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Abstract – The Berry phase can be obtained by taking the continuous limit of a cyclic product
−Im ln

∏M−1
I=0 〈Ψ0(ξI)|Ψ0(ξI+1)〉, resulting in the circuit integral i

∮
dξ · 〈Ψ0(ξ)|∇ξ|Ψ0(ξ〉. Con-

sidering a parametrized curve ξ(χ) we show that a set of cumulants can be obtained from the
product

∏M−1
I=0 〈Ψ0(χI)|Ψ0(χI+1)〉. The first cumulant corresponds to the Berry phase itself, the

others turn out to be the associated spread, skew, kurtosis, etc. The cumulants are shown to be
gauge invariant. Then the spread formula from the modern theory of polarization is shown to
correspond to the second cumulant of our expansion. It is also shown that the cumulants can be
expressed in terms of the expectation value of an operator. An example of the spin- 1

2
particle in

a precessing magnetic field is analyzed.

Copyright c© EPLA, 2014

Introduction. – The concept of geometric phase was
first suggested by Pancharatnam [1] in optics. In 1984
Berry [2] published a paper about phases which arise when
a quantum system is brought around an adiabatic cycle.
The phase advocated in this paper was overlooked ear-
lier [3] as it was considered part of the arbitrary phase
of a quantum wave function. Berry has shown that this
is not the case, and that the phase of an adiabatic cy-
cle can be a measurable quantity. Since the publication of
Berry’s paper this concept was found to be at the core [4,5]
of a number of interesting physical effects, including the
Aharonov-Bohm effect [6], quantum Hall effect [7], topo-
logical insulators [8], dc conductivity [9], or the modern
theory of polarization [10,11]. More recently an example
of a geometric phase, the Zak phase [12], has been mea-
sured in optical waveguides [13] and optical lattices [14].
To derive a Berry phase, one considers a Hamiltonian

which depends parametrically on a set of variables. One
can then take a discrete set of points in this parameter
space, obtain the wave function, and form a cyclic prod-
uct of the type in eq. (2). The imaginary part of the log-
arithm of this cyclic product corresponds to the discrete
Berry phase. If the discrete points are along a cyclic curve
then the continuous limit can be taken, and it corresponds
to the well-known circuit integral [2]. The real part of the
product is usually not considered, due to the common be-
lief that, as a result of the normalization of the wave func-
tion, it is zero, therefore not physically relevant. In this

work we show that when the product in eq. (2) associated
with an adiabatic cycle is equated to a cumulant expansion
and the continuous limit is taken, then a series of physi-
cally well-defined quantities result. The quantities are in-
tegrals around the adiabatic cycle of the parameter which
gives rise to the Berry phase itself. The first-order term
corresponds to the Berry phase, the higher-order terms
give the associated cumulants. Gauge invariance is demon-
strated up to fourth order, but our proof suggests that it
holds for higher-order terms as well. Since the Berry phase
is usually not written in terms of an operator, the ques-
tion arises, what distribution do the cumulants correspond
to? To answer this we construct an operator via first-
order perturbation theory. For the Berry phase, the phase
of the wave function along the adiabatic path causes a
shift. However, the higher-order cumulants are unaffected
by this shift, as is the case for the usual cumlants in proba-
bility theory. We then compare our results to those of the
modern theory of polarization in which cumulants have
been obtained from a generating function approach [15].
We stress that this work addresses the particular case of
the single-point Berry phase [15,16]. In particular, we
show that the second cumulant obtained from our deriva-
tion is identical to the result of Resta and Sorella [17].
We also analyze one of the canonical examples for the
Berry phase [2] in light of our findings. Our results show
that the cumulants give information about the underlying
probability distribution associated with the Berry phase.
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General remarks. – The most general way to obtain
the Berry phase is to write it in the discrete representation,
and then take the continuous limit. Pancharatnam’s [1]
original derivation is based on considering discrete phase
changes. The discrete Berry phase first appeared in 1964,
in a paper by Bargmann [18], as a mathematical tool for
proving a theorem. The expression which forms the ba-
sis of our derivation here has also been used extensively
in the case of the path-integral–based representation of
geometric phases [19,20].
Given a parameter space ξ and some Hamiltonian H(ξ)

with

H(ξ)|Ψi(ξ)〉 = Ei(ξ)|Ψi(ξ)〉, (1)

where |Ψi(ξ)〉(Ei(ξ)) is an eigenstate (eigenvalue) of the
Hamiltonian. Consider a set ofM points in this parameter
space {ξI}. In this case one can form the quantity

φ = −Im ln

M−1∏
I=0

〈Ψ0(ξI)|Ψ0(ξI+1)〉, (2)

where Ψ0(ξM ) = Ψ0(ξ0) (cyclic) which is physically well
defined since arbitrary phases cancel. In eq. (2) φ is formed
using the ground state, without loss of generality. If the
points {ξI} are points on a closed curve, one can take the
continuous limit and obtain

φ = i

∮
dξ · 〈Ψ0(ξ)|∇ξ|Ψ0(ξ〉. (3)

φ can be shown to be gauge invariant and is therefore
a physically well-defined quantity. If the wave function
can be taken to be real, then a nontrivial Berry phase
corresponds to φ = π and will only occur if the enclosed
region of parameter space is not simply connected. If the
wave functions cannot be taken as real then a nontrivial
Berry phase can occur even if the parameter space is not
simply connected.

Cumulant expansion associated with the
Bargmann invariant. – We consider the product in
eq. (2) along a cyclic curve. We assume that the curve
is parametrized according to a scalar hence the product
is
∏M−1

I=0 〈Ψ0(χI)|Ψ0(χI+1)〉. We also assume that the
length of the curve is Λ and that χI defines an evenly
spaced (spacing Δχ) grid. We start by equating this
product to a cumulant expansion,

[
M−1∏
I=0

〈Ψ0(χI)|Ψ0(χI+1)〉
]Δχ

= exp

( ∞∑
n=1

(iΔχ)n

n!
Cn

)
.

(4)
We now expand both sides and equate like powers of

Δχ term by term, mindful of the fact that the left-hand
side includes a sum over I. For example, the first-order
term will be

C1 = −i

M−1∑
I=0

Δχγ1(χI), (5)

the second will be

C2 = −
M−1∑
I=0

Δχ[γ2(χI)− γ1(χI)
2] (6)

with γi(χ) = 〈Ψ0(χ)|∂i
χ|Ψ0(χ)〉. Straightforward algebra

and taking the continuous limit (Δχ → 0, M → ∞, Λ
fixed) gives

C1 = −i

∫ Λ

0

dχγ1

C2 = −
∫ Λ

0

dχ[γ2 − γ2
1 ]

C3 = i

∫ Λ

0

dχ[γ3 − 3γ2γ1 + 2γ3
1 ]

C4 =

∫ Λ

0

dχ[γ4 − 3γ2
2 − 4γ3γ1 + 12γ2

1γ2 − 6γ4
1 ]

(7)

Note that the limit Δχ → 0 corresponds to both sides of
eq. (4) going to unity if all Ci’s are finite. This may bring
into question the physical relevance of the Ci’s. However,
the quantity C1, the Berry phase itself, is already known
to have physical relevance, which strongly suggests a sim-
ilar role for the other Ci’s. Note that the definitions of
Ci’s (eq. (7)) hold as a result of the term-by-term expan-
sion of eq. (4) independent of the fact that both sides
of this equation approach unity as Δχ → 0. The physi-
cal significance of the Ci’s will be made clearer below by
casting them in terms of an operator. Note also that the
cumulants can also diverge, for example the divergence
of the spread of the total position is a sign of metallic
conduction [9,15,17,21].
The Ci’s other than C1 appear very similar to the usual

cumulants (compare coefficients), provided that we can
interpret −i∂χ as an operator and the integral as a proper
expectation value. C1 is known to be gauge invariant,
therefore it is natural to ask whether the other Ci’s are also
gauge invariant. We consider the proof of gauge invariance
for C1. One first alters the phase of the wave function, i.e.
define

|Ψ̃0(χ)〉 = exp[iβ(χ)]|Ψ0(χ)〉. (8)

Defining

C̃1 = −i

∫ Λ

0

dχ〈Ψ̃0(χ)|∂χ|Ψ̃0(χ)〉, (9)

it is easy to show that

C̃1 − C1 = β(Λ)− β(0). (10)

with γ̃1 = 〈Ψ̃0(χ)|∂i
χ|Ψ̃0(χ)〉. Hence the Berry phase of

the original wave function differs from the shifted one by
the difference of β(Λ)− β(0) which for an adiabatic cycle
is 2πm, with m integer. Applying the same procedure to
the other cumulants we obtain the following results:

C̃2 − C2 = ∂χβ(Λ)− ∂χβ(0) = 0,

C̃3 − C3 = ∂2
χβ(Λ)− ∂2

χβ(0) = 0, (11)

C̃4 − C4 = ∂3
χβ(Λ)− ∂3

χβ(0) = 0,
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hence, if the function β(χ) and its derivatives are contin-
uous at the boundaries gauge invariance holds. We have
carried out this proof up to fourth order. There appears to
be a pattern in eq. (11) suggesting that gauge invariance
holds up to any order.
The cumulants derived above can be expressed in terms

of expectation values of operators. Consider the expres-
sion from perturbation theory

∂χ|Ψ0(χ)〉 =
∑
j �=0

|Ψj(χ)〉〈Ψj(χ)| ∂χH(χ)

Ej − E0
|Ψ0(χ)〉. (12)

Defining the operator Ô as

∂χH(χ) = i[H(χ), Ô] (13)

it can be shown that the cumulants of this operator corre-
spond to the Ci’s derived above, except for the case i = 1,
the Berry phase itself, for which application of eq. (12)
leads to zero. For the Berry phase the expression from
perturbation theory (eq. (12)) is not valid since it makes
a definite choice about the phase of the wave function for
all values of χ. The most general expression is

|Ψ(χ+Δχ)〉 = eiα

×
⎡
⎣|Ψ(χ)〉+

∑
j �=0

|Ψj(χ)〉〈Ψj(χ)| ∂χH(χ)

Ej − E0
|Ψ0(χ)〉

⎤
⎦ , (14)

but in standard perturbation theory α is assumed to be
zero. This phase difference shifts the first cumulant (the
Berry phase), however since it is a mere shift, it leaves the
other cumulants unaffected. One can conclude that while
the Berry phase itself cannot be expressed in terms of an
operator, its associated cumulants can. This statement
will be clarified in an example below.

Polarization, current and their spreads. – We now
consider the Berry phase corresponding to the polarization
from the modern theory [10,11,15,17,22–24]. In this theory
an expression for the spread of a Berry phase associated
quantity has been suggested, and we now show that it is
equivalent to C2/Λ.
Resta showed that the expectation value of the position

over some wave function |Ψ0〉 of a system with unit cell
dimension L can be written as

〈X〉 = − 1

ΔK
Im ln〈Ψ0|e−iΔKX̂ |Ψ0〉, (15)

where ΔK = 2π/(NkL), Nk denotes an integer, X̂ =∑
j x̂j is the sum of the positions of all particles. The

spread in position (σ2
X = 〈X2〉 − 〈X〉2) can be written as

σ2
X = − 2

ΔK2
Re ln〈Ψ0|e−iΔKX̂ |Ψ0〉, (16)

The operator eiΔKX̂ is the total momentum shift oper-
ator which, as has been shown elsewhere [25,26] has the

property that for a state |Ψ0(K)〉 with particular crystal
momentum K defined as

Ψ0(k1 +K, k2 +K, . . .), (17)

it holds that

e−iΔKX̂ |Ψ0(K)〉 = |Ψ0(K +ΔK)〉, (18)

in other words it shifts the crystal momentum by ΔK. To
use the shift operator we first write

σ2
X = − 2

NkΔK2
Re ln〈Ψ0|e−iΔKX̂ |Ψ0〉Nk . (19)

We associate the state |Ψ0〉 with a particular crystal mo-
mentum K0,

|Ψ0〉 = |Ψ0(K0)〉. (20)

Using the total momentum shift the scalar product can be
rewritten as

〈Ψ0(K0)|e−iΔKX̂ |Ψ0(K0)〉 = 〈Ψ0(K0)|Ψ0(K1)〉
= 〈Ψ0(KI)|Ψ0(KI+1)〉, (21)

where KI+1 = KI + ΔK. To show the last equation one
applies the Hermitian conjugate of the total momentum
shift to 〈Ψ0(K0)| I times and the total momentum shift
operator to |Ψ0(K0)〉 I + 1 times and forms the scalar
product. Thus we can also write

〈Ψ0(K0)|e−iΔKX̂ |Ψ0(K0)〉Nk =

Nk−1∏
I=0

〈Ψ0(KI)|Ψ0(KI+1)〉.
(22)

The points KI form an evenly spaced grid with spacing
ΔK in the Brillouin zone. Using this result the spread
can be rewritten as

σ2
X = − 2

NkΔK2

Nk∑
I=0

Re ln〈Ψ0(KI)|Ψ0(KI+1)〉, (23)

We now expand the scalar product up to second order as

〈Ψ0(KI)|Ψ0(KI+1)〉 = 1+ ΔK〈Ψ0(KI)|∂K |Ψ0(KI)〉
+
ΔK2

2
〈Ψ0(KI)|∂2

K |Ψ0(KI)〉. (24)

The subsequent expansion of the logarithm and keeping
all terms up to second order in ΔK results in a first-order
term of the form

NkL
2

2π2
Re

Nk−1∑
I=0

ΔK〈Ψ0(KI)|∂K |Ψ0(KI)〉. (25)

In the continuum limit (Nk → ∞) the sum turns into the
integral which gives the standard Berry phase, but since
this integral is purely imaginary it will not contribute to
the spread. The final result for the spread is

σ2
X =

L

2π

Nk−1∑
I=0

ΔKσ2
X(KI) =

L

2π

∫ π/L

−π/L

dKσ2
X(K), (26)
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where

σ2
X(K) = −〈Ψ0(K)|∂2

K |Ψ0(K)〉+ 〈Ψ0(K)|∂K |Ψ0(K)〉2.
(27)

Equation (26) is actually the average of the spread over
the Brillouin zone. One can think of i∂K as a “heuristic
position operator” [27], and the quantity σ2

X(K) as the
spread for a wave function with crystal momentum K.
This spread of the position operator, derived by different
means, has also been obtained by Marzari and Vander-
bilt [28]. One can also start from the expression for the
spread of the total current [29]

σ2
K = − 2

ΔX2
Re ln〈Ψ0|e−iΔXK̂ |Ψ0〉, (28)

and apply exactly the same steps as in the case of the total
position. This derivation results in

σ2
K = − 1

L

∫ L

0

dX [〈Ψ0(X)|∂2
X |Ψ0(X)〉

−〈Ψ0(X)|∂X |Ψ0(X)〉2]. (29)

Example: spin- 12 particle in a precessing mag-
netic field. – We now calculate the cumulants up to
fourth order for one of the canonical examples for the
Berry phase [2], a spin- 12 particle in a precessing magnetic
field. The Hamiltonian is given by

Ĥ(t) = −μB(t) · σ, (30)

where σ are the Pauli matrices, and B(t) denotes the mag-
netic field,

B(t) =

⎡
⎣sin θ cosφsin θ sinφ

cos θ

⎤
⎦ . (31)

The z-component of the field is fixed, the projection on
the (x, y)-plane is performing rotation, i.e. φ = ωt. We
can proceed to evaluate the Berry phase and the associ-
ated cumulants by defining an adiabatic cycle in which φ
rotates from zero to 2π. Using one of the eigenstates

|n−(t)〉 =
[
− sin

(
θ
2

)
eiφ cos

(
θ
2

)
]
. (32)

The associated cumulants (divided by 2π) evaluate to

C1 = cos2
(
θ
2

)
,

C2 =
[
cos2

(
θ
2

)− cos4
(
θ
2

)]
,

C3 =
[
cos2

(
θ
2

)− 3 cos4
(
θ
2

)
+ 2 cos6

(
θ
2

)]
,

C4 =
[
cos2

(
θ
2

)− 7 cos4
(
θ
2

)
+ 12 cos6

(
θ
2

)− 6 cos8
(
θ
2

)]
.

(33)

Figure 1 shows the cumulants as a function of the angle
θ. C1, the Berry phase associated with a spin- 12 particle
in a precessing magnetic field, is a well-known result. The
spread is zero when the Berry phase is zero or π. The skew
changes sign halfway between zero and π and the kurtosis
also varies in sign as a function of the angle θ.

0 π 2π
θ

-1/2

0

1/2

1 C
1

C
2

C
3

C
4

<σ
z
/2>

Fig. 1: Cumulants of a spin- 1
2
particle in a precessing field.

The operator Ô for this example can easily be shown to
be the Pauli matrix σz

2 . The first-order cumulant is given
by 〈σz

2

〉
= sin2

(
θ

2

)
− cos2

(
θ

2

)
; (34)

in other words it is merely shifted compared to the Berry
phase. The higher-order cumulants are identical to those
in eqs. (33). In the operator representation of the Berry
phase the meaning of the first and second cumulants is
rendered more clear. For the value of θ for which 〈σz/2〉
is either ± 1

2 the spread is zero. Indeed those are the maxi-
mum and minimum values the operator σz can take, hence
the spread must be zero. It is obvious from these results
that the cumulants derived from the Bargmann invariant
give information about the probability distribution of the
operator associated with the Berry phase.

Measurement of Ci’s. – While it has been shown that
Ci’s are physically well defined, their measurement may
not be trivial. The operator may not exist or be easily
written down. In this case one can proceed as follows.
Define

Π =

M−1∏
I=0

〈Ψ0(χI)|Ψ0(χI+1)〉,

Π(o) =

M/2−1∏
I=0

〈Ψ0(χ2I+1)|Ψ0(χ2I+3)〉,

Π(e) =

M/2−1∏
I=0

〈Ψ0(χ2I)|Ψ0(χ2I+2)〉.

(35)

Using these definitions one can show that

C3 ≈ 2

Δχ2
Im ln

[
(Π(o)Π(e))

1
2

Π

]
+O(Δχ3),

C4 ≈ 4

Δχ3
Re ln

[
(Π(o)Π(e))

1
4

Π

]
+O(Δχ3).

(36)

Conclusions. – In this paper it was shown that there
exists a cumulant expansion associated with the Berry
phase. The starting point was the Bargmann invariant,
which gives rise to the discrete Berry phase. It was shown
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how a cumulant expansion associated with the Berry phase
can be obtained from the Bargmann invariant. Up to
fourth order it was demonstrated that the cumulants are
gauge invariant. It was also shown that the cumulants
derived can also be related to corresponding expectation
values of a particular operator. Since, in the modern the-
ory of polarization, an expression for the second cumulant
(spread or variance) is already in use, as a consistency
check, equivalence between that and the spread resulting
from the cumulant expansion presented here was shown.
The cumulants were calculated for the spin- 12 particle in
a precessing magnetic field. The results indicate that the
cumulants aid in reconstructing the underlying distribu-
tion from which the Berry phase arises.

We also note that while the ideas above may not be
straightforward to apply to all Berry phases (it depends
on the ease with which a cyclic curve is parametrized),
it is straightforward for two very important cases: the
TKNN invariant [7] and the topological invariant in the
Drude weight [9]. The Berry phase associated with these
quantities arises from a circuit integral around a rectangle.
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[29] Hetényi B., J. Phys. Soc. Jpn., 81 (2012) 124711.

40005-p5


