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Virus-like nanostructures for 
tuning immune response
Rashad Mammadov1, Goksu Cinar1, Nuray Gunduz1, Melis Goktas1, Handan Kayhan2, 
Sehmus Tohumeken1, Ahmet E. Topal1, Ilghar Orujalipoor3, Tuncay Delibasi4, 
Aykutlu Dana1, Semra Ide3, Ayse B. Tekinay1 & Mustafa O. Guler1

Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune 
responses raised against the biochemical signatures of viruses are well characterized, the mechanism 
of how they affect immune response in the context of physical signatures is not well studied. 
In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide 
nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune 
response. These nanostructures represent the two most common viral shapes, spheres and rods. 
The nanofibrous structures were found to direct immune response towards Th1 phenotype, which 
is responsible for acting against intracellular pathogens such as viruses, to a greater extent than 
nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic 
cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-
mediated degradation was also observed to be enhanced when complexed with the peptide 
nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production 
over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report 
showing the modulation of the nature of an immune response through the shape of the carrier 
system.

The development of novel vaccines is an urgent issue due to the prospect of pandemic threats by infec-
tious diseases such as flu (influenza virus) and Ebola. Current vaccinology mainly relies on inactivated 
or live attenuated viruses to introduce the characteristics of the virus to the immune system as much 
as possible1. Widely used egg-based vaccine production depends on viral growth characteristics in eggs. 
Slow-growing viruses or scarcity of egg resources might delay vaccine production during pandemics, 
when time is the limiting factor. Moreover, live attenuated viruses, which are superior to inactivated 
viruses in eliciting immune responses1,2, carry the risk of becoming virulent (as in the case of oral poliovi-
rus vaccine3) or causing side effects in immuno-compromised individuals4. Due to the above-mentioned 
reasons, the rational design of safer vaccines with high effectiveness, and easy production processes is 
vitally needed. To achieve this purpose, the principles required to drive the immune response to the 
desired context (such as what type of cytokines and co-stimulatory molecules are expressed or what type 
of innate and adaptive immune cells are activated in response to a given stimulus) should be well under-
stood5. These principles are based on the mechanisms by which immune cells recognize and respond 
to different features of pathogens, and especially to their biochemical and biophysical characteristics. In 
this context, pathogen-associated molecular patterns (PAMPs) stand out as biochemical pathogenic sig-
natures, and can be used as adjuvants to enhance the immunogenicity of antigens2,6. PAMPs trigger the 
elevation of antigen presentation and cytokine secretion by innate immune cells, which eventually shape 
the adaptive immune response7,8. Among PAMPs, DNA with unmethylated CpG motifs, a signature of 
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bacterial/viral DNAs, have been studied in great deal and demonstrated to boost humoral and cellular 
immune responses to vaccines9–12.

In nature, biochemical signals act in the context of biophysical features, such as the size and shape of a 
pathogen. This synergy plays a critical role in shaping the immune response and should be projected onto 
the vaccine for robust effectiveness. For example, the physical proximity of the antigen and adjuvant (e.g. 
CpG DNA), which allows both to be internalized by the same immune cells, has been shown to be critical 
for inducing a strong immune response10,13. The organization of molecular structures on the pathogens is 
another physical factor influencing immune response14. In this context, the density of antigenic epitopes 
has been shown to affect the IgG responses of B-cells15. In addition, repetitive patterns on the pathogen 
surface, which are especially prevalent in viruses, facilitate antigen processing and induce strong sign-
aling in B-cells by cross-linking their receptors16. Size also affects the immune response raised against 
antigens and adjuvants. In order to reach lymphoid organs, antigens should enter the lymphatic system, 
which appears to happen more efficiently with particle sizes in the 20–200 nm range16. The size of CpG 
oligodeoxynucleotide (ODN)-uploaded particles were shown to affect the quantity of cytotoxic T-cells 
generated against the antigen17. Particulate antigens have been shown to be superior to soluble antigens 
in reaching major histocompatibility complex I (MHCI) pathway for cross-presentation18. A wide range 
of materials, including cationic microparticles, liposomes/virosomes, virus-like particles, nanoparticles 
and nanorods have been proposed for making antigen-adjuvant complexes particulate, for their delivery 
in close proximity, and for adjusting the size and shape of the complex16,19. They boost the immune 
reaction to antigen/adjuvant through enhanced interaction with cells, cellular uptake and protection 
from enzymatic degradation16,19. Nanoparticle carriers can also alter the nature of the immune response 
(e.g. inducing different cytokine profile). Nanoparticles carrying CpG ODN, or CpG ODNs that fold and 
aggregate to form nanoparticles, induce the production of higher amounts of interferon-α  (IFNα ) and -γ  
cytokines, which mediate the anti-viral response of plasmacytoid dendritic cells20–24. Interestingly, high 
interferon-α  responses are similarly observed in the immune reaction to viruses. On the other hand, 
non-aggregating CpG ODNs are known to be poor interferon inducers, while being strong inducers 
of IL-6 production and expression of maturation markers on the cell surface11,25. This contrast results 
from the differing subcellular localization of nanoparticulate and soluble CpG ODNs in plasmacytoid 
dendritic cells and induction of distinct signaling pathways26.

All of these studies suggest that the morphology of a vehicle (virus or synthetic vaccine particle) has 
a strong effect in shaping the immune response raised by the biochemical signals (such as viral DNA or 
antigen) it carries. However, a systematic investigation of how the mammalian immune system responds 
to viral biochemical signals in the context of main viral shapes-spheres and rods-is not available in the 
literature. To answer this question, we compared the immune responses raised against CpG DNA deliv-
ered by zero- and one- dimensional nanostructures formed by the self-assembly of peptide amphiphile 
molecules and CpG ODNs (Fig. 1). These nanostructures resemble viruses in several ways: (i) their size 
and shape are comparable to viruses, where nanofibers resemble rod-like viruses and nanospheres are 
similar to spherical viruses, ii) they carry ODNs with motifs from viral DNA (CpG), which is known 
to activate TLR9 during viral infection27, and iii) they can be engineered to carry viral antigens through 
their peptide domains, which will allow repetitive organization of biochemical signals on their surface in 
a manner similar to viruses. As such, the present work concerns the design of virus-like nanostructures 

Figure 1.  Schematic representation of virus-like nanostructures and tunability of immune response. 
CpG ODNs mimic immunostimulatory CpG motifs (red) of viral DNA. Mixing CpG ODNs with proline-
rich peptides produces nanospheres with 15–20 nm diameter, while mixing with β -sheet forming peptide 
leads to the formation of one-dimensional nanofibers with 10–15 nm diameter and > 200 nm length. 
CpG ODNs are known to induce the Th1-biased immune response. Delivering them on nanospheres and 
nanofibers elevates this effect, while nanofiber based delivery is more potent.
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capable of potently eliciting anti-viral immune responses and the modulation of the immune responses 
against CpG DNA through changes in physical properties of the delivery system (Fig. 1).

Results
Design, synthesis and physical/chemical characterization of peptide nanostructures and their 
ODN complexes.  We combined positively charged peptide amphiphile molecules with oppositely 
charged immunostimulatory oligodeoxynucleotides (CpG ODNs) to obtain one-dimensional (nanofib-
ers) and zero-dimensional (nanospheres) self-assembled virus-like nanostructures. For this purpose, we 
synthesized two peptide amphiphile (PA) molecules with changing backbone motifs (K-PA and P-PA; 
Figs 2a,b and Fig. S1, S2) to direct self-assembled nanostructures into different morphologies. Both PA 
molecules include a lauryl group to drive self-assembly through hydrophobic collapse in aqueous solu-
tions, a glycine residue as spacer and a lysine residue to confer them positive charge at physiological pH. 
The K-PA contains a Val-Val-Ala peptide sequence and showed characteristics of β -sheet organization 
(negative at 217 nm, positive at 197 nm) in circular dichroism (CD) spectra, while P-PA has a Pro-Pro-
Pro peptide sequence and exhibits a PPII helix secondary structure (strong negative band at 203 nm and 
a weak positive band at 227 nm), similar to polyproline structures (Fig. 2c)28–30. Peptide/ODN complexes 
also preserved secondary structures of K-PA and P-PA and showed β -sheet and PPII helix characteristics 
in CD spectra, respectively (Fig. 2c).

Structural analysis of the peptide/ODN complexes were studied by using small-angle X-ray scattering 
(SAXS), which provides information on the shape and size of nanostructures in aqueous environment 
(Fig. 2d). The low q regions of the SAXS data of K-PA/ODN and P-PA/ODN complexes were best fit-
ted into an elliptical cylinder model31 with a major radius of 8.6 ±  0.4 nm and oblate core shell sphere 
model32,33 with a major radius of 7.2 ±  0.3 nm, respectively. The results obtained from SAXS analyses 
showed that K-PA/ODN complexes self-assembled into one-dimensional, high-aspect-ratio elliptical 
cylindrical nanofibers, while P-PA/ODN complexes formed zero-dimensional oblate spherical nanos-
tructures (Fig. S3a,b; Tables S1,S2)34. In addition, PDDF histograms of K-PA/ODN and P-PA/ODN com-
plexes showed characteristic patterns of cylindrical and spherical nanostructures (Fig. S3c,d). For control 
experiments, K-PA and P-PA solutions at concentrations identical to peptide/ODN complexes analyzed 
by SAXS. SAXS profiles of K-PA and P-PA nanostructures were also best fitted to an elliptical cylinder 
model with a major radius of 8.0 ±  0.3 nm and oblate core shell sphere model with a major radius of 
5.1 ±  0.3 nm, respectively (Fig. S4; Tables S3,S4).

STEM and AFM images showed that K-PA/ODN and P-PA/ODN complexes exhibited cylindrical 
and spherical morphologies in agreement with SAXS measurements (Fig. 3, Figs S5,S6,S8). In addition, 
the phosphorus signal obtained by EDX (energy-dispersive X-ray) spectroscopic analysis on spherical 
nanostructures and cylindrical fibers supported the interaction of ODNs with peptide molecules, and the 
formation of peptide/ODN complexes (Figs S5,S6). TEM images of the K-PA and P-PA nanostructures at 

Figure 2.  Structural characterizations of PA/ODN nanostructures. Chemical representations of (a) K-PA 
(Lauryl-VVAGK-Am) and (b) P-PA (Lauryl-PPPGK-Am). (c) CD spectra of PAs and PA/ODN complexes. 
(d) SAXS profiles of K-PA/ODN and P-PA/ODN complexes; y axis of the plot indicates scattering intensity, 
while x axis indicates scattering vectors.



www.nature.com/scientificreports/

4Scientific Reports | 5:16728 | DOI: 10.1038/srep16728

the same concentrations with peptide/ODN complexes also showed cylindrical and spherical morphol-
ogies, as observed similar in SAXS measurements (Fig. S7). AFM imaging of the peptide/ODN com-
plexes were performed to analyze the self-assembled systems in aqueous environment to eliminate the 
effects of drying on the sample imaging. The K-PA/ODN and P-PA/ODN complexes showed cylindrical 
and spherical morphologies, respectively, complementary to SAXS measurements and STEM imaging 
(Fig. 3c,d). The K-PA/ODN self-assembled into cylindrical bundles and larger aggregates of P-PA/ODN 
spherical complexes were observed in the aqueous environment. The aggregation and bundle formation 
on the AFM images in aqueous environment is related to the dynamic nature of peptide/ODN complexes 
and the self-assembly tendency of the peptides. In addition, AFM imaging of dried peptide/ODN com-
plexes on the surfaces showed similar cylindrical and spherical morphologies of K-PA/ODN and P-PA/
ODN complexes compared to aqueous environment at the same conditions (Fig. S8).

To distinguish the effect of nanostructure morphology on the immune response raised against CpG 
motifs from the immune response to the bare CpG motif itself, we prepared all groups with equal 
amounts of CpG ODNs (nanofiber, nanosphere and CpG ODN alone). Peptide concentrations were 
adjusted to ensure that all ODNs in solution bind to nanostructures. Since the negatively charged ODN 
interacts with positively charged lysine residues on peptide molecules, the number of CpG ODNs bound 
to nanostructures is directly related with the ODN to peptide ratio. As a result of PAGE analysis, we 
found that 1:70 and 1:2500 ratios were critical for ODN/K-PA and ODN/P-PA complexes, respectively 
(Fig. S9a,b). Zeta potential measurements were also consistent with PAGE results and indicated that 
similar ratios of ODN/peptide are critical for binding of all ODNs to nanostructures (Fig. S9c). The ODN 
solution had a zeta potential of − 33 mV in the absence of the peptide molecules, due to highly negative 
charge of the ODN molecule (Fig. S9c). For the ODN/K-PA solution, we observed a slightly positive 
potential (+ 6 mV) at a 1:100 ratio, indicating the total neutralization of ODN with PA molecules. For 
ODN/P-PA, a ratio of 1:2500 was critical (+ 21 mV), similar to the ratio found in the PAGE experiment 
(Fig. S9c)35,36. Indeed, the zeta potential of the P-PA was several folds lower than an equimolar concen-
tration of K-PA (Fig. S10). This suggests that at least some of the lysine molecules in P-PA are concealed 
in aggregates/nanospheres formed by P-PA. In the light of these results, we prepared ODN/K-PA and 
ODN/P-PA complexes at ratios of 1:100 ratio and 1:2500, respectively.

Figure 3.  Imaging of PA/ODN nanostructures. TEM images of (a) K-PA/ODN and (b) P-PA/ODN self-
assembled nanostructures. AFM images of (c) K-PA/ODN and (d) P-PA/ODN self-assembled nanostructures 
in aqueous environment.
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Nanostructures protect ODNs from enzymatic degradation.  Enzymatic degradation and con-
sequent short plasma half-life are significant problems for the practical applications of CpG ODNs. We 
performed a DNAse assay to understand whether self-assembled PA nanostructures could enhance the 
stability of ODNs against enzymatic degradation. ODN alone, K-PA/ODN and P-PA/ODN groups were 
treated with DNAse I for different time periods. SDS detergent was used to remove ODNs bound to 
nanostructures after digestion. All samples were run on polyacrylamide gel for the visualizing remaining 
ODNs after DNAse treatment. As it is shown in Fig. 4a, ODN-alone was rapidly degraded and yielded no 
visible bands in gel after 30 min of DNAse treatment. Calculation of band intensities also revealed that 
ODN was almost completely degraded after 24 h of treatment – 6% remained according to the average of 
three samples (Fig. 4d). However, ODNs in K-PA/ODN or P-PA/ODN complexes were clearly observa-
ble even after 24 h of DNAse treatment (Fig. 4b,c). The P-PA/ODN system protected ODNs better than 
K-PA/ODN: 56% of ODNs remained after 24 h with P-PA/ODN, while 39% of ODNs remained with 
K-PA/ODN (Fig. 4d). These results indicated that nanostructures protect ODNs from degradation and 
that, nanospheres were more potent than nanofibers for this purpose.

The shape of the CpG carrier is important for cytokine and co-stimulatory molecule expres-
sion profiles induced by CpG motifs.  Spleen carries a wide variety of immune cells and can give 
insights into how various immune cells types would react to virus-like nanostructures. To evaluate the 
reaction of spleen cells to the virus-like shapes of ODN delivery agents, we treated cultured splenocytes 
with various doses of ODNs prepared as K-PA/ODN, P-PA/ODN and ODN alone (with same amount of 
CpG ODN in all groups to ensure accurate comparison). To exclude any CpG-free effect, we also treated 
cells under similar experimental groups with control ODN instead of CpG ODN (with reversed CpG 
motif, see Methods section). Cytokine production profiles of mouse spleen cells indicated that the direc-
tion of the immune response to CpG ODNs is modulated by the shape of nanostructured carrier systems. 
According to cytokine profiles, nanofibers (K-PA/ODN) triggered a highly Th1-biased immune response, 
as indicated by the elevated IFNγ  and TNFα  levels, which are significantly stronger than CpG ODN 
alone (300% and 50% increase, respectively) and nanospherical ODN complexes (P-PA/ODN) (100% 
and 50% increase, respectively) (Fig. 5 and Fig. S11). On the other hand, P-PA/ODN induced only a 50% 
higher IFNγ , which is a critical mediator of anti-viral response and is extensively involved in anti-tumor 
response, than CpG ODN alone (Fig. 5). When IL-6 expression, which is known to promote Th2 immune 
response, was analyzed, K-PA/ODN was found to be significantly weaker than CpG ODN alone and 
P-PA/ODN. P-PA/ODN also induced diminished IL-6 production when compared to CpG ODN alone 
(Fig.  5b and Fig. S11b). On the other hand, IL-12 induction with K-PA/ODN or P-PA/ODN was not 
significantly different from ODN alone, indicating that higher IFNγ  induction with K-PA/ODN and 
P-PA/ODN was not IL-12 dependent (Fig. S11d). ODNs lacking CpG motifs were not effective in general, 
even in the presence of nanostructures, which indicates that the altered immune response provided by 
nanostructures was still CpG-dependent (Fig.  5). At concentrations lower than 0.1 μ g/mL, P-PA/ODN 
preserved its potency of IFNγ  production better than K-PA/ODN and ODN alone (Fig. S11a).

Figure 4.  ODNs resist to enzymatic degradation better when bound to nanostructures. (a) ODN alone, 
(b) K-PA/ODN and (c) P-PA/ODN were treated with DNAse I for different time periods and, subjected 
to PAGE. Lane 1 is Marker, Lane 2 is non-treated ODN, Lane3-Lane7 =  10 min, 30 min, 1 h, 4 h and 
24 h treatment with DNAse. (d) Time-dependent degradation of ODN in different formulations, plotted 
according to calculated band intensities.
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The upregulation of co-stimulatory molecules on the surfaces of immune cells is another mechanism 
of immune activation induced by pathogenic signals such as CpG DNA. To understand the effect of 
nanostructures on this process, we cultured splenocytes in the presence of K-PA/ODN, P-PA/ODN and 
ODN alone in a similar fashion to the cytokine assay and checked the expression levels of the cell surface 
markers; CD86 and CD40 using flow cytometry. We observed that the amount of CD86 expressing cells 
in splenocytes is upregulated better by K-PA/ODN compared to ODN alone, and that, the effect is strictly 
CpG-signal specific, as nanofibers with control ODNs proved to be non-effective (Fig.  6a). Treatment 
with P-PA/ODN induced CD86 expression in a higher percentage of cells compared to ODN alone, while 
the difference was not statistically significant (Fig.  6a). Regarding CD40 expression profiles, while all 
CpG-containing formulations induced CD40 expression (30–40%) in splenocyte population better than 
control ODN (~10%), P-PA/ODN showed the highest signal (48%). In addition, ODN alone induced a 
higher (44%) number of cells to express CD40 than K-PA/ODN (37%). Overall, nanostructures synergize 
with the ODN in the induction of co-stimulatory molecule expression, and nanostructure morphology 
makes a substantial difference where nanofibers induce CD86 expression more than nanospheres, which 
induce CD40 expression better than nanofibers (Fig. 6b).

PA/ODN complex stability does not explain the differential immune responses induced by 
nanofibers and nanospheres.  One alternative explanation for the different immune profiles induced 
by spherical and fibrous nanostructures is their differential stability in cell culture media. To determine 
whether this factor was responsible for modulating the immune response, fluorescent-tagged ODNs 
(FITC-ODN) were incubated in cell culture media for 48 h either alone or as K-PA/ODN and P-PA/

Figure 5.  Nanostructures shift the CpG-induced cytokine secretion profile of splenocytes. Mouse 
splenocytes were treated with indicated formulations, and cytokine concentrations in culture media 
were detected with ELISA: (a) IFNγ , (b) IL-6. ODN concentration in all groups is 0.1 μ g/mL. (*p <  0.05, 
**p <  0.01, ***p <  0.001 according to Student’s t-test) (N.D. is for “not detected”).

Figure 6.  Effect of nanostructures on the CpG-induced surface expression of co-stimulatory molecules. 
Mouse splenocytes were treated with indicated formulations for 24 h and percentage of cells expressing (a) 
CD86 or (b) CD40 in total population were detected by flow cytometry. (*p <  0.05, **p <  0.01 according to 
Student’s t-test).
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ODN complexes and changes in fluorescence were recorded for this time period. Both K-PA/ODN and 
P-PA/ODN showed decreased fluorescence when compared to bare ODNs, indicating partial quenching 
due to the aggregation of ODNs on fibers or spheres (Fig. S12). However, RFU (relative fluorescence 
unit) values for both K-PA/ODN and P-PA/ODN did not change considerably during the course of the 
experiment, excluding differential stability as a potential cause of the differences observed.

Nanofibrous carriers accelerate the internalization of ODNs into specific immune cells.  To 
analyze the uptake of ODNs into different immune cells, we prepared nanofibrous and nanospherical 
complexes by using FITC-conjugated CpG ODNs. Mouse splenocytes were cultured with ODN-FITC 
alone, K-PA/ODN-FITC and P-PA/ODN-FITC for two different durations (2 and 12 h). In all types of 
cells investigated, the uptake of ODN, alone or bound to nanostructures, increased as a function of time, 
except for K-PA/ODN uptake into dendritic (CD11c+ ) and plasmacytoid dendritic (CD11c+ B220+ ) 
cells (Fig.  7). These results indicate that 2 h is not sufficient for maximal uptake of ODN alone into 
relevant immune cells. However, K-PA/ODN achieved maximal uptake into dendritic cells (DC) and 
plasmacytoid dendritic cells (pDC) at 2 h (Fig. 7a,b). At both 2 h and 12 h, K-PA/ODN positive cells in 
DC and pDC populations were about 65% and 85–90%, respectively. ODN alone or P-PA/ODN achieved 
this level of uptake at 12 h. At 2 h, ODN was internalized by 44% and 50% of DCs and pDCs, while P-PA/
ODN was internalized by 34% and 42% of these cells, respectively (Fig. 7a,b). Previously, removal of CpG 
ODNs from cellular culture media before 8 h of culture was reported to reduce its immune activating 
potential, which suggests that time is an important factor for the entry of CpG ODNs into TLR9-positive 
endosomes37.

All of the groups were internalized similarly to B-cells (B220+ ) and macrophages (F4/80+ ) (Fig. 7c,d). 
The uptakes of ODN and K-PA/ODN (57% and 63%, respectively) to B-cells were higher at 12 h than 
P-PA/ODN (42%), while only the difference between ODN alone and P-PA/ODN was statistically sig-
nificant (Fig. 7c).

Figure 7.  Uptake profiles of FITC-ODN alone or bound with nanostructures into TLR9+ cell subsets in 
mouse splenocytes. Percentage of FITC (ODN)+  cells (a) in CD11c+  (dendritic cells), (b) CD11c+ B220+  
(plasmacytoid dendritic cells), (c) B220+ (B cells) and (d) F4/80+  (macrophages) populations. Gray and 
dotted gray bars indicate 2 h and 12 h culture with ODN formulations, respectively. (*p <  0.05, **p <  0.01 
according to Student’s t-test).
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Internalization mechanism of ODN complexes.  To understand the internalization mechanisms 
involved in CpG ODN, K-PA/CpG ODN, and P-PA/CpG ODN uptake, we prepared these complexes by 
using FITC-conjugated CpG ODNs. RAW 264.7 macrophages were cultured for 2 h with each endocyto-
sis inhibitor (amiloride, nocodazole, chloropromazine, nystatin, and cytochalasin D), then the medium 
was removed and treated with FITC-CpG ODN, K-PA/ FITC-CpG ODN, and P-PA/FITC-CpG ODN 
containing medium for 2 h. Table S6 shows the pathway affected by each chemical inhibitor and the 
protein target that is altered after its binding. Figure S14 shows effects of each inhibitor on CpG ODN 
and bound to nanostructures internalization by RAW 264.7 cells. Cytochalasin D treatment induced 
significant reduction in uptake for all forms of CpG ODN, thus pointing to macropinocytosis mecha-
nism takes the role for the internalization of all kinds of CpG complexes. On the other hand, amiloride, 
nocodazole and chlorpromazine seem to increase the uptake of FITC-CpG ODN, K-PA/ FITC-CpG 
ODN, and P-PA/FITC-CpG ODN through other mechanisms probably due to cyoskeletal alterations 
which may result in higher internalization. Moreover, nystatin did not alter uptake profile of CpG ODN 
and its nanostructure forms. Finally, similar to uptake study with splenocytes (Fig. 7a, b), nanofibers are 
superior to nanospheres and CpG ODN in terms of fast internalization.

CpG ODNs synergize with nanofibers to induce antigen-specific IgG.  Since nanofibrous ODNs 
showed remarkable potential for inducing the Th-1 immune response in in vitro experiments, their 
potency as a vaccine system was also investigated in vivo. Balb/c mice were immunized twice (day 0 and 
15) with a model antigen (Ova) either alone or with adjuvant formulations. Blood was collected from 
animals at two time points (day 13 and 28) and Ova – specific IgG levels were analyzed from isolated sera. 
These data convincingly indicated that “Ova with K-PA/ODN” vaccine system is superior to “Ova with 
CpG ODN” system (Fig. 8 and Fig. S13). Even after the first immunization (day 13 samples), “Ova with 
K-PA/ODN” showed significantly higher IgG production than “Ova with CpG ODN” and “Ova only” 
systems (Fig. 8a and Fig. S13a). While “Ova only” induced barely above of undetectable amount of IgG 
at 100-fold dilution of sera, IgG signal in sera from “Ova with K-PA/ODN”-treated animals declined to 
similar level only at 104 dilutions of sera (Fig. S13a). The difference between “Ova with K-PA/CpG ODN” 
and “Ova with K-PA/control ODN” did not reach statistical significance in day 13 samples (Fig. 8a). In 
serum samples obtained after booster immunization, the difference between the IgG signals of “Ova with 
K-PA/CpG ODN” and other groups increased. While other groups gave either undetectable or barely 
detectable IgG signals at 105 dilution of serum, “Ova with K-PA/CpG ODN” induced a strong IgG sig-
nals (Fig. 8b). Overall, day 28 serum titration curves for IgG signals showed that “Ova with K-PA/CpG 
ODN” induced more than 10-fold IgG than “Ova with CpG ODN” or “Ova with K-PA/control ODN” 
and more than 100-fold IgG than “Ova only” systems (Fig. S13b). Since CpG ODN amounts are identical 
in both “Ova with CpG ODN” and “Ova with K-PA/CpG ODN”, it can be concluded that the nanofibrous 
presentation of CpG ODN elevates specific adaptive immune response against the co-delivered antigen. 
Moreover, the effect of CpG ODN and the nanofiber morphology is not additive but synergistic in “Ova 
with K-PA/CpG ODN”. As the effect of both stimuli presented in tandem, 10-fold higher IgG response 
than “Ova with CpG ODN” or “Ova with K-PA/control ODN” was observed.

Figure 8.  Antigen-specific IgG levels for each immunized group. (a) Day 13 IgG levels (1/100 diluted 
sera) after primary injection; *p <  0.05, **p <  0.01. (b) Day 28 IgG levels (10−5 diluted sera) 13 days after 
secondary injection; ***p <  0.001 between Ova +  K-PA/CpG ODN and each of other groups. One-way 
ANOVA with Tukey’s multiple comparison test was used for statistical evaluation.
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Discussion
Functional self-assembled architectures with varying morphologies can be tailored by using simple 
molecular building blocks with distinct characteristics38. The specific attributes of different amino acids 
guide the self-assembly of peptide molecules and determine their structural properties. Valine and 
alanine residues found in peptide molecules are known as “β -sheet formers”, and favor the formation 
of one-dimensional nanostructures, while proline residues are called “β -sheet breakers”, result in the 
self-assembly of zero-dimensional nanostructures28,29,39. In addition, the self-assembly of peptides into 
one or zero dimensional nanostructures can be promoted by mixing oppositely charged biomacromol-
ecules. Non-covalent interactions such as hydrogen bonding, electrostatic and hydrophobic interactions 
between the peptides and biomacromolecules enable the formation of supramolecular assemblies40–42. 
Peptide amphiphile (PA) molecules were designed according to these principles, and their complexes 
with immunostimulatory ODNs were consequently able to self-assemble into nanospheres and nanofib-
ers. In addition to designing new platforms for CpG ODN delivery, we also aimed to understand whether 
the shape of delivery system had any influence on the immune response. Both nanospheres and nano-
fibers showed potency in protecting ODNs from nuclease degradation, making them promising delivery 
platforms. Nanostructure binding possibly makes ODNs less accessible to enzymes, which might be the 
mechanism responsible for the protection.

Qualitative change in immune responses were observed when A-type and B-type CpG ODNs were deliv-
ered in the presence of peptide nanostructures. A-type ODNs, which have polyG sequences at both ends, 
form higher-order structures through the folding of their palindromic sequence and hydrogen-bonding 
of guanosines. These ODNs manifest themselves as stable nanoparticles of about 20–100 nm in size, 
which is remarkably similar to spherical viruses21. On the other hand, B-type ODNs (such as ODN1826 
used in this study) do not have similar palindromic sequences and polyG sequences, and hence do not 
form any higher-order structures. A-type ODNs or nanoparticle-bound B-type ODNs were shown to 
induce several folds higher IFNγ  and lower IL-6 production from immune cells than B-type ODNs20,21,43. 
Moreover, A-type ODNs drive the Th1 development of naive CD-4 T-cells to greater extent than B-type 
ODNs44. Elevated IFNγ  production from PBMCs (peripheral blood mononuclear cells) by CpG ODNs 
with nanoparticulate structures (A-type ODN) was shown to be IFN-α  dependent44. This change in 
immune profile was explained by the longer retention of nanoparticulate ODNs in the early endosomes 
of plasmacytoid dendritic cells compare to linear ODNs and inducing MyD88–IRF-7 signaling path-
way26, while B-ODNs rapidly localize to lysosomes and induce the MyD88– NF-κ B pathway. Our CpG 
ODN-containing spherical particles morphologically resemble nanoparticles used in these studies (both 
can be called as zero-dimensional) and similarly induced higher IFNγ  and lower IL-6 responses than 
B-type CpG ODNs. Importantly, our findings also reveal that one-dimensional nanofibers synergize with 
CpG ODNs better than nanospheres in terms of IFNγ  and TNFα  activation, and inhibition of IL-6 
production, which indicates that immune response is driven further to the Th1 direction. To the best of 
our knowledge, this is the first report showing tunable nature of immune response to pathogenic DNA 
motifs by changing shape of the carrier nanostructures.

Nanostructure shape also influences the CpG-induced expression of the surface molecules– CD86 
and CD28. These molecules are expressed by antigen presenting cells (APC) upon sensing infection 
and play a vital role in the development of the adaptive immune response against foreign antigens. The 
interaction of CD86 with CD28 on T-cell surfaces is required for recognition of the foreign antigens and 
activation of T-cells during antigen presentation to T-cell receptors. CD40 binding to target cells induces 
B-cell and macrophage activation and the differentiation of B-cells. Surface molecule expression data 
therefore suggest that the shape of nanostructures carrying CpG motifs affects the nature of the adaptive 
immune response.

Recent studies have shown that the shape of particle significantly modifies the mechanism and extend 
of its cellular uptake. High-aspect-ratio PEG particles were internalized into HeLa cells four times faster 
than low-aspect-ratio particles and were rapidly translocated into nuclear membrane45. In another work, 
the shape of the particle surface at the point of initial contact with macrophages was shown to determine 
whether it would be phagocytosed46. Polystyrene particles with oblate ellipsoid shapes displayed higher 
internalization and phagocytosis into macrophages than prolate ellipsoid and spherical particles47, while 
prolate ellipsoid particles were better in cellular binding. Barua et al. showed that polystyrene nano-
rods coated with antibodies specific to cellular receptors exhibit higher cellular (HER2-expressing breast 
cancer cell line) binding, uptake and bioactivity than polystyrene nanospheres48. However, regarding 
non-specific uptake (i.e. no specific antibody on nanostructure to bind cellular receptors), rods were 
inferior to spheres. This might be due to the fact that rods have larger contact area with cellular surfaces, 
which cause higher surface adhesion through receptor-ligand interactions48. Considering these studies, 
we hypothesized that differential responsiveness of immune cells to K-PA/ODN, P-PA/ODN and ODN 
alone might be caused by differential uptake into immune cells. Overall, our results strongly suggest that 
nanofibrous structures accelerate the uptake of CpG ODNs into DCs and their subset – pDCs than their 
counterparts. The increased uptake of K-PA/ODN to pDCs might be an explanation for their capability 
to induce IFNγ . As mentioned above, IFNγ  production can be induced by IFNα , which is released 
from pDCs upon stimulation with nanoparticulate CpG ODNs44. Hence, better uptake of nanofibrous 
ODNs to these cells might be related to their unexpectedly high Th1-biased immune response activating 
potential. Previously, the scavenger receptor CXCL16 of plasmacytoid dendritic cells was suggested to 
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bind nanoparticle-forming D-ODN (analogue to A-ODN) molecules, facilitating their cellular uptake 
and modifying resulting immune responses, such as the IFNα  response49. Similar receptors might be 
functioning for the recognition of the nanofiber structure and its preferential uptake into DCs and pDCs. 
It is feasible that the larger contact area of nanofibers allows them to spread across the cell surface and 
cross-links membrane receptors that are important for uptake, allowing their internalization to occur 
better than the spherical PA/ODN complex or ODN alone.

Better uptake into relevant cells and increased nuclease resistance are among the possible factors that 
provide an advantage to K-PA/CpG ODNs over bare CpG ODNs for inducing the immune response in 
vivo. However, the CpG signal is still vital for the function of complex, as the K-PA/control ODN induced 
an immune response significantly weaker than its CpG-bearing counterpart (Fig.  8b and Fig. S13b). 
CpG-mediated signaling and the concomitant increase in the expressions of cytokines and co-stimulatory 
surface markers possibly induce B-cell differentiation, maturation and antibody secretion. Ova encapsu-
lation into nanofibers probably also contributes to the immune response, since “Ova with K-PA/control 
ODN” caused similar IgG signal with “Ova with CpG ODN” (Fig.  8b and Fig. S13b). To assess the 
potential toxicity of K-PA/ODN complexes, we measured the viability of splenocytes treated with these 
nanostructures. Increasing CpG ODN dose positively contributed to the viability of splenocytes in both 
ODN alone and K-PA/ODN groups (Fig. S16). This suggests that CpG ODNs exhibit a proliferative effect 
on immune cells, mainly B-cells, since control ODN groups did not show such statistically significant 
changes in any concentration of ODN (Fig. S16). We also observed similar increase in the viability of 
cells treated with K-PA/CpG ODN group, while no significant difference was observed between the via-
bilities of cells treated K-PA/control ODN and non-treated cells (Fig. S16). These results clearly exclude 
the toxic effect of K-PA/ODN as a component in the resulting immune response. On the other hand, 
P-PA/ODN complexes significantly reduced the viability of splenocytes at the concentrations used for in 
vivo assays, thus we decided to exclude this group from the in vivo experiments (Fig. S16).

There are many reasons for the misguiding experimental results built in preparation of the nano-
materials. These concerns should be addressed with the appropriate controls to exclude their effect. 
These sources are mentioned as endotoxins or other contaminants, solvents and dispersion agents and 
their dosage, agglomeration of nanoparticles at higher concentrations, cross-reaction of nanoparticles 
with analytes in the test system50. Especially, endotoxin or other microbial contamination may lead to 
inflammatory response interfering with our immune response data. We used nanostructures with immu-
nologically neutral (GpC) ODN as a control, which includes same peptide molecules for nanostruc-
ture formation, same solvent and other possible interfering sources as test system. Both nanofiber and 
nanosphere formation was similar between CpG or control ODN molecules hence agglomeration effects 
should be similar between the groups. Taking these into consideration, we can suggest that the difference 
between nanofibers, nanospheres and soluble bare ODN groups is due to the interaction between specific 
nanostructure morphology and ODN.

Here, we demonstrated that immune response against viral/bacterial DNA patterns depends strongly 
on the shape of the carrier nanostructure. As a delivery system, nanofibers were more effective than 
nanospheres in driving the CpG-induced immune response towards the Th1 phenotype, which is special-
ized for defending against intracellular pathogens. Nanofibrous ODN complexes also showed enhanced 
activity in in vivo experiments compared to ODN-antigen and antigen alone treatments. Complexes with 
soluble model antigens induced the production of specific immunoglobulins better than the administra-
tion of antigen with CpG ODNs. The versatility of the peptide nanosystems can enable the engineering 
of nanostructures to carry viral, bacterial or tumoral antigenic peptides. Delivering antigenic peptide and 
CpG ODN adjuvant in close proximity would also increase the efficiency of these nanofibers for inducing 
robust antigen-specific humoral and cellular immune responses.

Methods
Materials.  9-Fluorenylmethoxycarbonyl (Fmoc) and tert-butoxycarbonyl (Boc) protected amino 
acids, [4-[α -(20,40-dimethoxyphenyl) Fmoc-aminomethyl] phenoxy] acetamidonorleucyl-MBHA resin 
(Rink amide MBHA resin), and 2-(1Hbenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophos-
phate (HBTU) were purchased from NovaBiochem and ABCR. Other chemicals for peptide synthe-
sis were purchased from Fisher, Merck, AlfaAesar, or Aldrich. All chemicals were used as provided. 
CpG and control ODNs were purchased from Invivogen. Paired antibodies and recombinant proteins 
of IFNγ  and IL-12 were obtained from R&D systems, that of IL-6 from eBioscience and TNFα  from 
Life Technologies. All cell culture and ELISA reagents were purchased from Life Technologies, except 
non-essential amino acid solution (Sigma Aldrich). Reagents for polyacrylamide gel electrophoresis were 
obtained from Sigma Aldrich. Fluorescently labelled antibodies were obtained from BD Pharmingen 
(B220 and CD11c) and eBioscience (F4/80, CD40, CD86).

Peptide synthesis.  Lauryl-VVAGK-Am (K-PA) and Lauryl-PPPGK-Am (P-PA) were synthesized 
on Rink Amide MBHA resin. Amino acid couplings were performed with 2 equivalents (equiv) of 
Fmoc-protected amino acid, 1.95 equiv of HBTU and 3 equiv of N,N-diisopropylethylamine (DIEA) for 
2 h. To remove the Fmoc group, 20% (v/v) piperidine/dimethylformamide solution (DMF) was added 
and the resin incubated for 20 min. To block the remaining free amine groups after amino acid coupling, 
10% (v/v) acetic anhydride solution in DMF was used (30 min). After each step, the resin was washed 
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using DMF, dichloromethane (DCM) and DMF. A trifluoroacetic acid (TFA)/triisopropyl silane (TIS)/
H2O/DCM mixture (5:2.5:2.5:90 ratio) was used to cleave the peptide from the resins.

Preparation of virus-like nanostructures.  Virus-like nanostructures were prepared through the 
self-assembly of peptide molecules in the presence of oligonucleotides. To form one-dimensional nano-
fibrous and zero-dimensional nanosphere structures, positively charged K-PA and P-PA (Fig. 2a,b) mol-
ecules were mixed with CpG (ODN1826) or control ODNs, respectively. Two CpG motifs in ODN1826 
were reverted in the control ODN sequence: ODN1826: 5′ -tccatgacgttcctgacgtt-3′ ; ODN1826 con-
trol: 5′ - tccatgagcttcctgagctt -3′ . The exact molar ratio for ensuring that all ODNs in solution interact 
with nanostructures was determined to be 100:1 for K-PA/ODN and 2500:1 for P-PA/ODN (Fig. S9). 
Nanostructures were prepared with these ratios for all experiments and called nanofibrous ODN (K-PA/
ODN) and nanospherical ODN (P-PA/ODN) throughout the manuscript. In all experiments, at least 
three independent nanofiber and nanosphere formulations were prepared and tested.

Small Angle X-ray Scattering (SAXS) analysis of self-assembled nanostructures.  The PA/
ODN complexes were prepared by mixing an ODN1826 solution (15 μ g/mL) with identical volume of 
0.375% (w/v) P-PA solution (2500:1 ratio) or 0.015% (w/v) K-PA solution (100:1 ratio). The final ODN 
concentration in each PA/ODN complex was equal. For control experiments, 0.008% (w/v) K-PA and 
0.188% (w/v) P-PA solutions were prepared. Each PA/ODN, K-PA and P-PA solution was loaded into a 
quartz capillary cell for SAXS measurement. SAXS measurements were performed with a Kratky com-
pact HECUS (Hecus X-ray systems, Graz, Austria) system equipped with a linear collimation system and 
X-ray tube Cu target (λ  =  1.54 Å). The generator was operated at a power of 2 kW (50 kV and 40 mA). 
Simultaneous measurements of SAXS and WAXS range are possible in the system with a linear-position 
sensitive detector used with 1024 channel resolution. Inter-channel and sample-detector distances were 
54 μ m and 31.5 cm, respectively. Scattering curves were monitored in q ranges of 0.004–0.55 Å−1 for 
SAXS and 1.03–2.15 Å−1 for WAXS. All peptide/ODN complexes, K-PA and P-PA solutions were meas-
ured for 900 s at room temperature (23 °C).

Transmission Electron Microscopy (TEM) imaging.  Nanostructures were imaged by TEM as fol-
lows (Fig. 3a,b and Figs S5–S7). 30 μ L of PA/ODN complexes was prepared on parafilm by mixing 15 μ L 
of 15 μ g/mL ODN1826 with 15 μ L of either 0.375% (w/v) P-PA (2500:1 ratio) or 0.015% (w/v) K-PA 
(100:1 ratio). For PA-only samples, these concentrations of PAs were mixed with distilled water instead 
of ODN solution. TEM grids were inverted onto these solutions. Grids were removed after 5 min and 
the remaining solution on grid was absorbed by a lint-free paper. Staining was performed with 2% (w/v) 
uranyl acetate solution (Ted Pella, Inc) for 1 min. Grids were then immersed into ddH2O once and dried 
overnight at room temperature. TEM imaging was performed on the next day by a FEI, Tecnai G2 
F30 instrument. All images were taken in STEM mode with a high angle annular dark field (HAADF) 
detector.

Atomic Force Microscopy (AFM) imaging.  PA/ODN complexes for AFM imaging were prepared 
in liquid or dried conditions. ODN1826 solution at 15 μ g/mL concentration was mixed with an identical 
volume of 0.375% (w/v) P-PA solution (2500:1 ratio) or 0.015% (w/v) K-PA solution (100:1 ratio). The 
final ODN concentration in each PA/ODN complexes was equal. For K-PA/ODN complexes, the pre-
pared solution was diluted 50 times and dropped onto the cleaned mica surface and imaged directly in 
aqueous environment (Fig. 3c) or dried overnight and, imaged on the mica surface (Fig. S8a). SiN soft 
contact tip was used for contact mode imaging of K-PA/ODN complexes. For P-PA/ODN complexes, the 
solution was diluted 100 times, dropped onto the cleaned glass surface and imaged directly in aqueous 
environment (Fig.  3d) or dried overnight and imaged on the glass surface (Fig. S8b). Si tip (150 kHz, 
k =  5 N/m) was used for soft-tapping mode imaging of P-PA/ODN complexes. MFP3D Asylum micro-
scope was used for imaging.

Circular Dichroism (CD) Spectroscopy.  CD spectroscopy was performed with a JASCO J815 CD 
spectrometer at room temperature. 0.2 mM solutions of both K-PA and P-PA and their mixtures with 
ODN1826 (100:1 and 2500:1, respectively) were measured from 300 to 190 nm. Data pitch was 1 nm, 
scanning speed was 100 nm/min, and all measurements were performed with three accumulations. DIT 
was selected as 4 s, bandwidth as 1 nm, and the sensitivity was as standard. Molar ellipticity was calcu-
lated using the equation: [θ ] =  100 ×  θ /(C ×  l), where C is the molar concentration, and l is the cell path 
length in centimeters. [θ ] =  θ /(C ×  l) =  deg/(mol/1000 cm3) ×  0.1 cm =  100 deg cm2 dmol−1.

Polyacrylamide Gel Electrophoresis (PAGE).  PAGE was performed to identify the critical ODN/
PA ratio required to conjugate all ODNs in solution to PA nanostructures. 20 μ g/mL ODN1826 solution 
(15 μ L) was mixed with varying concentrations of PA solutions (15 μ L) to prepare different ODN/PA 
ratios (from 1:10 to 1:2500). These solutions were mixed with Orange DNA loading dye (Fermentas) and 
loaded onto 20% polyacrylamide gels. 10 μ L of 10 bp DNA ladder (O’range rulerTM, Fermentas) was used 
as marker. Gels were run at 75 V for 1 h and subsequently at 50 V for 2.5 h (in 1x TAE). Stains-all dye 
working solution (0.005%, w/v) was prepared freshly from stock solution (0.1% w/v) as recommended 
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by manufacturer (Sigma Aldrich). Gels were incubated in Stains-all overnight (dark conditions and room 
temperature). On the next day, the destaining of gels was performed under sunlight and images were 
taken by a Nikon camera.

Zeta Potential Measurements.  Zeta potential measurements were performed to find critical ratio 
of ODN/PA at which, all ODNs in solution were neutralized by (and bound with) PAs. 400 μ L of 5 μ g/mL 
ODN1826 solution was mixed with varying concentrations of PA solutions (400 μ L) to prepare different 
ODN/PA ratios (from 1:10 to 1:2500). Zeta potentials of these solutions were measured with a Nano-ZS 
Zetasizer (Malvern). Measured mobility was converted to zeta potential using the Smoluchowski equation. 
All measurements were performed in triplicate – by using three independently generated formulations.

Animals.  All experimental procedures involving animals were approved by the Animal Ethics 
Committee of Ankara Diskapi Yildirim Beyazit Training and Research Hospital (Protocol # 2013/25). 
Primary spleen cells were obtained from adult BALB/c (12–16 weeks old) mice, which were maintained 
under controlled conditions and fed ad libitum.

Splenocyte culture and stimulation experiment.  Spleens were removed aseptically and grinded 
between a petri plate surface and the plunger end of a syringe in culture media (2% FBS in RPMI-
1640) in order to dissociate single cells from bulk tissue. Single cell suspension was collected carefully 
to exclude tissue debris. Cell suspension was centrifuged at 800 g for 10 min. Supernatant was discarded 
and cell pellet was resuspended in culture medium (this step was performed twice). Cells were adjusted 
to 2 ×  106 cells/mL cell density and cultured in 96-well plates as 200 μ L/well (4 ×  105 cells/well). The 
medium used for the splenocytes culture was composed of RPMI-1640 with 5% FBS (Pen/Strep, L-Glu, 
non-essential amino acids and HEPES (20 mM) were also added). Cell stimulation was performed imme-
diately after distributing cells to wells. K-PA/ODN and P-PA/ODN were prepared as described above 
by using different doses of ODN1826 or control ODN. Nanostructure and ODN-only solutions were 
further diluted with media and final concentration of ODN in cell suspension was in a range of 1 μ g/mL 
to 0.01 μ g/mL. For cytokine analysis, cells were cultured at 37 °C and 5% CO2 for 48 h and supernatants 
were collected at the end of the experiment. For the analysis of surface markers (co-stimulatory mole-
cules), cells were treated with same formulations (under an ODN dose of 0.3 μ g/mL) for 24 h. Cells were 
collected at the end of experiment for further staining and analysis by flow cytometry. All experiments 
outlined were performed in triplicate; representative results of three independent experiments are shown.

ELISA.  Cytokine concentrations in supernatants collected from cultures at the end of the spleno-
cyte stimulation experiment were measured by ELISA. MaxiSorpTM plates (Thermo Scientific, NUNC) 
were coated with IL-6, IL-12 or IFN-γ  primary antibodies (overnight incubation at 4 °C). On the next 
day, plates were blocked with 0.5% BSA (2 h), incubated with supernatants of cell culture experiment 
or standard recombinant proteins (2 h), biotin-labeled secondary antibody (2 h) and HRP (horse rad-
ish peroxidase)-conjugated streptavidin (1 h), consecutively, at room temperature. Plates were washed 
5 times with washing buffer and dried by tapping between each consecutive steps (except the first two 
steps, in which washing was performed once per step). TMB (3,3′ ,5,5′ -Tetramethylbenzidine) substrate 
was added at the last step and reaction was stopped after 15–20 min by 1.8 N H2SO4. Color formation 
was measured by microplate reader (Spectramax M5, Molecular Devices) as absorbance at 450 nm wave-
length. This value was subtracted from a reference value (650 nm) to obtain absorbance values attribut-
able solely to dye color. All treatments were performed with at least three replicates and shown as mean 
+ /−  standard deviation.

Assessment of the effect of nanostructures on cell viability.  MTT-based in vitro toxicology assay 
kit (Sigma Aldrich) was used for the assessment of cell viability. Splenocytes were treated with ODNs 
or their peptide complexes (nanofibers and nanospheres) under conditions described in the stimulation 
assay for 36 h. After 5 min of centrifugation, culture media were discarded and cells were incubated in 
medium with MTT reagent (10%) for 4 h. Crystals formed in wells were dissolved with solubilization rea-
gent and absorbance values were measured with microplate reader (Spectramax M5, Molecular Devices).

Evaluation of the stability of PA/ODN complexes.  ODN-FITC, K-PA/ODN-FITC and P-PA/
ODN-FITC were prepared (n =  2) and incubated in cell culture media under conditions described in the 
stimulation assay (without cells in this case). Samples were taken at certain time points and fluorescence 
(ex: 495, em: scanned between 450–650 nm) was measured using a NanoDrop3300 fluorospectrometer.

Internalization of ODNs into immune cells.  Internalization of ODNs into various immune cells 
expressing TLR9 in total splenocytes was analyzed by flow cytometry. For this purpose, FITC-conjugated 
ODN was used for preparing K-PA/ODN and P-PA/ODN. Freshly prepared mouse splenocytes were 
cultured in 96-well plates (4 ×  105 cells/well). Cells were treated with K-PA/ODN, P-PA/ODN or ODN 
alone for 2 h or 12 h before flow cytometry experiment. Cells were collected into 1.5 mL Eppendorf tubes 
by pipetting, and precipitated by centrifugation. Supernatants were discarded, cells were washed with 
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1x PBS and a cell pellet was obtained again by centrifugation for further staining and analysis by flow 
cytometry.

Internalization mechanism of PA/ODN complexes.  Chemical inhibitors for various internali-
zation pathways were used to understand the internalization mechanism of PA/ODN nanostructures. 
Optimal inhibitor concentrations that give maximal inhibition of relevant pathway but yet non-toxic to 
cells were determined. Raw 264.7 cells were seeded in 6 well plates (1 ×  106 cells/well) with 10% FBS 
DMEM. After 8 h from seeding, chemical inhibitors were administered in fresh medium at final concen-
trations of 1 mM amiloride, 25 μ g/mL nystatin, 5 μ g/mL nocodazole, 10 μ M cytochalasin D, and 2 μ g/mL 
chloropromazine. After 2 h of incubation, cells were rinsed gently with fresh medium to remove chemical 
inhibitors. FITC-conjugated CpG was used for preparing K-PA/ODN and P-PA/ODN. Cells were treated 
with K-PA/ODN, P-PA/ODN and bare CpG ODN for 2 h before flow cytometry experiment. After 2 h 
incubation with nanostructures, cells were rinsed with 1x PBS three times to remove non-internalized 
nanostructures, and collected into Eppendorf tubes with scraper. Then, they were precipitated with cen-
trifugation at 2500 rpm for 5 min, cells were dissolved in 1x PBS. After scraping, cells were kept on ice 
until flow cytometry analysis. Internalization in macrophage cells were analyzed with BD Accuri C6 flow 
cytometer (BD Biosciences). Cells were gated by SSC (side scatter channel) and FSC (forward scatter 
channel) using non-treated control. Fluorescence intensity of cells was measured with green channel.

Staining of surface markers and flow cytometry.  For uptake study, cells were stained with 
anti-B220-PE and anti-CD11c-APC or anti-F480-PE. For analysis of the expression of co-stimulatory 
molecules, cells were stained with CD40 and CD86 antibodies. Cells were washed with 1X PBS and 
centrifuged twice and resuspended in 1x PBS. Flow cytometry was performed with BD FACSAriaTM III 
equipment with BD FACSDivaTM software. The number of events was at least 10,000 for all samples. The 
experiment was performed in triplicate and representative results of two independent experiments are 
shown.

DNAse assay.  A DNAse assay was performed to understand whether nanostructure binding protects 
ODN from enzymatic degradation (Fig. 7). Briefly, K-PA/ODN, P-PA/ODN and ODN alone were treated 
with DNAse I for different time periods and ODN digestion was analyzed with polyacrylamide gel elec-
trophoresis. Reaction mixtures for each experimental group are shown in Table S5. Each sample was 
treated with DNAse I for 10 min, 30 min, 1 h, 4 h and 24 h at 37 °C. At t =  0, samples had 3 μ L of ddH2O 
instead of 3 μ L of DNAse I. After the incubation period, samples were loaded onto 10% polyacrylamide 
gel. Before loading, all samples were incubated with 3 μ L of 1% SDS to disrupt electrostatic interaction 
between ODNs and PAs for 5 min at room temperature. Samples were run for 60 min at 75 V and sub-
sequently 80 min at 50 V (in 1x TAE). All other conditions were identical with the PAGE experiment 
mentioned above. Band intensities were measured by Image J software. Representative results of three 
independent experiments are shown.

Immunizations and determination of antibody responses.  Male 10–11 weeks old Balb/c mice 
were immunized with 500 μ L intraperitoneal injections. 6 groups (n =  5) of animals were treated with 
Ova (antigen) alone, Ova with CpG ODN, Ova with K-PA/CpG ODN or Ova with K-PA/cont. ODN 
(all in isotonic sucrose solution). 10 μ g Ova was given to all animals, while CpG ODN or control ODN 
amounts were 10 μ g in relevant groups. Booster injections were performed at day 15. At days 13 and 28, 
animals were bled, and sera were obtained. IgG amounts in sera was detected with ELISA. Ova antigen 
was coated onto 96-well plates, blocked with 1% BSA buffer and serially diluted (10 fold) sera were added 
onto the wells. IgG was detected with HRP-conjugated anti-IgG. Absorbance in each well was measured 
after substrate (TMB) addition.

All procedures regarding animals were approved by the Institutional Animal Care and Use Committee 
of Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey. This study was carried out 
in accordance with the approved guidelines.
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