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We study the lot-sizing problem with piecewise concave production costs and concave holding costs. This
problem is a generalization of the lot-sizing problem with quantity discounts, minimum order quantities,

capacities, overloading, subcontracting or a combination of these. We develop a dynamic programming algorithm
to solve this problem and answer an open question in the literature: we show that the problem is polynomially
solvable when the breakpoints of the production cost function are time invariant and the number of breakpoints is
fixed. For the special cases with capacities and subcontracting, the time complexity of our algorithm is as good as
the complexity of algorithms available in the literature. We report the results of a computational experiment where
the dynamic programming is able to solve instances that are hard for a mixed-integer programming solver.
We enhance the mixed-integer programming formulation with valid inequalities based on mixing sets and use a
cut-and-branch algorithm to compute better bounds. We propose a state space reduction–based heuristic algorithm
for large instances and show that the solutions are of good quality by comparing them with the bounds obtained
from the cut-and-branch.
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1. Introduction
Lot-sizing problems arise in production, procurement,
and transportation systems under different cost and
capacity settings. Given a planning horizon, demand,
production (or procurement/shipment), and inventory
holding costs, the aim of the lot-sizing problem is to
propose a minimum cost production plan to satisfy
the demand (see, e.g., the seminal works by Wagner
and Whitin 1958 and Zangwill 1966 and the book by
Pochet and Wolsey 2006). In this paper, we study the
lot-sizing problem in which the inventory holding cost
function is concave and the production cost function is
a piecewise concave function. We call this problem the
“lot-sizing problem with piecewise concave production
costs” and abbreviate it with LS-PC.

Zangwill (1967) studies piecewise concave functions.
A function p is piecewise concave with breakpoints
at b0 < b1 < · · · < bm if p is concave in each of the m
intervals 6bj−11 bj 7 for j = 11 0 0 0 1m. Note that concavity
of p in each of the intervals implies that it is lower
semicontinuous.

Examples of piecewise concave production costs
are depicted in Figures 1 and 2. In Figure 1, the first
two functions represent common quantity discounts
known as incremental discount and all units discount.
Federgruen and Lee (1990) study the lot-sizing problem
with these two types of discounts. They assume that the
production cost function has two pieces and propose
dynamic programming algorithms of complexity O4n35

and O4n25 for the problems with all units discount
and incremental discount, respectively, where n is the
number of periods. Chan et al. (2002) consider the
modified all units discount depicted in Figure 1(c).
They prove that the lot-sizing problem with this cost
structure is NP-hard when either the production cost
functions vary from period to period or the number of
breakpoints is not bounded by a constant. Li et al. (2012)
study the lot-sizing problem with all units discount
and resales under the assumptions that the breakpoints
of the cost function are time invariant, the number of
breakpoints is fixed, and there is no capacity constraint.
They develop an O4nm+35 time algorithm to solve
this problem, where m is the number of breakpoints.
Archetti et al. (2011) present polynomial time algorithms
to solve special cases of the lot-sizing problem with
modified all units discount and incremental discount
when the cost functions are time invariant.

Atamtürk and Hochbaum (2001) study the lot-sizing
problem with subcontracting where the production and
subcontracting costs are concave nondecreasing func-
tions and the inventory holding cost is a linear function.
The overall production cost function is depicted in
Figure 1(d): The first piece of the function corresponds
to regular production and the second piece corresponds
to subcontracting or overloading. The authors develop
an O4n55 time dynamic programming (DP) algorithm
for the case where the regular production capacities
(the breakpoint of the cost function) are the same for
all periods.
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Figure 1 Some Special Cases of Piecewise Concave Functions

The production cost function given in Figure 1(e)
models constraints on minimum production (order)
quantities, as studied by Hellion et al. (2012). In this
setting, if there is a production at a given period,
then the production amount should not be less than a
minimum level b1 and should not exceed the capacity b2.
The authors assume that the production and inventory
holding cost functions are concave and propose a
DP algorithm for this problem. The time complexity
reported in Hellion et al. (2012) was corrected and
reported as O4n65 (Hellion et al. 2013). A special case
of this problem in which production and inventory
holding costs are linear is studied by Okhrin and
Richter (2011). They assume that there is no setup cost
and unit production and inventory holding costs are

constant over the planning horizon. They develop a
polynomial time algorithm to solve this problem.

As seen, piecewise concave functions can be used to
represent discounts, subcontracting, capacity acquisi-
tion, and overloading, as well as minimum quantity
requirements and capacities. In addition, one can repre-
sent any combination of these using piecewise concave
functions. In Figure 2(a), we model a setting with dis-
counts and overloading. The unit cost, c0, up to the first
breakpoint b1 can be viewed as the regular unit purchas-
ing cost. Then a quantity discount applies and the unit
cost becomes c1 < c0 up to the second breakpoint b2,
which is the capacity of the supplier. Thereafter, the
supplier requires use of overtime (or subcontracting) to
fulfill the additional orders, so the unit cost is c2 > c0.
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Figure 2 Examples of Piecewise Concave Functions

Note that the resulting cost function is neither convex
nor concave.

Now consider the case where several suppliers give
offers (possibly with discounts) for a product and
the company purchases its products from at most
one supplier in each period. Then the production
cost is the minimum of the purchasing costs over all
suppliers and is a piecewise concave function if the
cost function of each supplier is concave. An example
is given in Figure 2(b), in which each segment of the
cost function represents a supplier. The second supplier
offers the most attractive price but has a lower bound
for procurement, b1 units, and a capacity of b2 units.
It is more beneficial to buy from the first supplier up
to b1 units and from the third supplier after b2 units.
Accordingly, decisions on the purchasing amounts
in each period will also determine the supplier of
each period. Therefore, this problem can be seen as a
supplier selection and lot-sizing problem.

As the lot-sizing problem with modified all units
discount studied by Chan et al. (2002) is a special case
of LS-PC, LS-PC is NP-hard unless the breakpoints
are time invariant and the number of breakpoints is
bounded above by a constant.

Swoveland (1975) presents characteristics of an opti-
mal solution when inventory holding and production
cost functions are piecewise concave functions. He pro-
poses a pseudopolynomial DP algorithm to solve
this problem. Shaw and Wagelmans (1998) present
an algorithm for the capacitated lot-sizing problem
with piecewise linear production costs (not necessarily
convex or concave) and general inventory holding costs.
Their algorithm is also pseudopolynomial. VanHoesel
and Wagelmans (1996) show that if the production cost
function is piecewise concave and monotone and the
number of pieces is polynomially bounded in the size
of the problem, then there exists a fully polynomial
approximation scheme.

The special cases of LS-PC with cost functions
depicted in Figure 1 are polynomially solvable.

However, to the best of our knowledge, there is no
polynomial time algorithm to solve the problem with
cost functions like those in Figure 2. Indeed, the com-
plexity of the problem is open for the case where the
number of breakpoints is fixed and the breakpoints
are time invariant. Li et al. (2012) showed that the
lot-sizing problem with modified all units cost is poly-
nomially solvable under these assumptions. In this
study, we prove that the more general problem, LS-PC,
can be solved in polynomial time with a DP algorithm.
This algorithm generalizes the algorithm of Florian
and Klein (1971) for the constant capacity lot-sizing
problem, which corresponds to the special case with
one breakpoint. For the special cases with regular
production and subcontracting, minimum production
quantities, and constant capacities, our DP has the
same time complexity as the one of Atamtürk and
Hochbaum (2001) and Hellion et al. (2013), respectively.
We also conduct a computational study to see if the
DP is useful in practice. We derive a mixed-integer
programming (MIP) formulation and solve it with
an off-the-shelf solver. Our results show that the DP
outperforms the MIP approach for some instances
even when we strengthen the formulation with valid
inequalities. For larger instances, we propose a heuristic
method based on state space reduction. Our computa-
tional experiments show that the heuristic provides
good quality solutions in reasonable computation times
when the solver and the exact DP fail.

The rest of the paper is organized as follows. In §2,
we formally define the problem LS-PC and state some
important properties of an optimal solution to the
problem. In §3, we present a polynomial time DP
algorithm for solving the problem when the number
of breakpoints is fixed and the breakpoints are time
invariant; we show that the complexity of the DP is
as good as the complexity of algorithms available in
the literature for some special cases of the problem.
We then report our computational experiments in §4
and propose a state space reduction based heuristic
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algorithm for large instances in §5. Finally, in §6 we
present some concluding remarks.

2. Problem Definition and Properties
of Optimal Solutions

In the lot-sizing problem, we would like to find a
minimum cost production plan over a planning horizon
of n periods. The demand dt , the production cost
function pt , and the inventory holding cost function ht

are given for each period t. Let xt be the amount
produced in period t and st be the stock on hand at the
end of period t. Using these variables, the lot-sizing
problem can be modeled as

min
{ n
∑

t=1

pt4xt5+
n
∑

t=0

ht4st5

}

(1)

s.t. st−1 + xt = dt + st t = 11 0 0 0 1n1 (2)

s0 = 01 (3)

s1 x ≥ 00 (4)

Constraints (2) are inventory balance constraints.
The assumption on the initial inventory being zero is
imposed by constraint (3) and is made without loss
of generality. Constraints (4) are variable restrictions.
The objective function (1) is the sum of production and
inventory holding costs.

In LS-PC, the inventory holding cost function ht4 · 5
is a concave function on 601�5 and pt4 · 5 is a piece-
wise concave function on 601�5 with mt finite break-
points b1

t 1 0 0 0 1 b
mt
t such that b0

t = 0 and bi−1
t < bit for

i = 11 0 0 0 1mt .
As is typically done in the lot-sizing literature (see

Pochet and Wolsey 2006), we will use the concepts
of regeneration intervals and fractional periods to
analyze the structure of optimal solutions. An interval
6j1 l7 with 1 ≤ j ≤ l ≤ n, sj−1 = sl = 0 and st > 0 for
j ≤ t < l is referred to as a regeneration interval, and a
period i whose production level is not equal to any of
the breakpoints of the production cost function, i.e.,
xi ∈ 6b0

i 1�5\8b0
i 1 0 0 0 1 b

mi
i 9 is referred to as a fractional

period. We define b
mi+1
i = � for all i.

If the production cost function is not monotone (see
Figures 1(e) and 2(b)), we may have a positive ending
inventory in all optimal solutions. Therefore, contrary
to the case with the classical lot-sizing problems, we
cannot say that there exists an optimal solution that is
composed of a series of successive regeneration inter-
vals. However, for our problem, there exists an optimal
solution that is composed of a series of regeneration
intervals that cover the interval 611 j − 17 plus an inter-
val 6j1 n7 for some 1 ≤ j ≤ n+ 1. We know the following
properties for these intervals.

Theorem 1 (Swoveland 1975). There exists an opti-
mal solution to the problem LS-PC such that in each
regeneration interval 6j1 l7 there exists at most one fractional
period.

Theorem 1 is a generalization of the “fractional
period property” for the capacitated lot-sizing problem.
Note that if xi > b

mi
i , then period i is a fractional period.

Theorem 2. Suppose that the ending inventory is posi-
tive in all optimal solutions. Then there exists an optimal
solution to the problem in which the last interval 6j1n7
with sj−1 = 0 and st > 0 for j ≤ t ≤ n does not contain any
fractional periods. In other words, there exists an optimal
solution to the problem that is composed of a series of
regeneration intervals that cover the interval 611 j − 17 plus
an interval 6j1n7 for some 1 ≤ j ≤ n with no fractional
period in the last interval 6j1n7.

Proof. Suppose that at all optimal solutions we have
sn > 0. Let 4x1 s5 be an optimal solution with the largest
j value such that sj−1 = 0 and st > 0 for t = j1 0 0 0 1n.
Suppose there exists a fractional period with i ∈ 6j1n7
such that bki < xi < bk+1

i for some k ∈ 801 0 0 0 1mi9. Define
� = min8minn

t=i st1xi − bki 9 and � = bk+1
i − xi if bk+1

i is
finite and �= � otherwise. Clearly, � and � are positive.
Now consider the two solutions 4x11 s15 and 4x21 s25
that are the same as 4x1 s5 except that x1

i = xi − �,
s1
t = st −� for t = i1 0 0 0 1 n, x2

i = xi +�, and s2
t = st +� for

t = i1 0 0 0 1n. Both solutions are feasible. Optimality of
4x1 s5 implies that pi4xi −�5+

∑n
t=i ht4st −�5− pi4xi5−

∑n
t=i ht4st5≥ 0 and pi4xi +�5+

∑n
t=i ht4st +�5− pi4xi5−

∑n
t=i ht4st5≥ 0. Since pi is concave on 6bki 1 b

k+1
i 7 and ht is

concave on 601�5 for each t = i1 0 0 0 1n, we also have
4�/4�+�55pi4xi −�5+ 4�/4�+�55pi4xi +�5≤ pi4xi5 and
4�/4�+�55ht4st −�5+ 4�/4�+�55ht4st +�5≤ ht4st5 for
t = i1 0 0 0 1 n. Therefore, both 4x11 s15 and 4x21 s25 are also
optimal. Either bk+1

i is finite and 4x21 s25 is an optimal
solution where the fractional period i is eliminated or
k =mi and, as 4x1 s5 is an optimal solution with the
largest j value such that sj−1 = 0 (implying that s1

t > 0
for t = i1 0 0 0 1 n), 4x11 s15 is an optimal solution in which
i is not a fractional period anymore. �

Remark 1. If we assume that the inventory hold-
ing cost function, ht , is also piecewise concave with
qt finite breakpoints r1

t 1 0 0 0 1 r
qt
t such that r it < r i+1

t for
i = 11 0 0 0 1 qt −1 and t = 11 0 0 0 1 n, then with small modifi-
cations Theorems 1 and 2 still remain valid. In this case,
an interval 6j1 l7 with 1 ≤ j ≤ l ≤ n is called a regeneration
interval if sj−1 ∈ 8r1

j−11 0 0 0 1 r
qj−1

j−1 9, sl ∈ 8r1
l 1 0 0 0 1 r

ql
l 9, and

st y 8r1
t 1 0 0 0 1 r

qt
t 9 for j ≤ t < l (Swoveland 1975). Theo-

rem 1 still holds true for this definition (Swoveland
1975). However, we need to restate Theorem 2 as the
following:

Suppose that the ending inventory is not at
a breakpoint level of the inventory holding cost;
i.e., sn y 8r1

n1 0 0 0 1 r
qn
n 9, in all optimal solutions. Then

there exists an optimal solution to the problem in
which the last interval 6j1n7 with sj−1 ∈ 8r1

j−11 0 0 0 1 r
qj−1

j−1 9

and st y 8r1
t 1 0 0 0 1 r

qt
t 9 for j ≤ t ≤ n does not contain any

fractional periods.
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From Theorem 1, similar to that done in the classical
lot-sizing problems, we can find the minimum cost
solution for each regeneration interval 6j1 l7 by assuming
that it consists of at most one fractional period. However,
it is not sufficient for finding a minimum cost solution
for the problem, since for the intervals 6j1 n7 we need to
consider the case where it is not a regeneration interval.
In this case, for the intervals 6j1 n7, from Theorem 2, we
can search for a minimum cost solution by assuming that
it does not contain any fractional period. Consequently,
we can find a minimum cost solution for each interval
6j1n7 by comparing the cost when it is a regeneration
interval with the cost when it is not. In the next section,
we develop a DP algorithm for finding an optimal
solution for LS-PC by using these results.

3. Dynamic Programming Algorithm
In this section, we propose a DP algorithm for the
special case where the breakpoints of the production
cost function are time invariant and the number of
breakpoints is fixed; i.e., bit = bi for all t = 11 0 0 0 1n
and i = 01 0 0 0 1m, where mt =m for all t = 11 0 0 0 1 n and
m 4≥ 15 is fixed.

This algorithm is a generalization of the algorithm
given by Florian and Klein (1971) for the constant
capacity lot-sizing problem.

Let ei be a unit vector of size m in which the ith
component is one and the other components are zero
for i = 11 0 0 0 1m and e0 be a zero vector of size m.

3.1. Minimum Cost for an Interval 6j1 l7 with
No Fractional Period

First, we compute the minimum cost for a regeneration
interval 6j1 l7 with 1 ≤ j ≤ l ≤ n− 1 and for an interval
6j1n7 for 1 ≤ j ≤ n when there is no fractional period.
To this end, we define the following function. Let
� ∈�m

+
and t ∈ 8j1 0 0 0 1 l9. If l ≤ n− 1, let Fjl4t1 �5 be the

minimum cost for periods j up to t during which
�i times bi, for i = 11 0 0 0 1m, units are produced, no
fractional production is done, given that sj−1 = sl = 0
and su > 0 for u ∈ 8j1 0 0 0 1min8t1 l− 199. If l = n, then we
define the same function by dropping the requirement
that sl = 0. For j ≤ t, we let djt =

∑t
i=j di.

Note that the amount of production between periods j
and t is equal to

∑m
i=1 �ib

i and the number of periods
in which production takes place is

∑m
i=1 �i. If t < l and

∑m
i=1 �ib

i ≤ djt , then we cannot have st > 0. Also, if t = l
and

∑m
i=1 �ib

i 6= djl, then sl = 0 is not possible. If
∑m

i=1 �i >
t − j + 1, the production schedule is infeasible.

For i = 01 0 0 0 1m, we let

Fjl4j1ei5=



















pj4b
i5+hj4b

i−dj5 if dj <bi and
4j <l or l=n51

pj4b
i5 if dj =bi and j= l1

� otherwise1

and Fjl4j1 �5= � if
∑m

i=1 �i ≥ 2.

Let t ∈ 8j+11 0 0 0 1 l9 and � ∈�m
+

. If we produce bi units
for some i ∈ 801 0 0 0 1m9 in period t, then the minimum
cost for periods j to t − 1 is Fjl4t − 11 � − ei5. Therefore,
we compute Fjl4t1 �5 as

Fjl4t1�5=







































































� if
∑m

i=1�i>t−j+1

or
(

∑m
i=1�ib

i ≤djt and t<l

)

or
(

∑m
i=1�ib

i 6=djl and t= l and l<n

)

or
(

∑m
i=1�ib

i<djl and t= l=n

)

3

min
i=010001m2�≥ei

{

Fjl4t−11�−ei5+pt4b
i5

+ht

(

∑m
i=1�ib

i−djt

)}

otherwise0

We evaluate the recursion for increasing values of t
and all possible values of � . For given t and � , Fjl4t1 �5
can be computed in constant time since we assume that
m is fixed. As �i ≤ n for i= 11 0 0 0 1m, we have O4nm5
possible � vectors. As a result, the function Fjl can be
evaluated in O4nm+15 time for a given interval 6j1 l7.

3.2. Minimum Cost for an Interval 6j1 l7
with a Fractional Period

Next, we compute the minimum cost for a regeneration
interval 6j1 l7 with 1 ≤ j ≤ n when the interval contains a
fractional period. Note that for an interval 6j1 n7 that is
part of an optimal solution, when the interval contains
a fractional period, there exists an optimal solution
with sn = 0. Hence, we only consider regeneration
intervals in this computation.

The minimum cost when a fractional period exists is
computed for two separate cases:

Case a. The fractional production amount is less
than bm.

As we are interested in solutions with one fractional
period, we know that there is no production greater
than bm.

Let � ∈ �m
+

, � ∈ �m−1
+

, and t ∈ 8j1 0 0 0 1 l9. If �i times
bi, for i = 11 0 0 0 1m, units are produced in periods j
up to t − 1 and �i times bi, for i = 11 0 0 0 1m− 1, and
�4djl −

∑m
i=1 �ib

i −
∑m−1

i=1 �ib
i5/bm� times bm units are

produced in periods t + 1 to l, then the production
amount in period t is equal to

�jl4�1�5 = djl −
m
∑

i=1

�ib
i
−

m−1
∑

i=1

�ib
i

−

⌊

djl −
∑m

i=1 �ib
i −
∑m−1

i=1 �ib
i

bm

⌋

bm0

Let Gjl4t1 �1�5 be the minimum cost for periods j
up to t, during which �i times bi units for i = 11 0 0 0 1m,
are produced and a fractional production is done
once, given that �i times bi, for i = 11 0 0 0 1m− 1, and
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�4djl −
∑m

i=1 �ib
i −

∑m−1
i=1 �ib

i5/bm� times bm units are
produced after period t, sj−1 = sl = 0, and su > 0 for
u ∈ 8j1 0 0 0 1min8t1 l− 199.

Let � ∈ �m
+

and � ∈ �m−1
+

. If
∑m

i=1 �i ≥ 1 or djl ≤
∑m−1

i=1 �ib
i or

∑m−1
i=1 �i + �4djl −

∑m−1
i=1 �ib

i5/bm�> l− j or
�jl4e01�5 ∈ 801 b11 0 0 0 1 bm9∪ 4bm1�5, we set Gjl4j1 �1�5=

�. For other values, we compute

Gjl4j1e01�5=































pj4�jl4e01�55 if �jl4e01�5>dj
+hj4�jl4e01�5−dj5 and j <l1

pj4�jl4e01�55 if �jl4e01�5=dj
and j= l1

� otherwise0

Now let t ∈ 8j + 11 0 0 0 1 l9, � ∈ �m
+

, and � ∈ �m−1
+

.
If
∑m

i=1 �i > t − j or
∑m−1

i=1 �i + �4djl −
∑m

i=1 �ib
i −

∑m−1
i=1 �ib

i5/bm� > l − t, then we set Gjl4t1 �1�5 = �.
If
∑m

i=1 �ib
i +�jl4�1�5≤ djt and t < l, then st ≤ 0, and if

∑m
i=1 �ib

i +�jl4�1�5 6= djl and t = l, then sl 6= 0. If djl <
∑m

i=1 �ib
i +
∑m−1

i=1 �ib
i, then sl cannot be zero. Moreover,

we do not want to have �jl4�1�5 ∈ 801 b11 0 0 0 1 bm9 ∪

4bm1�5. Hence, we set Gjl4t1 �1�5= � in these cases.
For the remaining values, we compute

Gjl4t1 �1�5

= ht

( m
∑

i=1

�ib
i
+�jl4�1�5− djt

)

+ min
{

Fjl4t − 11 �5+ pt4�jl4�1�551

min
i=010001m2 �≥ei

8Gjl4t − 11 � − ei1� + ēi5+ pt4b
i59

}

1

where ēi is the restriction of ei to the first m− 1 entries.
Here, we first add the inventory holding cost. If the
fractional production takes place at period t, then the
production cost is pt4�jl4�1�55 and the minimum cost
for periods j to t − 1 is Fjl4t − 11 �5. If we produce
bi units in period t for some i ∈ 801 0 0 0 1m9, then the
production cost is pt4b

i5 and the minimum cost for
periods j to t− 1 is Gjl4t− 11 � − ei1� + ēi5 since the
fractional period is before period t.

For given t, � , and � , Gjl4t1 �1�5 can be computed in
constant time. Hence Gjl can be evaluated in O4n2m5
time.
Case b. The fractional production amount is greater

than bm.
Let � ∈ �m

+
, �̂ ∈ �m

+
, t ∈ 8j1 0 0 0 1 l9, and Ĝjl4t1 �1 �̂5

be the minimum cost for periods j up to t during
which �i times bi units, for i = 11 0 0 0 1m, are produced
and a fractional production �̂jl4�1 �̂5= djl −

∑m
i=1 �ib

i −
∑m

i=1 �̂ib
i > bm is done once, given that �̂i times bi,

for i = 11 0 0 0 1m, units are produced after period t,
sj−1 = sl = 0, and su > 0 for u ∈ 8j1 0 0 0 1min8t1 l − 199.

The function Ĝjl can be computed in a similar way
to Gjl. As the dimension of the vector �̂ is one more
than the one of �, computing Ĝjl requires O4n2m+15
time.

3.3. Time Complexity
Overall, we can find the minimum cost for interval
6j1 l7 as

�jl = min
�∈8010001n9m

8Fjl4l1 �51Gjl4l1 �1 ē051 Ĝjl4l1 �1 e0590

Theorem 3. The LS-PC is polynomially solvable when
the breakpoints of the production cost function are time
invariant and when the number of breakpoints is fixed.

Proof. For an interval 6j1 l7 with 1 ≤ j ≤ l ≤ n, as
evaluating the functions Fjl, Gjl, and Ĝjl take O4nm+15,
O4n2m5, and O4n2m+15 time, respectively, the minimum
cost �jl can be computed in O4n2m+15 time. Once these
costs are computed, we can solve the problem by
solving a shortest path problem, as is done for the
classical lot-sizing problem. Let G= 4V 1A5 be a directed
graph for V = 811 0 0 0 1n+ 19 and A = 84j1 l + 152 1 ≤

j ≤ l ≤ n9. The shortest path problem from node 1
to node n + 1 in the graph G with cost �jl on arc
4j1 l+ 15 with djl > 0 and cost 0 on arc 4j1 l+ 15 with
djl = 0, solves our problem. As �jl can be computed in
O4n2m+15 time and there are O4n25 intervals, we require
O4n2m+35 time to construct the graph. This dominates
the time to compute a shortest path. Therefore, the
overall complexity is O4n2m+35 and is polynomial for
fixed m. �

3.4. Special Cases
Now we discuss some special cases. Suppose that the
production amount in any period cannot exceed a given
capacity C. This can be modeled by setting bm = C
and pt4x5= � for x ∈ 4bm1�5 and t = 11 0 0 0 1n. In this
case Ĝjl = � for all intervals 6j1 l7. Then the overall
complexity of the algorithm decreases to O4n2m+25.
The constant capacity lot-sizing problem is the special
case with m= 1. For this special case our algorithm runs
in O4n45 time and hence has the same time complexity
as the one of Florian and Klein (1971).

Hellion et al. (2012) study the capacitated lot-sizing
problem with concave costs, minimum order quan-
tities (L), and constant capacities (C). To model this
special case, we let pt4x5= � if x ∈ 401L5∪ 4C1�5, so we
assume that m= 2. In this case, again, Ĝjl = � for all
intervals 6j1 l7. Therefore, our DP algorithm can solve
this special case of the problem in O4n65 time, which is
equal to the computational complexity of the algorithm
of Hellion et al. (2013).

Atamtürk and Hochbaum (2001) propose an O4n55
algorithm for the special case where the production
cost function has two pieces: the first piece corresponds
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to regular work and the second piece represents sub-
contracting. As m= 1, our DP algorithm can also solve
this problem in O4n55 time.

If we assume that backordering is allowed, we can
redefine ht4st5 as the cost of holding st units of inventory
during period t if st > 0 and the cost of backordering st
units during period t if st < 0. We assume that ht4 · 5
is a concave function on both 4−�107 and 601�5;
consequently ht4 · 5 is a piecewise concave function
on �. If we change the condition st > 0 to st 6= 0 in
the definition of regeneration intervals, Theorems 1
and 2 still hold true in the case of backlogging. We can
use the DP given in this section to solve the problem
with some small modifications without changing the
computational complexity.

In conclusion, for the cases discussed above, our
algorithm’s performance is as good as the performance
of the algorithms in the literature.

Finally, note that in the case when the inventory
holding cost is a piecewise concave function, it can be
handled similarly if we assume that the breakpoints
of the holding cost function are also time invariant
and the number of breakpoints is fixed; i.e., r it = r i for
all t = 11 0 0 0 1n and i = 11 0 0 0 1 q, where qt = q for all
t = 11 0 0 0 1 n and q4≥ 15 is fixed. According to the redefi-
nition of regeneration interval given in Remark 1, for
each regeneration interval 6j1 l7 now we need to know
the starting and ending inventories, sj−11 sl ∈ 8r11 0 0 0 1 r q9.
Therefore, for each function defined for (regeneration)
interval 6j1 l7 in the DP algorithm, additional initial
(and final) inventory levels should be appended. For
example, Fjl��4t1 �5 will give the minimum cost for peri-
ods j up to t in a regeneration interval 6j1 l7 with initial
inventory sj−1 = r� and final inventory sl = r�, given
that �i times bi, for i = 11 0 0 0 1m, units are produced
and no fractional production is done until period t.
Moreover, for the last interval 6j1 n7 (which may not be
a regeneration interval), as the final inventory level may
not be equal to a breakpoint level, we need to define
F̂j�4t1 �5 as the minimum cost for periods j up to t in
the interval 6j1 n7 with sj−1 = r� and st y 8r11 0 0 0 1 r q9 for
t = j1 0 0 0 1 n, given that �i times bi, for i = 11 0 0 0 1m, units
are produced and no fractional production is done
until period t. Similarly, functions Gjl�� and Ĝjl�� will
give the minimum costs for the regeneration interval
6j1 l7 with initial inventory sj−1 = r� and final inventory
sl = r� when there exists exactly one fractional period.

4. Computational Results
In this section, we examine the computational effi-
ciency of our algorithm. Although our algorithm can
solve the lot-sizing problem with any piecewise con-
cave function, to compare the algorithm’s performance
with an MIP solver, we use piecewise linear produc-
tion cost functions and linear holding costs in our
computational study.

We tested three well-known linearizations of piece-
wise linear functions: multiple choice (MC), incremental
formulations, and convex combination formulations
(see, e.g., Croxton et al. 2003). Our preliminary tests
showed that the multiple choice linearization outper-
formed the other two linearizations. For the capacitated
lot-sizing problem, this linearization is as follows:

4MC5

min
{ n
∑

t=1

m
∑

j=1

4f
j
t y

j
t + c

j
tx

j
t5+

n
∑

t=1

htst

}

(5)

s.t.

st−1 +

m
∑

j=1

x
j
t = dt + st1 t = 11 0 0 0 1n1 (6)

bj−1y
j
t ≤ x

j
t ≤ bjy

j
t1 t = 11 0 0 0 1n1 j = 11 0 0 0 1m1 (7)

m
∑

j=1

y
j
t ≤ 11 t = 11 0 0 0 1n1 (8)

s0 = 01 (9)

s1 x ≥ 01 y binary0 (10)

In this formulation, if the production amount is in
the jth piece of the cost function, then there is a
fixed cost f

j
t and a variable cost c

j
t (see Figure 3).

We assume that the production cost function is lower
semicontinuous. The inventory holding cost function
is a linear function and ht is the cost of holding one
unit of inventory during period t. The variable y

j
t is

equal to one if the production amount in period t
lies in the segment 6bj−11 bj7. Constraints (8) ensure
that at most one of the y

j
t variables is one in period t.

Consequently, constraints (7) guarantee that xj
t should

be in the segment 6bj−11 bj 7 if yj
t = 1, and at most one

of the production variables x
j
t will be nonzero for t.

0 bt
1

f t
j

f t
1

f t
2

ct
2

ct
1

ct
j

bt
2 bt

j – 1 bt
j xt

pt(xt)

……

Figure 3 Production Cost Function for MC
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Table 1 Experimental Factors when m = 2

Experimental settings
No. of

Factors levels 1 2 3 4

Fixed costs
(f 11 f 2) 3 (31000161000) (31000141000) (31000171500)

Variable costs
(c11 c2) 4 (010) (00511) (11005) (111)

Breakpoints
(b11 b2) 3 (800111600) (900111800) (11000121000)

Constraints (6) are inventory balance constraints and
the objective function (5) is the sum of production and
inventory holding costs. By constraints (9), we impose
the requirement that the initial inventory is zero.

We implemented the formulation MC in Xpress 1.22
and the DP in Java (JDK 7) and ran them on a 2.53 GHz
Intel Core 2 Duo machine with a 4 GB memory running
Windows 7. We let the solver run for 1,000 seconds.

In our computational study, we only consider the
capacitated problem and ignore the last piece of the cost
function, since we assume that it has a very large cost.
We first analyze two cost segment instances, i.e., m= 2,
and create randomly generated problems with different
cost parameters, all time invariant, as summarized in
Table 1. Furthermore, for 40 and 50 period cases we
assume that the demand has the same distribution, and
the holding cost is the same such that the inventory
holding cost is 0.05 and the demand is an integer drawn
from a uniform distribution, U640015007. Consequently,
for each case there are 36 randomly generated test
problems. We also generated instances as described in
Hellion et al. (2012). However, we do not report the
results for these instances, as all were solved in less
than one second by a commercial solver for n= 40.

For 20 periods and three cost segment instances, we
consider different cost structures, as summarized in
Table 2. For example, increasing unit costs 4103110511085

Table 2 Experimental Factors when m = 3

Experimental settings

Factors No. of levels 1 2 3 4 5 6 7

(f 11 f 21 f 3) 3 (31000161000191000) (31000151000161500) (31000131500151000)
(b11 b21 b3) 2 (500111000111500) (600111200111800)
(c11 c21 c3) 7 (01010) (10311051108) (10311081105) (10511031108) (10511081103) (10811031105) (10811051103)

Table 3 Experimental Factors when m = 4

Experimental settings

Factors No. of levels 1 2 3 4

f = 4f 11 f 21 f 31 f 45 2 (310001610001910001121000) (310001515001810001101000)
b = 4b11 b21 b31 b45 3 (4501900111350111800) (600111200111800121400) (750111500121250131000)
c = 4c11 c21 c31 c45 4 (006100811001103) (008100611031100) (100100610081103) (103100610081100)

may represent a system with subcontracting, or decreas-
ing unit costs 4108110511035 may represent quantity
discounts. Also, note that unit costs 4105110311085 can
be seen as a combination of these two systems (Fig-
ure 2(a)). We now generate 42 problems randomly,
for which we assume that the inventory holding cost
is 0.05 and the demand is an integer drawn from a
uniform distribution, U650016007.

We also consider instances with 15 periods and
four cost segments. We generate 24 instances where the
inventory holding cost is 0.05 and the demand is an
integer from a uniform distribution, U640015007. Other
experimental settings for these instances are given in
Table 3.

To improve the bounds obtained from the formu-
lation MC, we use the valid inequalities recently
developed by Sanjeevi and Kianfar (2012) for the mul-
timodule lot-sizing problem. These inequalities are
based on mixing set relaxations. We briefly describe
these inequalities in the online supplement (available
as supplemental material at http://dx.doi.org/10.1287/
ijoc.2014.0597).

In Table 4, we present the results for n = 50 and
m= 2. The results for other n and m values are given
in the online supplement. In these tables, we report
the results for the formulation MC, the formulation
MC with valid inequalities (MC-CUTS), and our DP
algorithm. Columns BUB, LPGap, and FGap correspond
to the best upper bound obtained by the solver within
the time limit, the percentage gap between the optimal
value of the LP relaxation and the optimal value of the
integer problem, and the percentage gap between the
best lower and upper bounds attained at the end of the
time limit, respectively. Some instances are solved to
optimality by MC or MC-CUTS; in this case we report
the time spent to solve the formulation in parentheses
in column (Time). Columns OPT and Time under DP
correspond to the optimal value of the problem and
the solution time of the DP algorithm.
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Table 4 Results for n = 50 and m = 2

Instance MC MC-CUTS DP

4f 11 f 25 4c11 c25 4b11 b25 BUB LPGap FGap BUB LPGap FGap (time) OPT Time

1 1 1 87184905 3097 3017 87183103 2077 2069 87172700 719077
2 76162100 1088 0099 76131305 0024 (6) 76131305 677049
3 70105202 3065 2020 70130004 1064 1074 69194309 653019

2 1 99107402 3052 2076 99104409 2040 1026 98195900 744083
2 87171800 1064 0050 87154505 0019 (2) 87154505 689000
3 81129208 3014 1086 81125401 1040 0095 81117509 658082

3 1 100102100 4052 2057 100140101 2073 2039 99199003 741092
2 89102708 3027 0042 89102600 0096 (10) 89102600 696000
3 82174004 4092 1076 82169507 2021 0042 82169501 658040

1 1 110127000 3016 2049 110124506 2021 2004 110119100 720037
2 99126500 1045 0098 98177705 0019 (11) 98177705 685054
3 92147308 2076 1056 921574075 1024 1006 92140709 653036

2 1 1 60159109 7023 4001 60159808 2080 1016 60153706 737028
2 53138600 6043 1088 53134805 1049 (5) 53134805 688072
3 49106708 8038 3002 49103506 2081 (114) 49103506 660097

2 1 82166506 4082 2046 82168400 2031 1031 82160106 735074
2 75149000 3095 0076 75136205 1008 (8) 75136205 682021
3 71102708 5008 1037 70199906 2013 (735) 70199906 648044

3 1 72101406 6039 3061 71199003 2045 (523) 71199003 744003
2 64188508 5072 1094 64186209 1026 (7) 64186209 671057
3 60174809 7047 3005 60169501 2049 (12) 60169501 642007

4 1 83105409 5027 2092 83100106 2004 0077 83100106 737010
2 75185000 4052 1029 75181205 1005 (8) 75181205 674039
3 71151103 5074 1098 71149906 1088 (84) 71149906 650080

3 1 1 87180108 3097 3004 87178106 2068 0059 87172700 727036
2 76144004 1088 0048 76131305 0022 (1) 76131305 676049
3 70102004 3065 2006 70104404 1063 1007 69194308 642060

2 1 98198901 3052 2062 98195900 2037 (24) 98195900 732044
2 87172505 1064 0052 87154505 0019 (2) 87154505 680033
3 81126905 3014 1076 81139101 1040 1007 81117509 636095

3 1 110124700 3016 2041 111102009 2016 1099 110119100 720073
2 98190500 1045 0040 98177705 0017 (2) 98177705 681056
3 92154301 2076 1066 92152901 1023 0084 92140709 639065

4 1 110134100 3016 2046 111186506 2013 2002 110119100 725070
2 98186705 1045 0035 98177705 0017 (2) 98177705 677062
3 92148304 2076 1055 92158808 1023 0094 92140709 645063

We observe that none of the instances are solved
to optimality using MC in 1,000 seconds for 40 and
50 periods and two piece instances and only 11 of
the 42 instances of the 20 periods and three piece
instances are solved to optimality. As expected, the
performance varies from one instance to another: the

Table 5 Summary of the Results

MC MC-CUTS DP

LPGap FGap LPGap FGap Time

4n1m5 Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

(4012) 2007 5008 10074 1012 2094 5006 0078 2031 4002 0000 1043 3090 14409 15402 16205
(5012) 1045 4004 8038 0035 1091 4001 0017 1060 2081 0000 0068 2069 63700 68708 74408
(2013) 2041 4008 6023 0000 1027 3040 1043 2070 3089 0000 1010 3042 14905 16204 17608
(1514) 5041 6088 9026 0000 2076 5060 5001 6039 8041 0000 2009 5002 40003 42005 44604

LPGap between 1% and 10% and the final gap between
0% and 5%. MC-CUTS can solve some instances in
a second, whereas for others the final gap can be as
large as 3%–4%. Clearly, the DP has a stable solution
time. Moreover, the proposed DP can handle all of
these different cost functions and solves the problems
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Table 6 Experimental Factors for the Heuristic Solution Approach
when m = 3

Experimental settingsNo. of
Factors levels 1 2 3

(f 11 f 21 f 3) 2 (31000161000191000) (31000151000161000)
(b11 b21 b3) 2 (800111600121400) (11000121000131000)
(c11 c21 c3) 3 (01010) (110051007) (1100511)

to optimality, whereas the MC formulation in Xpress
may end up with an optimality gap of 3% at the end
of the time limit of 1,000 seconds.

A summary of the results are given in Table 5.
In Table 5, columns named Max, Avg, and Min show
the maximum, average, and minimum values of the
corresponding columns. As can be observed from
Table 5, when n or m increases, as expected, the solution
time of DP gets larger. In contrast, the DP solves all
of the instances in less than 1,000 seconds, whereas
Xpress may end up with positive optimality gaps even
for the strengthened formulation.

We conclude that for the small or medium-sized
instances, the DP outperforms the MIP approach. Fur-
thermore, for solving larger instances of the problem

Table 7 Results of the Heuristic for m = 2

MC-CUTS

Instance 1,000 seconds 2,000 seconds DP-HEUR

n (f 11 f 2) (c11 c2) (b11 b2) BUB Gap BUB Gap � BUB Gap Time

80 1 1 3 112,908.7 2.20 112,908.7 2.19 10 118108008 6048 007
(609) (643) (1,350) 12 112149206 1084 105

14 112148803 1083 302
16 112148803 1083 602
18 112148803 1083 1104
20 112148803 1083 2002
22 112148803 1083 3109

1 4 1 175,495.1 0.36 175,495.1 0.35 10 175137602 0029 007
(931) (931) (1,226) 12 175135103 0028 106

14 175133806 0027 303
16 175133806 0027 606
18 175133806 0027 1206
20 175132308 0026 2100
22 175132308 0026 3405

100 1 1 2 154,876 1.22 154,671.7 1.08 10 157151501 2087 009
(44) (735) (1,313) (1,313) 12 157129705 2074 109

14 157127704 2073 401
16 157125005 2071 802
18 157125005 2071 1506
20 154155801 1002 2607
22 154149801 0098 4401

1 4 1 219,162.7 1.05 218,739.3 0.85 10 220169606 1073 009
(781) (781) (1,641) (1,641) 12 220169402 1073 200

14 220168607 1073 402
16 220168607 1073 804
18 220168607 1073 1506
20 217191807 0048 2702
22 217191205 0048 4602

we can easily modify the DP to get good quality solu-
tions in reasonable computation times, as discussed
below.

5. Heuristic for Solving
Larger Instances

The computational complexity of our DP algorithm
strongly depends on the number of different � , � , and �̂
vectors since we need to evaluate the functions Fjl,
Gjl, and Ĝjl for all possible � , �, and �̂ vectors. As
there are O4nm5 possible � , �̂, and O4nm−15 � vectors,
for larger n and m it may not be a good choice to use
the DP directly. Moreover, as Xpress could not solve
some medium-sized instances in our experiments, we
expect its performance to get worse for larger instances.

To get a good solution for larger instances in a
reasonable time, we develop a heuristic method based
on our DP algorithm. We heuristically restrict the
length of any regeneration interval (and also the final
interval, which may not be a regeneration interval) of
a solution. Let � (1 ≤ � ≤ n) be a given upper bound on
the length of any regeneration interval. We consider the
interval 6j1 l7, 1 ≤ j ≤ l ≤ n and find the minimum cost
�jl if l− j + 1 ≤ �. Consequently, we reduce the number
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of intervals to be considered to O4�n5. Moreover, for
a given interval 6j1 l7 the number of possible � , �,
and �̂ vectors becomes O4�m5, O4�m−15, and O4�m5,
respectively. Therefore, with this restriction we reduce
the state space and, consequently, the time complexity
of the DP.

Note that when � = n, the restriction becomes redun-
dant and the heuristic is the same as the exact DP.
If � = 1, then the (trivial) solution is to produce in
every period as much as the demand of that period.
Moreover, if we know the maximum regeneration
interval length in an optimal solution, say �∗, then we

Table 8 Results of the Heuristic for m = 3

MC-CUTS

Instance 1,000 seconds 2,000 seconds DP-HEUR

n (f 11 f 21 f 3) (c11 c21 c3) (b11 b21 b3) BUB Gap BUB Gap � BUB Gap Time

50 1 1 2 70,146 2.33 70,146 2.31 10 72174201 5081 806
(355) (971) (1,742) 12 69194801 2005 2703

14 69194309 2004 7308
16 69194309 2004 17505
18 69194309 2004 37906
20 69194309 2004 76301
22 69194309 2004 1144801

2 3 1 83,142.8 1.73 83,126.2 1.68 10 83143303 2007 807
(310) (885) (1,495) (1,737) 12 83143303 2007 2706

14 83143008 2007 7500
16 83104103 1061 17909
18 83104103 1061 39403
20 83104103 1061 80602
22 83104103 1061 1150707

80 1 1 2 105,500 1.12 105,472.8 1.06 10 110178009 5083 1402
(253) (903) (1,475) (1,779) 12 108116907 3056 4601

14 105143206 1006 12408
16 105143206 1006 30602
18 105142905 1005 67600
20 105142905 1005 1139607
22 105142905 1005 2170008

2 2 2 112,939.7 2.67 112,939.7 2.66 10 118108008 6090 1400
(670) (903) (1,032) 12 112149206 2028 4806

14 112148803 2027 12406
16 112148803 2027 30704
18 112148803 2027 68202
20 112148803 2027 1140204
22 112148803 2027 2172904

100 1 1 1 173,543.3 1.43 173,543.3 1.42 10 175148506 2052 1903
(424) (424) (1,620) 12 175148302 2052 5906

14 175147507 2051 16507
16 175147507 2051 41400
18 175147507 2051 91809
20 172170707 0095 1191509
22 172170105 0095 3175909

2 2 2 131,319.6 0.93 131,319.6 0.91 10 137183409 5061 1706
(442) (892) (1,595) 12 135144309 3095 5801

14 132140103 1074 16004
16 132140103 1074 39400
18 131127501 0090 88304
20 131123407 0087 1182702
22 131123407 0087 3157509

can set � = �∗ and obtain an optimal solution to the
problem with the heuristic. The performance of this
heuristic depends on �; we may obtain a better quality
solution with larger � but in longer computation time.

To test this solution method, we consider different
� values and compare the total cost of the solution
obtained by this method with the lower bound obtained
from MC-CUTS. We use larger instances that are created
the same way as the instances used in the previous sec-
tion. We have selected a representative set of instances
to test the solution quality of the proposed heuristic.
The experimental factors are listed in Table 6. For all
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instances, we assume that the inventory holding cost
is 0.05 and the demand is an integer drawn from a
uniform distribution, U640015007, for all periods.

Tables 7 and 8 summarize the results of this experi-
ment for m= 2 and m= 3, respectively. Columns under
MC-CUTS represent the results for the formulation
MC with valid inequalities, and the columns under
DP-HEUR represent the results of our heuristic method.
For each instance, we consider different � values to
see the trade-off between the solution quality and
the solution time, and we indicate the rows with the
minimum optimality gap in bold. With MC-CUTS, we
let Xpress run 1,000 and 2,000 seconds and calculate
the gap of the heuristic solution using the best lower
bound obtained in 1,000 seconds. We also report the
CPU times at which the best upper bound and the best
optimality gap are attained, in parentheses under their
corresponding values.

As can be seen from Tables 7 and 8, letting Xpress
run for an additional 1,000 seconds results in very little
improvement in the final gaps. When the cost function
has two pieces (Table 7), in all of the test instances, the
heuristic finds better solutions than MC-CUTS in less
than 50 seconds. Moreover, as can be seen in the table,
when � increases, the computation time increases (as
expected) but the increase is not very fast. Therefore,
the user can select a higher � value and may obtain
better solutions in reasonable computation times.

In Table 8, we report the results for the instances
with three pieces. For 50 and 80 periods, the heuristic
finds better solutions than MC-CUTS in very short com-
putation times. For 100 periods, we again find better
solutions using the heuristic algorithm but the com-
putation time of the algorithm is about 2,000 seconds.
Note that for the second instance of 100 periods, the
solution found for � = 18 (in less than 1,000 seconds) is
also a better solution than that of MC-CUTS. Moreover,
we believe that by letting Xpress run for more than
2,000 seconds we can only obtain slightly better opti-
mality gaps. Thus, when m= 3, the heuristic algorithm
still reports better solutions than the MIP approach
in less computation time. Furthermore, according to
Tables 7 and 8, similar to the exact DP, for given n, m,
and � values, the computation time of the heuristic
algorithm is stable.

6. Conclusion
In this paper, we studied the LS-PC. A piecewise
concave function can represent economies of scale,
discounts, subcontracting, overloading, minimum order
quantities, and capacities. The computational com-
plexity of this problem was an open question in the
literature. We developed a DP algorithm and showed
that the problem is polynomially solvable when the
number of breakpoints of the production cost function

are fixed and time invariant. The algorithm performs
well for small and medium-sized instances and can
easily be modified to be used as a heuristic for larger
instances.

As expected, it can be observed from our computa-
tional study, that when m increases the solution time of
the DP increases rapidly. For example, when m= 5, the
solution time of the (exact) DP is about 100 seconds
for n= 4, 350 seconds for n= 6, and 1,000 seconds for
n= 8. Therefore, a different approach is required to
solve problems with more breakpoints.

It may also be interesting to consider the problem
when one of the pieces of the production cost function is
convex (but not linear), which means that the function is
not piecewise concave. A convex function can indicate
increasing marginal costs; therefore, the convex part
of this function may represent overloading or cost of
extra use of a resource.
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