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Abstract
The consequence of numerous neurological disorders is the significant loss of neural cells,

which further results in multilevel dysfunction or severe functional deficits. The extracellular

matrix (ECM) is of tremendous importance for neural regeneration mediating ambivalent

functions: ECM serves as a growth-promoting substrate for neurons but, on the other hand,

is a major constituent of the inhibitory scar, which results from traumatic injuries of the central

nervous system. Therefore, cell and tissue replacement strategies on the basis of ECM mi-

metics are very promising therapeutic interventions. Numerous synthetic and natural materials

have proven effective both in vitro and in vivo. The closer a material’s physicochemical and

molecular properties are to the original extracellular matrix, the more promising its effective-

ness may be. Relevant factors that need to be taken into account when designing such materials

for neural repair relate to receptor-mediated cell–matrix interactions, which are dependent on

chemical and mechanical sensing. This chapter outlines important characteristics of natural

and synthetic ECM materials (scaffolds) and provides an overview of recent advances in de-

sign and application of ECMmaterials for neural regeneration, both in therapeutic applications

and in basic biological research.
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1 ECM MIMETICS ON THE RISE
The loss of nerve cells is a general and major symptom of many disorders of the ner-

vous system. After a traumatic injury, the differences in the regenerative response of

affected neurons of the peripheral nervous system (PNS) versus the central nervous
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system (CNS) become obvious:While neurons of the PNS reveal a significant degree

of regeneration after injury, such regenerative neuronal growth generally fails after

an injury of the adult CNS although central neurons have some, but very limited,

inherent regenerative capacity (David and Aguayo, 1981). The regenerative failure

after CNS trauma and neurodegeneration, therefore, cannot be attributed to just one

single cause, and the reasons for the difference in the regenerative responses of PNS

and CNS are manifold (Ferguson and Son, 2011) including (i) the presence of

myelin-associated inhibitors, (ii) a slower rate of degeneration of the distal segment

of the injured fiber tract, (iii) a generally slower axonal growth rate, and (iv) the in-

hibitory influences of the glial and the extracellular environment. Neurodegeneration

does, however, not only occur after CNS trauma. Neurodegenerative disorders like

Alzheimer’s disease, Parkinson’s disease, stroke, multiple sclerosis, and amyo-

trophic lateral sclerosis result in the shared symptom of neuroinflammation, which

eventually leads to the dysfunction or even the loss of neurons (Benowitz and

Popovich, 2011; Cartier et al., 2005). Because of a general significant increase of

the aging population and the consequence of an increased incidence of neurodegen-

erative diseases, the development of therapies, which may help to rescue and replace

the affected cells and thereby preserve the associated functions, is of highest priority.

The ECM is, therefore, an important target for the development of therapies for dis-

orders of the CNS, which involve progressive neurodegeneration. Such interventions

either directly target the inhibitory environment and its associated molecules, or they

function on the basis of replacement strategies. For the latter, ECMmimetics (natural

or synthetic matrix materials that mimic the characteristics of native ECMs) provide

promising means for cell- or matrix-based therapeutic treatments.

The previous chapters have described the neural ECM and its role in a variety of

healthy normal and injury-related processes in full detail. Chapters 16 and 17 discuss

current therapies that directly target the neural ECM. However, if such respective

therapies cannot be applied or are not efficient, e.g., in case of large tissue defects,

or if in vivo differentiation is intended after cellular transplantation, it may be nec-

essary to reconstruct the affected tissue. For example, via the application of suitable

matrix mimetics, a growth-promoting microenvironment can be created. This chap-

ter focuses on scaffold materials that are currently used as neural ECM mimetics in

basic research and experimental therapies (Figs. 1–3).

2 THE EXTRACELLULAR MATRIX
A brief outline of the natural ECM will illustrate its complexity and suggest the

difficulty and possible obstacles for the design of ECM mimetics: The ECM is com-

posed of a three-dimensional meshwork of fibrillar proteins and glycosaminoglycans

(GAGs) providing an interstitial matrix or basement membrane. The interstitial

matrix consists of polysaccharide gels and fibrillar proteins, whereas sheetlike de-

positions of ECM are characteristic for basement membranes. The molecular

ECM components are GAG-containing proteoglycans (chondroitin sulfate, heparan

sulfate, and keratin sulfate), nonproteoglycans containing polysaccharide hyaluronic
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FIGURE 1

Possible applications of neural ECMmimetics. Cell-based and a-cellular scaffolds are suitable

matrices for numerous strategies in both basic biomedical research and medical therapy.

FIGURE 2

Basic functions of the natural extracellular matrix. One important general feature, which is

exerted by the ECM, is the provision of a physically stable scaffold. The maintenance of ion

homeostasis and the exchange of nutrients are vital for the correct function of cellular

networks and tissues. ECM characteristics, which are especially important for cell–cell and

cell–matrix interactions, respectively, and which are mediated by a delicate ECM meshwork,

are highlighted by the light blue ellipse. These functions comprise the cellular processes of

differentiation, migration, adhesion, proliferation, and viability.



acid (HA), fibers of collagen or elastin, and connecting proteins such as fibronectin

or laminin. Due to their water-attracting features, proteoglycans keep the ECM well

hydrated. Furthermore, they aid in the entrapment and the storage of growth factors.

Collagens, the most abundant proteins of the ECM, are mostly fibrillary proteins that

provide structural and tensile support for cellular bonds. Exceptions are collagens

FIGURE 3

Requirements and considerations for the design of ideal neural extracellular matrix mimetics.

ThemorecloselyanECMmimetic resemblesthenaturalECM, thebetter it canexert thenecessary

functions. In addition to mechanical parameters, which strongly influence the cellular behavior

and tissuestability, general features (yellow (light gray inprint version)) ofanECMmimetic include

its biocompatibility, biodegradability, and its general composition. Many characteristics, which

are cell-specific (green (gray in print version)), would be considered for neural ECMdesign in cell

replacement and general cell implantation strategies, for example, the cell type, whereas other

basic functional requirements also apply for the general cellular behavior in a matrix (e.g.,

migration and differentiation). The different requirements certainly intermingle in an ideal neural

ECMmimeticand, therefore,shouldnotbeconsidered independently of eachother. For instance,

cell–cell interactions are very important cell-related functions, but they are also vital for the

structural organization, biocompatibility, etc. and for complex functions (blue (dark gray in print

version)) such as signaling or contact guidance. Finally, synthetic and natural ECM mimetics

canbedesignedand“tuned” toallowveryprecise functions (red(black inprint version)). This can

be achieved by the addition of bioactive groups to a scaffoldmaterial (surfacemodification) or by

incorporating different degrees of porosity. Thereby, vascularization and subsequently nutrient

exchange of an extracellular matrix can be influenced.
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of the nonfibrillary type including collagen IV, which forms the sheetlike meshed,

nonfibrillar network of the basement membrane. The important functions that are

common to ECMs in general are cell adhesion, cell communication, and cell differ-

entiation. ECMs provide structural stability to tissues. The formation of ECM is

essential for several vital processes, such as wound healing, growth, and fibrosis.

Cell–ECM interactions are highly dynamic bidirectional processes, which require

a very complex temporal and spatial coordination of signaling, receptor-mediated

transmission, and regulation of gene expression for their correct function. The three

main effectors in a native ECMmicroenvironment are insoluble hydrated macromol-

ecules, soluble macromolecules, and surface proteins of neighboring cells (Lutolf

and Hubbell, 2005). The molecular interaction of a cell with these effectors will de-

termine its ultimate fate, i.e., differentiation, proliferation, migration, apoptosis, or

other specific functions.

CNS trauma research models (e.g., experimental spinal cord injury) are useful in

order to explore the suitability of different materials as possible ECM mimetics

in vivo: large tissue defects that result from primary and secondary injury events

(e.g., inflammation, scarring, or cavity formation) and the pathological changes in

the native ECM require the removal and/or the reconstruction of the affected tissue

in order to restore tissue continuity. A variety of scaffold-based strategies exist in the

field of experimental CNS trauma, which involve either cellular transplantation or

the implantation of matrix materials as bridging substrates or a combination of both.

In vitro cell culture experiments often focus on the survival, migration, and differ-

entiation of the cells in a suitable matrix. In vivo cell transplantation approaches often
target similar effects, but the complex and mostly inhibitory environment requires

additional considerations.

3 INTERACTION OF ECM SCAFFOLD AND HOST ECM
The biocompatibility or the interaction of an artificial scaffold material with host tis-

sue can be modulated via the surface characteristics of the material. Different con-

ditions require different treatments and, therefore, different matrix characteristics.

While for cell replacement strategies the supply with factors that mediate cellular

differentiation, migration, and survival is of high priority, the degree of biodegrad-

ability is a very important issue in regenerative medicine because it can have a sig-

nificant effect on the extent of tissue regeneration. However, biodegradation of

implanted biomaterial can cause side effects on the surrounding host tissue

(Sakiyama-Elbert et al., 2012). Toxic by-products might elicit immune responses

or changes in the pH, which could weaken or even reverse any beneficial treatment

effects. Therefore, the efficiency of biomaterials that come into consideration as

ECMmimetics should ideally be investigated both in vitro and subsequently in vivo.
The most basic function of ECMs is the provision of a scaffold structure. For neu-

ral ECM mimetics, which are used as scaffold materials in regenerative medicine, it

is further desirable that they promote angiogenesis and vascularization. Blood ves-

sels are required for the provision of nutrients and removal of waste products,
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processes that are vital for tissue regeneration (Owen and Shoichet, 2010). Angio-

genesis and vascularization of the scaffold implant have been reported for numerous

neural ECM biomaterials (Bakshi et al., 2004; Bramfeldt et al., 2010; Estrada et al.,

2014; Plant et al., 1997; Woerly et al., 1999).

The presence and orientation of pores or channel structures in a matrix can guide

the cellular growth (Sakiyama-Elbert et al., 2012). Highly complex conditions like

spinal cord injuries require different molecular interventions or their combination to

mediate neural cell adhesion and axon sprouting and extension. Multiple cell types

and neuronal populations are affected by traumatic spinal cord injury, and therefore,

possible therapeutic strategies are numerous.

Often, cells will adhere nonspecifically to unmodified ECMs. Bioengineering

scaffold materials via incorporation of proteins or peptides on its surface can be used

to design scaffolds with specific cell–scaffold interactions to influence the cellular

behavior. Incorporation of specific peptide sequences, which promote cell adhesion,

is a common way of designing functionalized ECM mimetics with the potential for

enhanced cellular adhesion or better integration of the respective material (Choi

et al., 2013; Dhoot et al., 2004; Plant et al., 1997).

The physical structure and rate of degradation of a neural ECM scaffold have a

great impact on nervous tissue regeneration. If the material is degraded too fast, the

damaged tissue may lack the necessary mechanical support that is required for re-

generation. On the other hand, nondegradable materials provide a long-term struc-

tural stability but may be critical in regard to clinical applications since the implant

will remain in the patient’s body for an extended period of time or even permanently.

Optimal integration of ECM scaffold material will facilitate its effectiveness. It

is, therefore, a high priority to minimize scarring or allergic reactions caused by the

implanted material. Increased scarring responses can eventually result in an encap-

sulation of the foreign material from the adjacent host tissue (Sakiyama-Elbert et al.,

2012; Stensaas and Stensaas, 1978). With respect to cell–matrix interaction, the hy-

drophobic surface of a potential neural ECM scaffold material can significantly de-

crease the attachment of cells (Sakiyama-Elbert et al., 2012). This effect may be

desired for inflammatory cells or reactive astrocytes. But the overall prevention

of cellular adhesion is an unwanted effect, which would negatively influence neural

regeneration.

4 ECM MIMETICS
Recent advances in the design of materials, which imitate the microenvironment of

the ECM, include nanofibrillar networks, artificial ECM networks, and synthetic

polymers (Lutolf and Hubbell, 2005; Sadr et al., 2012; Tian et al., 2012; Tong

and Yang, 2014). Depending on their designated purpose, these scaffold materials

can be designed with different properties, regarding material type, ionic charge, gen-

eral physicochemical properties, incorporated bioactivity (functionalization), addi-

tion of soluble factors, or biodegradability.
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The guided cell growth that is provided by such materials is intended to facilitate

the structural and the functional reorganization and regeneration of dysfunctional tis-

sues. Therapeutic approaches, which make use of matrix- or scaffold-based strate-

gies, can be divided into two general classes (Lutolf and Hubbell, 2005):

1. Cell-based therapies

2. Acellular therapies

Cell-based therapies imply the delivery of cells and may involve the use of bioengi-

neered tissues (biohybrid scaffolds), whereas acellular therapies rather target cells of

the healthy residual tissues in situ, which can be stimulated and directed by the ma-

trix material in their growth or differentiation.

In the field of neurodegeneration, cell transplantation strategies are widely pur-

sued in basic research and therapy development. Although much progress has been

achieved in the respective research fields, to date, it is not possible to fully restore the

functions that have been lost or altered due to CNS trauma or neurodegenerative dis-

eases. The development of scaffold materials, which serve as a matrix for trans-

planted cells, has advanced quite rapidly in the last years. Application of such

ECM materials can promote the differentiation of stem cells into neurons and pro-

mote additional beneficial effects (Li et al., 2014; Ma et al., 2008; Preston and

Sherman, 2011). For cell survival and general cell behavior and function in ECM

scaffold-based cell cultures and cell transplantation approaches, it is vital to incor-

porate additional inducers into otherwise nonbioactive materials (Mammadov et al.,

2013). Ideally, for designing a suitable ECM mimetic, it is of great importance to

consider both the inhibitory environment, which can result from CNS trauma or in-

flammation (Fawcett, 2006; Fawcett and Asher, 1999; Fitch and Silver, 2008; Klapka

and Muller, 2006), and the different cues in the ECM, which significantly influence

the behavior of cells in their surroundings (Chen et al., 2013; Lock et al., 2008; Ulrich

et al., 2009). Such cues can be of different chemical, physical, or biological nature, or

they may be triggered by cellular interactions or soluble factors. The research of the

recent years has brought substantial knowledge regarding these interactions and their

underlying mechanisms (Burdick and Vunjak-Novakovic, 2009; Choi et al., 2010;

Engler et al., 2009; Kim et al., 2012). Therefore, the design of scaffold materials

can—at least in part—be tuned to a specific purpose.

For in vitro experiments, to induce neural differentiation, the addition of soluble

factors such as chemokines or growth factors to the culture medium is a common and

simple approach to mimic one aspect of the interaction of cells with the ECM

(Mammadov et al., 2013). The differing responses to various growth factors (neuro-

trophic factors, e.g., nerve growth factor (NGF), brain-derived neurotrophic factor

(BDNF), and neurotrophin-3 (NT-3)) have been described for many neuronal sub-

populations, and such information is advantageous for culturing the respective cells.

As a strategy to mimic the neural ECM, the supply of soluble factors alone has sev-

eral drawbacks, because it does not take into consideration the three-dimensional

network structure of the native ECM, which is important for cellular migration

and extension. Matrix materials that resemble the native ECM much more closely
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are three-dimensional scaffolding materials that can be modified further, e.g., via

combination with the abovementioned soluble factors. Martino et al. (2011) had

shown that the immobilization of growth factors on artificial scaffolds has a bene-

ficial effect for tissue regeneration.

A general advantage of hydrogel ECMmimetics is their ability to develop in situ.
This feature is especially useful when ECM scaffolds are required to bridge tissue

defects, which are often irregularly shaped (Estrada et al., 2014; Jain et al., 2006;

Sakiyama-Elbert et al., 2012). However, although hydrogels are considered as suit-

able ECM mimetic substrates whose porosity ensures the supply with nutrients,

growth factors, and oxygen to the cell, their porous nature is also disadvantageous.

Variation in stiffness causes changes in the porosity that might impair molecular dif-

fusion in the respective scaffold material. Three-dimensional materials can generally

provide the structural support, which is necessary for cellular interaction and proper

cellular function because it allows the biomolecular cell–matrix interaction.

When designing ECM mimetics, it is important to consider the multiple ECM

functions and the complex interaction between ECM components and cells. Model

ECMs can be naturally derived or they may be synthetic materials, and they can be

biodegradable or nondegradable. Materials from natural sources do have several ad-

vantages because of their inherent properties. Although, due to the generally high

degree of biocompatibility of natural ECM proteins, the application of these mate-

rials appears as a reasonable approach, the results of several recent studies, however,

suggest that such approaches may require additional interventions to lead to the de-

sired effects (Banerjee et al., 2009; Engler et al., 2006; Leipzig and Shoichet, 2009).

ECMmimetics are usually applied in vivo to support multicellular processes, e.g., the

formation and regeneration of tissues. Moreover, functionalization of the respective

material is often desired, e.g., the addition of bioactive groups such as self-

assembling peptides (Maude et al., 2013) or modifications enhancing biodegradabil-

ity (Liu et al., 2012).

Bioengineered ECM scaffolds can be designed for the controlled release of pro-

teins. In diffusion-based delivery systems, the amount of the released compound can

be regulated by physical characteristics, such as the pore size or the degree of poros-

ity, or by the degradation rate of the material (Houweling et al., 1998; Sakiyama-

Elbert et al., 2012). Drug delivery can also be achieved by affinity-based systems

(Taylor et al., 2006), which allow the controlled release of a substance. An additional

possibility is the covalent attachment of the compound to the material (Tian et al.,

2005). In this case, the release will occur solely via the degradation of the scaffold

material. Such manipulation by modulating physicochemical properties or adding

functionalized bioactive groups is a challenge, which is generally more successful

in synthetic materials rather than natural matrices.

Furthermore, purification, immunogenicity, and pathogen transmission are im-

portant issues that must be considered for ECM-based approaches, and regarding

such issues, the design of synthetic materials presents a well-controllable option.

Some of the most common natural and synthetic materials that have recently been

used as ECM mimetics are described below.
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5 BIOMEDICAL NEURAL ECM MIMETICS
5.1 NATURALLY DERIVED ECM MIMETICS
For many in vitro cell culture experiments, two-dimensional assays are still the

method of choice. However, the generally accepted opinion is that three-dimensional

matrices are the preferable ECM model systems because they mimic the physiolog-

ical situation of in vivo tissues more closely (Lutolf and Hubbell, 2005; Mammadov

et al., 2013; Owen and Shoichet, 2010). Examples for ECM models of natural

sources are matrices such as Matrigel™ (a basement membrane preparation derived

frommouse tumor tissue), matrices that consist of individual ECM components, such

as collagen, fibrin, or fibronectin, and fragmented or modified ECM components.

Natural ECMs are gels that consist of fibrous and fibrillary proteins within a hydrated

network of GAG chains. Their structural architecture and their inherent biophysical

properties can have significant effects on cellular functions, e.g., adhesion and mi-

gration. Naturally derived neural ECMmimetics have been used in therapeutic strat-

egies mostly either as cell carriers for tissue grafting or as regeneration-promoting

matrices that are implanted to bridge tissue defects.

5.1.1 Collagen
Collagen plays a dual role for neural growth and regeneration in vivo. It is the most

abundant protein of native ECMs, and its suitability as a growth-promoting scaf-

fold material has been studied extensively. Collagen’s inherent integrin binding

sites are advantageous as they promote the migration and differentiation of neu-

ronal cells (Bradshaw et al., 1995). Modification of collagen scaffolds via the ad-

dition of neurotrophic factors (Han et al., 2009; Houweling et al., 1998), other

pharmacologically active substances (Bolliet et al., 2008), or cells ( Joosten

et al., 2004) has been described to increase axonal regeneration and functional re-

covery after spinal cord trauma. Despite the fact that collagen per se is a suitable

substrate for neuronal growth, it is also important to consider the role of collagen

as the basement membrane constituent of the lesion scar that develops after a trau-

matic CNS injury (Fawcett et al., 2012; Klapka and Muller, 2006). The collagen

matrix of the lesion scar is a sticky matrix to which numerous growth-inhibitory

molecules that are upregulated after injury can adhere to and thereby impede neu-

ronal growth.

5.1.2 HA-Derived Materials
HA is a nonimmunogenic linear GAG that is a constitutive of soft connective tissue

and is involved in wound healing. It has been reported that HA implantation reduces

scar formation in both PNS and CNS (Wang et al., 2012). In this context, its inhib-

itory effect on the activation of astrocytes, CSPG deposition, and infiltration of mac-

rophages/microglia appears to be dependent on its molecular weight (Campo et al.,

2010; Khaing et al., 2011). A disadvantage of HA is that cells do not attach to its

surface (Wang et al., 2012). However, its combination with other scaffold materials

or functionalization with peptide sequences or other bioactive inducers has been
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described to result in suitable mechanical properties for CNS regeneration in vivo
(Wang and Spector, 2009) and promote neuronal differentiation in vitro
(Brannvall et al., 2007).

5.1.3 Alginate
Alginate is a water-soluble anionic polysaccharide distributed widely in the cell

walls of brown algae, where it forms a viscous gum through binding water. Alginate

is a linear copolymer with homopolymeric blocks of (1–4)-linked b-D-mannuronate

(M) and its C-5 epimer a-L-guluronate (G) residues, respectively, covalently linked

together in different sequences or blocks. Alginate is immunologically inert and is

not digested by mammalian cells. As the cross-linking multivalent cations gradually

diffuse out from the gel, it slowly degrades and is excreted in urine. Alginate gels are

frequently used as matrices for encapsulation of living cells and for the release of

proteins (Novikova et al., 2006; Tobias et al., 2001, 2005). In regeneration studies,

alginate gels are often applied as cell carrier substances. Alginate has been described

to enhance neuronal sprouting and to decrease inhibitory cues after CNS trauma

(Kataoka et al., 2004; Prang et al., 2006), but other studies have also reported a lack

of axon growth stimulation mediated by alginate scaffolds (Estrada et al., 2014;

Novikova et al., 2006). In vitro studies have even demonstrated that this biomaterial

can inhibit the growth of dorsal root ganglion neurons and cause alteration of the

phenotype of various different cell types (Novikova et al., 2006). This gel is, how-

ever, a quite suitable matrix for the encapsulation of cells with or even without

further modification of the material.

5.1.4 Agarose
The linear polysaccharide agarose is generally well tolerated after its implantation

(Tashiro et al., 1997). Although its mechanical properties can be modified to mimic

the mechanical properties of its host tissue (Balgude et al., 2001), an agarose ECMmi-

metic alone—when compared with the effectivity of other natural ECM mimetics—

does not suffice to achieve significant degrees of neuronal growth (Lin et al., 2005).

Viamodification of thematerial prior to implantation, the neuronal growth rate through

agarose scaffolds can, however, be increased (Gros et al., 2010; Jain et al., 2006; Lee

et al., 2010; Sakiyama-Elbert et al., 2012; Stokols and Tuszynski, 2006).

5.1.5 Matrigel™

Matrigel™ is a gelatinous ECM protein mixture obtained from the murine Engelbreth–

Holm–Swarm sarcoma. It comprises a mixture of Col4, laminin, and heparan sulfate

proteoglycan admixed with other minor amounts of extracellular components, as well

as growth factors. As a biodegradable implant, Matrigel™ resembles the complex ex-

tracellular environment found in many healthy tissues (Kleinman and Martin, 2005)

and is widely used as a substrate for cell culture, which forms a nonporous hydrogel

at physiological temperature. It has been described as a suitable matrix for tissue gen-

eration (Cassell et al., 2001) and has led to neuronal regeneration of varying degrees

from only limited growth to extensive axonal sprouting in several studies (Iannotti
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et al., 2003; Novikova et al., 2006). Scaffolds of Matrigel™ allow only limited axonal

growth after spinal cord trauma (Estrada et al., 2014; Sakiyama-Elbert et al., 2012;

Someya et al., 2008). This ECM mimetic, however, seems to exert significant bene-

ficial, growth-promoting effects when it is used as a cell carrier medium in cell trans-

plantation studies. In combination with cellular transplants, especially Schwann cells,

Matrigel™ is a widely used biomaterial for neuronal regeneration, where it has been

shown to obtain positive results regarding axonal regeneration after central and periph-

eral nerve injury (Fouad et al., 2005; Novikova et al., 2006; Rodriguez et al., 2000;

Someya et al., 2008; Xu et al., 1995, 1997). In contrast to alginate, Matrigel™ has

not been found to alter the cellular morphology of olfactory ensheathing glia, Schwann

cells, or bone marrow stem cells, and it has been reported to stimulate the growth of

dorsal root ganglia in vitro (Novikova et al., 2006). Despite reported beneficial effects,
the clinical use of Matrigel™ remains questionable because of its tumor-derived origin

and its batch-to-batch variability (Sakiyama-Elbert et al., 2012). Batch variation,

which might significantly influence the effectiveness, is, in fact, a common disadvan-

tage of natural biomaterials when applied as ECM scaffolds (Orive et al., 2006; Owen

and Shoichet, 2010; Wang et al., 2012).

5.1.6 Chitosan
Thebiodegradable and nontoxic chitosan can bemodified to formscaffolds,which con-

tain pores or channels that facilitate neuronal growth (Li et al., 2009). Chitosan is pro-

duced via deacetylation of chitin. Themanipulation of chitosan and the resulting degree

of deacetylation have been reported to influence the adhesion andmigration behavior of

cells on the surfaceof thematrix (Chatelet et al., 2001).However, the growth-promoting

effects of chitosan scaffolds can be further enhanced via the introduction of functiona-

lized groups or combination with growth factors (Chen et al., 2011; Cheng et al., 2007;

Goraltchouk et al., 2006; Nomura et al., 2008; Yu et al., 2007).

5.1.7 Fibrin
The fibrous protein fibrin is involved in the clotting of blood during wound healing.

During this process of tissue repair, fibrin molecules form an ECMmeshwork, which

stimulates cellular proliferation and migration. Two RGD recognition sequences

provide binding sites for integrin receptors, which mediate cell adhesion and can sig-

nificantly influence cellular migration or growth processes (Mosesson, 2005). The

use of fibrin scaffolds is safe, lacking side effects. And manipulation of fibrin to cre-

ate delivery systems that can be used for controlled release of bioactive factors has

been tested extensively and yielded positive effects ( Johnson et al., 2010; Sakiyama-

Elbert et al., 2012; Taylor et al., 2006).

5.1.8 Fibronectin
Fibronectin is a key effector of fibrosis. As a globular plasma protein, it exhibits its

soluble form, and as an ECM protein, it takes on a fibrous insoluble form. Via its

binding to integrins through specific peptide sequences, it is strongly involved

in adhesion-mediated cellular migration (Iannotti et al., 2003). After CNS trauma,
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fibronectin ECM mimetics exert growth-promoting and guiding effects on spinal

axons (King et al., 2003; Phillips et al., 2004). Additionally, the promotion of cellular

infiltration of fibronectin scaffolds with regeneration-supporting glial cells has been

described (King et al., 2006).

5.2 SYNTHETIC ECM MIMETICS
Synthetic scaffold materials are generally developed with the intention to fabricate

matrices with structural characteristics that resemble those of the native ECM.

Although two-dimensional fibrous or fibrillary substrates may result in deviant cel-

lular shapes and behavior, they have proven quite successful in neural tissue engi-

neering approaches where they have been demonstrated to facilitate CNS

regeneration (Lutolf and Hubbell, 2005).

The design of synthetic ECMs offers several advantages: bioengineering technol-

ogies allow the fabrication of fibrillar biomaterials of nanometer-scale dimensions

via polymer processing or supramolecular self-assembly. The typical hydrogel char-

acter of native ECM can be physicochemically mimicked by synthetic hydrogels.

Synthetic hydrogels can often be formed in situ, which makes their application es-

pecially attractive for cell-containing hydrogels, which require gentle experimental

protocols (Lutolf and Hubbell, 2005).

The possibility to incorporate bioactive signaling cues in both fibrillary- and

hydrogel-based neural ECM renders them to be very useful scaffold materials for

tissue regeneration.

Both biodegradable and nondegradable synthetic matrices can be fabricated, and

their application has been investigated extensively.

5.2.1 Polyethylene Glycol
Polyethylene glycol (PEG) is a fusogen agent, which has been demonstrated to reunite

transected cell processes and seal cell membranes after mechanical spinal insult

(Borgens, 2001; Borgens and Bohnert, 2001; Borgens and Shi, 2000; Borgens et al.,

2002).AcutePEGtreatment after spinal cord traumahas alsobeen reported toexert neu-

roprotective effects via the reduction of oxidative stress reactions (Luo and Shi, 2004;

Luoet al., 2004).PEG isawidelyusedmaterial for thedesignofbiodegradable synthetic

cross-linkedhydrogels (Burdick et al., 2006;Conget al., 2009;Gunnet al., 2005;Herten

et al., 2009; Phelps et al., 2010; Qiao et al., 2005; Raeber et al., 2005; Rooney et al.,

2011). PEG has several beneficial features, which are advantageous for soft tissue re-

generation. PEG hydrogels are hydrophilic polymers that generally contain cross-links

that exert high degrees of swelling in aqueous environments such as soft tissues

(Hoffman, 2002; Lee and Mooney, 2001). PEG is biocompatible and PEG hydrogels

are generally not prone to nonspecific cell adhesion or protein adsorption. Such features

provide an ideal basis for the introduction of ECM-derived signals, which can stimulate

the regeneration of tissues and cells (Chung et al., 2008). Although PEG itself is a ma-

terial that cells generally do not attach to (Cong et al., 2009), bioengineered PEGhydro-

gels can also be used as a matrix for the delivery of cells.
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Although the most common approaches using PEG for ECM mimetics involve

the bioengineering of PEG-containing hydrogels, the generally inert, nontoxic,

and nonimmunogenic nature of PEG can also be made use of in a PEG polymer ma-

trix. Beneficial effects of a PEG biopolymer matrix have been described recently. In

the respective study, a solution of pure PEG 600 was applied after resection of spinal

scar tissue in rats with severe chronic spinal cord injury (Estrada et al., 2014). Al-

though PEG polymers per se do not conform to the basic requirement of an ECM

mimetic, which is to provide structural support, they nevertheless promote the for-

mation of a beneficial stable microenvironment in vivo. The PEG application pro-

moted the infiltration with cells, which are beneficial for the regeneration of

tissue in general and axons in particular. At the same time, the degree of reformation

of scar tissue was decreased, which allowed the development of a stable biomatrix at

the site of resection. Revascularization, invasion of astrocytes and Schwann cells,

and the formation of a stable ECM-containing biopolymer were reported. Further-

more, such PEG treatment alone was sufficient to result in the myelination of regen-

erated axons and significant locomotor functional improvements in the treated

animals (Estrada et al., 2014). Since the chemical properties of PEGs with different

molecular weights are nearly identical, the positive treatment effects in the latter

study were attributed to the physical properties of the applied PEG (PEG 600): while

the tested lower-molecular-weight PEG was too fluid to allow the material to remain

at the resection site, the tested PEG of a higher molecular weight even leads to an

encapsulation of the implanted material. Only PEG 600—a PEG with a low

viscosity—promoted the soft tissue regeneration in the treated area that resulted

in the observed cellular invasion and axonal elongation. Such findings argue for

the importance of the appropriate stiffness/viscosity that needs to be considered

for a respective application.

5.2.2 Lactide- and Glycolide-Derived Polyesters
Poly(lactic acid), poly(glycolic acid), and their copolymers poly(lactic-co-glycolic

acid) are widely used biomaterials for tissue engineering strategies. They are bio-

compatible and biodegradable, and their mechanophysical properties (and thus the

rate and timing of degradation) can be modulated to some degree (Sakiyama-

Elbert et al., 2012). However, several studies have reported undesired effects or a

lack of success that might be explained by the rate of degradation and a loss of struc-

tural support (Deumens et al., 2006; Hurtado et al., 2006).

5.2.3 Polycaprolactones
Polycaprolactones are biodegradable polymers, which can be used to fabricate three-

dimensional tubular structures with varying degrees of porosity. Implantation of

combinations of polycaprolactones with other polysaccharide-based hydrogel mate-

rials has been described to reduce inflammation responses after spinal cord injury

(Silva et al., 2010). Poly-e-caprolactone can be used for three-dimensional bioprint-

ing, which makes it a very promising material for novel personalized medical

approaches (Wong et al., 2008).
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5.2.4 Poly(2-hydroxyethyl Methacrylate)
Poly(2-hydroxyethyl methacrylate) is a nontoxic, nonbiodegradable hydrogel. The

material allows the attachment and growth of cells and the transport of small mole-

cules. It can also serve as a guidance substrate for neurons as has been shown for spinal

cord trauma (Hejcl et al., 2008). The nonbiodegradable nature can be considered as

both advantageous and unfavorable: It ensures the maintenance of a stable scaffold

structure over time. At the same time, especially in regard to its clinical application,

the scaffold will remain in the patient’s body after the implantation. As a foreign sub-

stance, it might cause side effects or unpredictable long-term consequences.

5.2.5 NeuroGel™

NeuroGel™ (N-(2-hydroxypropyl)methacrylamide or HPMA) is another nonbiode-

gradable hydrogel that has been described to support cellular infiltration, angiogen-

esis, and axonal growth after CNS trauma (Woerly, 2000; Woerly et al., 2001). The

surface of this scaffold can also be chemically modified via incorporation of bioac-

tive sequences to increase its beneficial effects.

5.2.6 Nanostructured Materials
Nanotechnology offers an enormous potential for the fabrication of nanostructures

(particles and fibers). Via electrospinning, nanofiber scaffolds that can be used

for cell culturing can be fabricated. Electrospun polyurethane scaffolds with high

porosity were previously shown to induce differentiation of hESCs into neurons

(Carlberg et al., 2009). In another study, PC12 cells seeded on NGF encapsulated

electrospun copolymer of e-caprolactone and ethyl ethylene phosphate scaffolds

were observed to exhibit enhanced neurite outgrowth (Chew et al., 2005). Chemical

conjugation to electrospun nanofibers is also effective in inducing neural differenti-

ation. NGF-conjugated aligned electrospun PEG-poly(e-caprolactone) nanofibers

induced transdifferentiation of MSCs into neural cells after 7 days (Cho et al., 2010).

5.2.7 Self-assembling Materials
Self-assembling nanofibers can be tuned in such a way that they form scaffold struc-

tures when injected into neural tissue (Berns et al., 2014). Self-assembling scaffolds

can be functionalized by using peptide sequences from ECM proteins or other neural

differentiation inducers that bind to cell surface receptors. Peptide amphiphiles that

self-assemble into nanofibers have successfully been used for neural differentiation

in vitro and for in vivo bridging of CNS tissue defects in several studies (Mammadov

et al., 2012a,b; Silva et al., 2004; Tysseling et al., 2010; Tysseling-Mattiace et al.,

2008). Self-assembled peptide nanofibers produced from alternating basic, hydro-

phobic, and acidic amino acids (RADA16) have also been shown to enhance neural

cell culture and provide therapeutic effects in several CNS dysfunctions (Ellis-

Behnke et al., 2006; Gelain et al., 2011; Guo et al., 2009; Holmes et al., 2000;

Silva, 2005). Composites of peptides and nanofibers are very promising scaffold ma-

terials for neural growth and regeneration. The incorporation of self-assembling
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nanofibers into other matrices makes them very suitable also for cell transplantation-

based approaches (Romano et al., 2011).

Generally, nerve grafts—the conventional but limited standard to treat neural

defects—have been replaced by the development of novel synthetic scaffolds.

The selected list of biomaterials described here covers only a portion of the numerous

potential ECM mimetic scaffolds. Recent advances in tissue engineering and nano-

technology demonstrate that neural replacement and repair can be achieved to a re-

markable extent. The intensive research regarding development and application of

neural ECM mimetics shows that a major determinant is the regulation of cellular

behavior by mimicking native ECM features. Desired material properties of neural

ECM are mechanical stability, biocompatibility with low or even absence of immu-

nogenicity, controlled biodegradability, and a structure that allows cell migration

(porosity) and vascularization. Current technological and engineering methods allow

highly specialized designs, which most likely will lead to rapid advances in regen-

erative medicine in the future.

6 LOST IN TRANSLATION
The replication of the native neural ECM environment is a major challenge. The quest

for suitable scaffoldmaterials has led to a better understanding of ECM-mediated func-

tions and has encouraged the development and optimization of suitable bioengineering

technologies. The ECMmimetic materials mentioned above only represent a selection

of the multitude of biomaterials, which can be used as neural ECM scaffolds.

A suitable ECM mimetic needs to exert the principal functions of the native ECM:

providing a structural scaffold and mediating cell proliferation, migration, differenti-

ation, survival, regeneration, angiogenesis, and invasion. The orchestration of these

cellular processes requires a functional network of biochemical and structural cues.

An important criterion for the design and application of a biomimetic ECM is

its translational potential. Regarding the translation from in vitro experiments to

the in vivo development of therapies in large animal models and into clinical

applications, it is necessary to prove the effectiveness of a material and its suitabil-

ity for the intended purpose both in vitro and in vivo. Moreover and very impor-

tantly, safety of the material needs to be demonstrated prior to its application

into patients.

Due to the number and complexity of physiological functions, which are medi-

ated by the native ECM, a single formulation cannot meet the requirements for ev-

ery task (Prestwich, 2008), from cell expansion and delivery to providing a stable

scaffold structure and from cell replacement strategies to large-scale repair of tissue

defects and regeneration-promoting therapies. For a translation from in vitro exper-

iments to clinical applications, it is, therefore, important to optimize the design of

ECM mimetic materials with high degrees of flexibility, which would allow the use

of few suitable materials for multiple purposes (Prestwich, 2008).
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