𝑢
𝑥𝑥

+ 𝑢
𝑦𝑥

+ 𝑢
𝑧𝑥

))

+
1

6𝑉
(𝛽
1
(𝑢
𝑥𝑦

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑦

)) ,

[(
𝜕𝑢
𝑥

𝜕𝑧

𝜕𝑢
𝑥

𝜕𝑥
) + (

𝜕𝑢
𝑦

𝜕𝑧

𝜕𝑢
𝑦

𝜕𝑥
) + (

𝜕𝑢
𝑧

𝜕𝑧

𝜕𝑢
𝑧

𝜕𝑥
)]

=
1

6𝑉
(𝛿
1
(𝑢
𝑥𝑥

+ 𝑢
𝑦𝑥

+ 𝑢
𝑧𝑥

))

+
1

6𝑉
(𝛽
1
(𝑢
𝑥𝑧

+ 𝑢
𝑦𝑧

+ 𝑢
𝑧𝑧

)) ,

[(
𝜕𝑢
𝑥

𝜕𝑦

𝜕𝑢
𝑥

𝜕𝑧
) + (

𝜕𝑢
𝑦

𝜕𝑦

𝜕𝑢
𝑦

𝜕𝑧
) + (

𝜕𝑢
𝑧

𝜕𝑦

𝜕𝑢
𝑧

𝜕𝑧
)]

=
1

6𝑉
(𝛾
1
(𝑢
𝑥𝑧

+ 𝑢
𝑦𝑧

+ 𝑢
𝑧𝑧

))

+
1

6𝑉
(𝛿
1
(𝑢
𝑥𝑦

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑦

)) .

(20)

Using (17) and (20), we obtain [𝐵
0
] for the 1st node (21).

Similarly, using (17) and (20), we obtain [𝐵
0
] for the 1st node

(22).
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Consider

[𝐵
01

] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
1
+ 𝛽
1
(𝑢
𝑥𝑥

) 𝛽
1
(𝑢
𝑦𝑥

) 𝛽
1
(𝑢
𝑧𝑥

)

𝛾
1
(𝑢
𝑥𝑦

) 𝛾
1
+ 𝛾
1
(𝑢
𝑦𝑦

) 𝛾
1
(𝑢
𝑧𝑦

)

𝛿
1
(𝑢
𝑥𝑧

) 𝛿
1
(𝑢
𝑦𝑧

) 𝛿
1
+ 𝛿
1
(𝑢
𝑧𝑧

)

𝛾
1
+ 𝛾
1
(𝑢
𝑥𝑥

) + 𝛽
1
(𝑢
𝑥𝑦

) 𝛾
1
(𝑢
𝑦𝑥

) + 𝛽
1
+ 𝛽
1
(𝑢
𝑦𝑦

) 𝛾
1
(𝑢
𝑧𝑥

) + 𝛽
1
(𝑢
𝑧𝑦

)

𝛿
1
+ 𝛿
1
(𝑢
𝑥𝑥

) + 𝛽
1
(𝑢
𝑥𝑧

) 𝛿
1
(𝑢
𝑦𝑥

) + 𝛽
1
(𝑢
𝑦𝑧

) 𝛿
1
(𝑢
𝑧𝑥

) + 𝛽
1
+ 𝛽
1
(𝑢
𝑧𝑧

)

𝛾
1
(𝑢
𝑥𝑧

) + 𝛿
1
(𝑢
𝑥𝑦

) 𝛾
1
+ 𝛾
1
(𝑢
𝑦𝑧

) + 𝛿
1
(𝑢
𝑦𝑦

) 𝛾
1
(𝑢
𝑧𝑧

) + 𝛿
1
+ 𝛿
1
(𝑢
𝑧𝑦

)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

{

{

{

𝑢
1

V
1

𝑤
1

}

}

}

, (21)

[𝐵
0
1

] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝛽
1
+

1

2
𝛽
1
(𝑢
𝑥𝑥

)
1

2
𝛽
1
(𝑢
𝑦𝑥

)
1

2
𝛽
1
(𝑢
𝑧𝑥

)

1

2
𝛾
1
(𝑢
𝑥𝑦

) 𝛾
1
+

1

2
𝛾
1
(𝑢
𝑦𝑦

)
1

2
𝛾
1
(𝑢
𝑧𝑦

)

1

2
𝛿
1
(𝑢
𝑥𝑧

)
1

2
𝛿
1
(𝑢
𝑦𝑧

) 𝛿
1
+

1

2
𝛿
1
(𝑢
𝑧𝑧

)

𝛾
1
+

1

2
𝛾
1
(𝑢
𝑥𝑥

) +
1

2
𝛽
1
(𝑢
𝑥𝑦

)
1

2
𝛾
1
(𝑢
𝑦𝑥

) + 𝛽
1
+

1

2
𝛽
1
(𝑢
𝑦𝑦

)
1

2
𝛾
1
(𝑢
𝑧𝑥

) +
1

2
𝛽
1
(𝑢
𝑧𝑦

)

𝛿
1
+

1

2
𝛿
1
(𝑢
𝑥𝑥

) +
1

2
𝛽
1
(𝑢
𝑥𝑧

)
1

2
𝛿
1
(𝑢
𝑦𝑥

) +
1

2
𝛽
1
(𝑢
𝑦𝑧

)
1

2
𝛿
1
(𝑢
𝑧𝑥

) + 𝛽
1
+

1

2
𝛽
1
(𝑢
𝑧𝑧

)

1

2
𝛾
1
(𝑢
𝑥𝑧

) +
1

2
𝛿
1
(𝑢
𝑥𝑦

) 𝛾
1
+

1

2
𝛾
1
(𝑢
𝑦𝑧

) +
1

2
𝛿
1
(𝑢
𝑦𝑦

)
1

2
𝛾
1
(𝑢
𝑧𝑧

) + 𝛿
1
+

1

2
𝛿
1
(𝑢
𝑧𝑦

)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

{

{

{

𝑢
1

V
1

𝑤
1

}

}

}

. (22)

The FEM is derived from conservation of the potential
energy, which is defined by

𝜋 = Estrain + 𝑊, (23)

where Estrain is the strain energy of the linear element and 𝑊

is the work potential. They are given by

Estrain =
1

2
∫

Ω
𝑒

𝜀
𝑇
𝜎𝑑𝑥, 𝑊 = 𝑓

𝑒
𝑑
𝑇
, (24)

where the engineering strain vector {𝜀} is

{𝜀} = [𝐵] {𝑑} . (25)

From (24), the engineering stress vector 𝜏 is related to the
strain vector by

𝜏 = [𝐸] {𝜂} = [𝐸] [𝐵0] {𝑑} . (26)

The secant relations are described by the matrix [𝐸]. We
substitute (15) and (26) into (24), obtaining the element
stiffness matrix

[𝑘 (𝑢)] = ∭{𝑑}
𝑇
[𝐵
0
]
𝑇

[𝐸] [𝐵0] {𝑑} 𝑑𝑥 𝑑𝑦 𝑑𝑧. (27)

We can discard the integrals as we did for the linear FEM.
[𝐵
0
], [𝐸], and [𝐵

0
] are constant for the four-node tetrahedral

element, so (27) is rewritten as

[𝑘 (𝑢)] = {𝑑}
𝑇
[𝐵
0
]
𝑇

[𝐸] [𝐵0]𝑉. (28)

The secant stiffness matrix which is [𝑘
𝑠
(𝑑)
𝑇
] = [𝐵

0
]
𝑇
[𝐸][𝐵

0
]

is nonsymmetric because of the fact that [𝐵
0
]
𝑇

̸= [𝐵
0
].

Introducing nodal forces, we obtain

{𝑓} =

{{{{{{{{{{

{{{{{{{{{{

{

𝑓
1𝑥

𝑓
1𝑦

𝑓
1𝑧

...
𝑓
4𝑥

𝑓
4𝑦

𝑓
4𝑧

}}}}}}}}}}

}}}}}}}}}}

}

{𝑑}
𝑇
. (29)

With the equilibrium equation and cancelling {𝑑}
𝑇, the whole

system for one element reduces to

𝑘
𝑠
(𝑑)
𝑒
{𝑑}
𝑒
= 𝑓
𝑒
. (30)

By substituting {𝑑} with 𝑢, we obtain

𝑘
𝑠
(𝑢)
𝑒
𝑢
𝑒
= 𝑓
𝑒
. (31)

Finally, only nonlinear displacement functions remain, which
are solved with Newton-Raphson to find the unknown
displacements 𝑢 [10].

Element residuals are necessary for the iterative Newton-
Raphsonmethod.The element residual is a 12×1 vector for a
specific element.The residual for a specific element is defined
as

𝑟
𝑒
= 𝑘
𝑠
(𝑢)
𝑒
− 𝑓
𝑒
. (32)
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Having determined 𝑟
𝑒, we can now express (32) in expanded

vector form as

{{{{{{

{{{{{{

{

𝑟
1

𝑟
2

𝑟
3

...
𝑟
12

}}}}}}

}}}}}}

}

=

[
[
[
[
[
[
[
[
[
[
[

[

𝑘
𝑠
(𝑢)
(1,1)

+ 𝑘
𝑠
(𝑢)
(1,2)

+ 𝑘
𝑠
(𝑢)
(1,3)

+ ⋅ ⋅ ⋅ + 𝑘
𝑠
(𝑢)
(1,12)

𝑘
𝑠
(𝑢)
(2,1)

+ 𝑘
𝑠
(𝑢)
(2,2)

+ 𝑘
𝑠
(𝑢)
(2,3)

+ ⋅ ⋅ ⋅ + 𝑘
𝑠
(𝑢)
(2,12)

𝑘
𝑠
(𝑢)
(3,1)

+ 𝑘
𝑠
(𝑢)
(3,2)

+ 𝑘
𝑠
(𝑢)
(3,3)

+ ⋅ ⋅ ⋅ + 𝑘
𝑠
(𝑢)
(3,12)

...
𝑘
𝑠
(𝑢)
(12,1)

+ 𝑘
𝑠
(𝑢)
(12,2)

+ 𝑘
𝑠
(𝑢)
(12,3)

+ ⋅ ⋅ ⋅ + 𝑘
𝑠
(𝑢)
(12,12)

]
]
]
]
]
]
]
]
]
]
]

]

−

{{{{{{

{{{{{{

{

𝑓
1

𝑓
2

𝑓
3

...
𝑓
12

}}}}}}

}}}}}}

}

. (33)

The tangent stiffness matrix [𝐾]
𝑒

𝑇
(𝑟
󸀠𝑒
) is also neces-

sary for the iterative Newton-Raphson method. The tan-
gent stiffness matrix is also 12 × 12 matrix, like the
elemental stiffness matrix. However, the tangent stiffness
matrix depends on residuals, unlike the elemental stiffness

matrix. Elemental stiffness matrices are used to construct
residuals and the derivatives of the residuals are used to
construct the elemental tangent stiffness matrices. We can
express the elemental tangent stiffness matrix for a specific
element as
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Newton-Raphsonmethod is a fast and popular numerical
method for solving nonlinear equations [10], as compared
to the other methods, such as direct iteration. In principle,
the method works by applying the following two steps (cf.
Algorithm 1): (i) check if the equilibrium is reached within
the desired accuracy; (ii) if not, make a suitable adjustment to
the state of the deformation [11]. An initial guess for displace-
ments is needed to start the iterations. The displacements are
updated according to

𝑥
𝑘+1

= 𝑥
𝑘
−

𝑓
𝑥
𝑘

𝑓
󸀠

𝑥
𝑘

. (35)

In the proposed nonlinear FEM, 𝑢 is the vector that
keeps the information of the nodal displacements. Instead of
making only one assumption, we make whole 𝑢 vector initial
guess in order to start the iteration.

Consider

𝑢
1
= 𝑢
0
−

𝑟
𝑢
0

𝑟
󸀠

𝑢
0

, (36)

where 𝑟 is residual of the global stiffnessmatrix [𝐾] calculated
in (33) and 𝑟

󸀠 is the tangent stiffness matrix calculated in (34).

At every step, the vector 𝑟 and the matrix 𝑟
󸀠 are updated

for every element with the new 𝑢
𝑖
values. Then, 𝑟 and 𝑟

󸀠 are
assembled as we did with for the global stiffnessmatrix𝐾 and
the global force vector 𝐹 in linear FEM. Boundary conditions
are applied to the global 𝑟 vector and the global 𝑟󸀠 matrix.
Using the global 𝑟 vector and the global 𝑟󸀠 matrix, we have

𝑟
󸀠
(𝑢
𝑖
) 𝑝 = −𝑟 (𝑢

𝑖
) , 𝑝 = −(𝑟

󸀠
(𝑢
𝑖
))
−1

𝑟 (𝑢
𝑖
) . (37)

𝑢
𝑖
is updated with the solution of (37). Consider

𝑢
𝑖+1

= 𝑢
𝑖
+ 𝑝. (38)

Then, we check if the equilibrium is reached within the
desired accuracy defined by 𝛿 as

󵄨󵄨󵄨󵄨𝑟 (𝑢
𝑖
)
󵄨󵄨󵄨󵄨 ≤ 𝛿. (39)

After the desired accuracy is reached, the unknown nodal
displacements are found.

3. Experimental Results

The proposed nonlinear FEM and Pedersen’s nonlinear FEM
were implemented using MATLAB programming language.
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Make initial guess 𝑓(𝑥)

while 󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝛿 do

Compute 𝑝 = −
𝑓(𝑥)

𝑓
󸀠
(𝑥)

Update 𝑥 = 𝑥 + 𝑝

Calculate 𝑓(𝑥)

end while

Algorithm 1: Newton-Raphson method.
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Figure 2: A 10 × 10 × 10m cube mesh with eight nodes and six
tetrahedra is constrained at the blue nodes and pulled downwards
from the green nodes.

The visualizer was implemented with C++ language and
connected to the solver using the MATLAB engine [12],
which allows users to call the MATLAB solver from C/C++
or Fortran programs.The simulation results, interaction with
the 3Dmodel, and the 3Dmodels themselves were visualized
using OpenGL, and the nose experiment was visualized
using 3ds Max [13]. To speed up the nonlinear FEM, we
used MAPLE’s symbolic solver [14], which is integrated into
MATLAB. We conducted all the experiments on a desktop
computer with a Core i7 3930K processor overclocked
at 4.2 GHz with 32GB of RAM. We used linear material
properties for the models in the experiments. We used 1GPa
for Young’s modulus (𝜖) because polypropylene has Young’s
modulus between 1.5 and 2GPa and polyethylene HDPE
has Young’s modulus 0.8GPa, which shows plastic properties
and they are close to 1 GPa. Because most steels and plastic
materials undergo plastic deformation near the value of 0.3,
we used 0.25 for Poisson’s ratio (]). Our simulation is static
so we used a single load step in all experiments. Multiple load
steps are usedwhen the load forces are time-dependent or the
simulation is dynamic [15].

We conducted four experiments, each having different
number of elements to observe the speedup for both stiff-
ness matrix calculation and for the solution of the system.
As expected, the proposed method and Pedersen’s method
produced same amount of nodal displacements in all experi-
ments.

Table 1: The displacements (in m) at nodes 1, 2, 3, and 4 using the
linear FEM for the first experiment.The displacements of nodes 5 to
8 for all axes are zero.

Node Displacement-𝑥 Displacement-𝑦 Displacement-𝑧
1 0.027234 0.011064 −0.289965
2 0.004306 −0.109719 −0.440739
3 −0.066065 −0.056547 −0.343519
4 −0.107536 0.070143 −0.514524

Table 2: The displacements (in m) at nodes 1, 2, 3, and 4 using the
nonlinear FEM for the first experiment.The displacements of nodes
5 to 8 for all axes are zero.

Node Displacement-𝑥 Displacement-𝑦 Displacement-𝑧
1 0.029911 0.012665 −0.278365
2 0.008606 −0.103350 −0.415594
3 −0.058835 −0.051901 −0.324126
4 −0.098945 0.068928 −0.478495

Table 3: The displacements (in m) at green nodes using the linear
FEM for the second experiment. The displacements at blue nodes
are zero.

Node Displacement-𝑥 Displacement-𝑦 Displacement-𝑧
0 −3.717 4.208 −0.0394
1 4.738 4.208 −0.04947
2 4.737 −4.245 0.03777
3 −3.716 −4.246 0.04902
20 3.01 −3.547 −0.05429
21 −4.117 −3.548 −0.06143
22 −4.117 3.581 0.04348
23 3.01 3.581 0.05155

Table 4: The displacements (in m) at green nodes using the
nonlinear FEM for the second experiment. The displacements at
blue nodes are zero.

Node Displacement-𝑥 Displacement-𝑦 Displacement-𝑧
0 −2.083 4.102 0.3798
1 4.72 2.298 0.3588
2 2.913 −4.501 0.4586
3 −3.884 −2.699 0.4809
20 3.28 −2.561 −0.424
21 −2.842 −3.931 −0.4032
22 −4.217 2.194 −0.3018
23 1.911 3.565 −0.3212

The first experiment was conducted for a cube mesh with
eight nodes and six tetrahedral elements. Figure 2 shows that
the cube is constrained at the upper four nodes and pulled
downwards with a small amount of force (one unit force for
each of the upper four nodes). This experiment was con-
ducted with a small mesh in order to carefully examine the
nodal displacements and strains for each element. Figure 3
shows the initial and final positions of the nodes for the linear
and nonlinear FEMs, respectively. As seen in Figure 3, the
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(a) (b)

Figure 3: (a) The initial and final positions of the nodes for the linear FEM. (b) The initial and final positions of the nodes for the nonlinear
FEM.
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Figure 4: Force displacements (in m) at node 4 for the linear and
nonlinear FEMs.
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Figure 5: Newton-Raphson convergence graphics for the nonlinear
FEM.The graph is plotted using the logarithmic scale.

linear and nonlinear methods produce similar displacements
when the force magnitude is small. Tables 1 and 2 show the
displacements at force applied nodes (first, second, third,
and fourth) using the linear and nonlinear FEMs, respec-
tively. Figure 4 shows that displacement increases linearly
with force magnitude. However, as expected, the nonlinear

Table 5: The displacements (in m) at green nodes using the linear
FEM for the third experiment. The displacements at blue nodes are
zero.

Node Displacement-𝑥 Displacement-𝑦 Displacement-𝑧
5 5.004 230.5 7.241
6 −0.4613 239.9 0.01444
9 −2.3 231.8 6.271
10 −4.602 237.5 −0.1437
41 0.5991 234.5 −0.17

Table 6: The displacements (in m) at green nodes using the
nonlinear FEM for the third experiment. The displacements at blue
nodes are zero.

Node Displacement-𝑥 Displacement-𝑦 Displacement-𝑧
5 6.439 69.34 5.014
6 −0.2123 79.96 1.458
9 −3.372 44.71 −4.788
10 0.5483 77.37 0.06587
41 1.196 82.84 0.1512

Table 7: The displacements (in m) at green nodes using the linear
FEM for the fourth experiment.The displacements at blue nodes are
zero.

Node Displacement-𝑥 Displacement-𝑦 Displacement-𝑧
271 1.086 −0.5297 11.88

Table 8: The displacements (in m) at green nodes using the
nonlinear FEM for the fourth experiment.The displacements at blue
nodes are zero.

Node Displacement-𝑥 Displacement-𝑦 Displacement-𝑧
271 0.6538 −0.1851 4.22

FEM behaves quadratically due to the nonlinear strain
definitions. Figure 5 depicts the convergence of the Newton-
Raphson method for the nonlinear FEM.

The second experiment was conducted on a beam with
90 nodes and 216 tetrahedral elements. Figures 6(a) and 6(b)
show that the beam is constrained at the blue nodes and
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(a) (b)

Figure 6:The beammesh is constrained at the blue nodes and twisted at the green nodes. (a) Front view; (b) side view, which shows the force
directions applied on each green node.

(a) (b)

(c) (d)

Figure 7: Nonlinear FEM results for the both the proposed and Pedersen’s methods ((a) wireframe tetrahedra and nodes; (b) nodes only; (c)
wireframe surface mesh; and (d) shaded mesh).

Figure 8: The cross mesh is constrained at the blue nodes and
pushed towards the green nodes.

twisted at both ends. Figure 7 shows the final shape of the
beam mesh for both the proposed and Pedersen’s methods.
Tables 3 and 4 show the displacements at force applied nodes
(green nodes) for the second experiment using the linear and
nonlinear FEMs, respectively.

The third experiment was conducted with a cross mesh
of 159 nodes and 244 tetrahedral elements. We aimed to
observe if there is a root jump occurring when solving the
system for a high amount of force (50N units), and its effect
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(a) (b)

Figure 9: Nonlinear FEM results for the both proposed and Pedersen’s methods: (a) initial and final wireframemeshes are overlaid; (b) initial
and final shaded meshes are overlaid.

(a) (b)

Figure 10: The liver mesh is constrained at the blue nodes and pulled from the green node ((a) initial nodes; (b) initial shaded mesh and
nodes).

Table 9: Computation times (in seconds) of stiffness matrices
(Pedersen: Pedersen’s nonlinear FEM; Proposed: proposed nonlin-
ear FEM; and Speed-up: relative performance comparison of the
stiffness matrix calculation of the proposed nonlinear FEMmethod
with Pedersen’s nonlinear FEMmethod using single thread).

Exp. Elements Pedersen Proposed Speed-up
1st 6 0.7322 0.3308 221.3422
2nd 216 28.1624 11.1542 252.4825
3rd 224 30.1094 12.2725 245.3404
4th 1580 239.8753 96.7840 247.8460

Table 10: Computation times (s) of system solutions (Pedersen:
Pedersen’s nonlinear FEM; Proposed: proposed nonlinear FEM;
and Speed-up: relative performance comparison of the proposed
nonlinear FEM method with Pedersen’s nonlinear FEM method
using single thread).

Exp. Elements Pedersen Proposed Speed-up
1st 6 3.0144 2.4427 123.4044
2nd 216 192.5288 159.6241 120.6139
3rd 224 586.2708 612.5911 95.7034
4th 1580 2840.7558 2401.0994 118.3106

Table 11: Newton-Raphson iteration count to reach desired accu-
racy (Pedersen: Pedersen’s nonlinear FEM; Proposed: proposed
nonlinear FEM).

Exp. Elements Pedersen Proposed
1st 6 5 5
2nd 216 7 7
3rd 224 26 32
4th 1580 8 8

on the computation times for both methods. Figure 8 shows
that the cross shape is constrained at the blue nodes and
pushed towards the green nodes. Figure 9 shows the final
shape of the beammesh for both the proposed and Pedersen’s
methods. Tables 5 and 6 show the displacements at force
applied nodes (green nodes) using the linear and nonlinear
FEMs, respectively.

We conducted fourth experiment with a livermesh of 465
nodes and 1560 tetrahedral elements. Figure 10 shows that
the mesh is constrained at the blue nodes and pulled from
the green node (30N units) in the direction of the arrow. We
aimed to observe the similar amount of speedup like previous
experiments for a high density mesh. Figure 11 shows the
final shape of the beam mesh for both the proposed and
Pedersen’s methods. Tables 7 and 8 show the displacements
at force applied node (node number 271) using the linear and
nonlinear FEMs, respectively.

Computation times of the finite element experiments are
required to compare how much faster our proposed method
is than Pedersen’s. When comparing nonlinear FEMs, we
calculated the computation times to construct the stiffness
matrices as well as the computation times of the nonlinear
FEM solutions to determine how different calculations affect
them. Table 9 depicts the computation times for the stiffness
matrix calculation and Table 10 depicts the computation
times for the system solution. Table 11 shows the iteration
counts to solve the system using the Newton-Raphson pro-
cedure.

The speed-up columns of Tables 9 and 10 depict the
speedups of the proposed method compared to Pedersen’s
method for the stiffness matrix calculation and the system
solution using a single thread, respectively. The speedup is
calculated as follows:

Speedup =
Runtime (Pedersen’smethod)

Runtime (Theproposedmethod)
. (40)
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(a) (b)

Figure 11: Nonlinear FEM results for both the proposed and Pedersen’s methods: (a) left: wireframe surface mesh; right: wireframe surface
mesh with nodes; (b) left: shaded mesh; right: shaded mesh with nodes.

(a) (b)

(c)

Figure 12: (a) Initial misshapen nose. (b) The head mesh is constrained at the blue nodes and pushed upwards at the green nodes. (c) The
result of the nonlinear FEM: left: wireframe surface mesh with nodes; right: shaded mesh with texture.

Our proposed method outperforms Pedersen’s method.
On the average, it is 142% faster at computing stiffness
matrices because Pedersen’s method uses more symbolic
terms. However, bothmethods use Newton-Raphson to solve
nonlinear equations, which takes approximately 90% of the
computation time. Thus, the overall speedup decreases to
15% on average. In experiment 3, because of more iterations
due to root jumps, there was a performance loss against
Pedersen’s method.

We also applied our method for corrective operation
on the misshapen nose of a head mesh. The head mesh is
composed of 6709 nodes and 25722 tetrahedral elements (see
Figure 12(a)); all the operations were performed in the nose

area of only 1458 tetrahedral elements. Figure 12(b) shows
that the head mesh is constrained at the blue nodes and
pushed upwards at the green nodes and Figure 12(c) shows
the result of the nonlinear FEM.

4. Conclusions and Future Work

We propose a new stiffness matrix calculation method for
nonlinear FEM that is easier to analyze in terms of construct-
ing elemental stiffness matrices and is faster than Pedersen’s
method. The proposed method is approximately 2.4 times
faster, on average, at computing stiffness matrices and 15%
faster at computing thewhole system thanPedersen’smethod.
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Although the proposed nonlinear FEM has significant
advantages over Pedersen’s nonlinear FEM, there is still room
for the following development.

(1) Heuristics could be applied to avoid root jumps.
(2) Although we decreased system memory usage by

simplifying the solution process for the nonlinear
FEM, a significant amount of system memory is still
used.The solution process could be further optimized
to decrease memory usage.
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