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Abstract In this article, a novel algorithm for denoising
images corrupted by impulsive noise is presented. Impulsive
noise generates pixels whose gray level values are not con-
sistent with the neighboring pixels. The proposed denoising
algorithm is a two-step procedure. In the first step, image
denoising is formulated as a convex optimization problem,
whose constraints are defined as limitations on local varia-
tions between neighboring pixels. We use Projections onto
the Epigraph Set of the TV function (PES-TV) to solve this
problem. Unlike other approaches in the literature, the PES-
TV method does not require any prior information about the
noise variance. It is only capable of utilizing local relations
among pixels and does not fully take advantage of correla-
tions between spatially distant areas of an image with similar
appearance. In the second step, a Wiener filtering approach
is cascaded to the PES-TV-based method to take advantage
of global correlations in an image. In this step, the image is
first divided into blocks and those with similar content are
jointly denoised using a 3DWiener filter. The denoising per-
formance of the proposed two-step method was compared
against three state-of-the-art denoising methods under vari-
ous impulsive noise models.
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1 Introduction

In this article, a two-step algorithm for denoising images that
are corrupted by impulsive noise is presented. In the first step,
local variations among neighboring pixel values are mini-
mized in order to remove the impulsive components of the
observed image. The first step does not fully take advantage
of the correlation between distant areas of an image with
similar appearance, e.g., blue sky region covering all the top
portions of an image, cheek of a facial image and even tex-
tural regions of a shirt. In the second stage of the denoising
method, similar image blocks are determined using a block
matching algorithm and they are denoised using Wiener fil-
tering as in [1].

The first step of the proposed algorithm is based on pro-
jections onto the epigraph set of the total variation function
(PES-TV) [2–4]. In the PES-TV approach, the denoising
operation is formulated as an orthogonal projection prob-
lem in which the input image is projected onto the epigraph
set of the total variation (TV) function.

Dabov et al. [1] proposed block matching 3D filtering
(BM3D) denoising method that can utilize the correlation
between similar areas of the image by jointly denoising them
together.BM3Dseems to be the best image denoisingmethod
for images corrupted by Gaussian noise [1,5–23]. BM3D
is also a two-stage algorithm. However, the first stage of
BM3D requires an estimate of the noise variance beforehand
to determine the hard thresholding level used in the first stage,
which fails to produce a good estimate of the image under
impulsive noise. As a result, the second stage of the BM3D
does not produce a reliable denoised image when the noise is
impulsive. On the other hand, the PES-TV denoising method
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does not need an accurate estimate of the noise variance in
the first step. It does not require any parameter adjustment
either. When we combine the second part of BM3D with
the PES-TV approach, we get better results than ordinary
BM3D approach for images corrupted by impulsive noise.
An approximate estimation of the noise variance is enough
for the second stage of the PES-TV-based method.

The article is organized as follows. In Sect. 2, the PES-TV
framework, is presented. In Sect. 3, block matching and col-
laborative filtering part of the denoising method is described.
Simulation results are presented in Sect. 4.

2 Denoising using projections onto epigraph sets of
the TV function (PES-TV)

Let the original image be v, and the noisy image be v0. Sup-
pose that the observation model is the additive noise model:

v0 = v + η, (1)

where η is the additive noise. We define the TV function for
a discrete image w = [wi, j ] 0 ≤ i, j ≤ M − 1 ∈ R

M×M =
R

N as follows:

TV(w) =
∑

i, j

|wi+1, j − wi, j | +
∑

i, j

|wi, j+1 − wi, j |. (2)

It can be shown that the TV function TV : RN → R is a
convex cost function [2,3,8,16]. We define the epigraph set
of the TV in R

N+1 as follows:

CTV =
{
w = [wT y]T : y ≥ TV(w)

}
, (3)

which is the set of N + 1-dimensional vectors, whose (N +
1)st component y is greater than TV(w). We use bold face
letters for N -dimensional vectors and underlined bold face
letters for N+1-dimensional vectors, respectively. A graphi-
cal description of the epigraph concept is illustrated in Fig. 1.

The first step of our denoising algorithm consists of mak-
ing an orthogonal projection onto CTV. Let v0 = [v 0]T be
an arbitrary vector inRN+1. The projectionw∗ is determined
by minimizing the distance between v0 and CTV, i.e.,

w∗ = arg min
w∈CTV

‖v0 − w‖2. (4)

In this approach, v0 is projected onto the CTV. This means
that we select the nearest vector w� on the set CTV to v0 as
illustrated in Fig. 1. Eq. (4) is equivalent to:

Fig. 1 Graphical representation of the minimization operation in (5)
and (6). The corrupted observation vector v0 is projected onto the set
CTV

w� =
[

w�

TV(w�)

]
= arg min

w∈CTV

∥∥∥∥

[
v0
0

]
−

[
w

TV(w)

]∥∥∥∥
2

, (5)

where w� = [w�T ,TV(w�)]T is the projection of [v0 0]T
onto the epigraph set. The projection w� must be on the
boundary of the epigraph set. Therefore, the projection must
be of the form [w�T ,TV(w�)]. Eq. (5) becomes:

w� =
[

w�

TV(w�)

]
= arg min

w∈CTV

(
‖v0 − w‖2 + TV(w)2

)
.

(6)

Solution of (6) using projections onto boundary and tangen-
tial hyperplanes are described in [24].

It is also possible to use φ(w) = λTV(w) as the convex
cost function and Eq. (5) becomes:

[
w�

TV(w�)

]
= arg min

w∈CTV
‖v0 − w‖2 + λ2TV(w)2. (7)

In current TV-based denoisingmethods [16,17] the following
cost function is used:

f (w) = ‖v0 − w‖2 + λTV(w). (8)

In our case, the regularization term is the square of the TV
function as shown in (6). Since the noise is impulsive, the
contribution of the regularization function (TV) should be
higher than usual. The first term in (6) and (8) consists of
components |vi −wi |, which are comparable to |wi −wi−1|
terms forming the TV function. The �2-norm dominates the
TV function in ordinary LASSO cost function. However, in
(6) and (7) the square of TV(w) increases the effect of the
regularization term. It also leads to an efficient computational
solution in [24].
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Fig. 2 Graphical representation
of the proposed two-stage
denoising process

PES-TV

Noise variance 
es�ma�on

B

Block-matching

B
3D transfom

Wiener filtering

Inverse 3D 
transform

Noisy 
image

Denoised 
image

Step 1 Step 2

Finding the right regularization parameter is amajor prob-
lem in LASSO. Unlike LASSO approach [25], where the
selection of the λ parameters is determined in an ad hocman-
ner or inspection, in the proposed PES-TV-based denoising
algorithm, it is experimentally observed that λ = 1 works
well [26]. We tried various λ values between 0.2 and 2, and
λ = 1 produced the best results. The PES-TV software is
available in [26].

3 Block matching and collaborative filtering

The second step of the proposed denoising method is the
three dimensional (3D) approach introduced by Dabov et al.
[1]. The output of the PES-TV-based denoising step is fed
into the “3D” block matching (BM) step of BM3D.

In natural images, spatially distant areas/blocks are corre-
lated with each other. However, most denoising algorithms
do not exploit this fact and only consider local pixel varia-
tions in an image. Dabov et al. introduced block matching
and collaborative Wiener filtering concepts in a denoising
framework to take advantage of similarities between spatially
distant blocks in an image. They first group similar looking
regions in an image by block matching. Then, they denoise
all those regions together using a 3D approach called col-
laborative Wiener filtering. We borrow this procedure from
[1], and use it as the second step of our denoising scheme as
shown in Fig. 2. In this section, we briefly review the BM3D
denoising method.

3.1 Block matching

First the PES-TV denoised image is divided into non-
overlapping regions of fixed size called reference blocks
(BR). Then, each reference block is compared against candi-
date blocks of similar appearance (BC) using the following
equation:

d(BR,BC) = ‖BR − BC‖2
N

, (9)

where N = M2 is the number of pixels in each block. Blocks
satisfying the similarity condition are grouped together to
construct 3D arrays of similar blocks (SB). Blocks satisfying

condition of the set GSBR are grouped together to construct
3D arrays of similar blocks, as follows:

GSBR = {c ∈ w� : d(BR,BC) ≤ τth} (10)

where c represents the coordinate of blocks in the recon-
structed image obtained by the PES-TV step, and τth is the
maximum distance whose similarity of blocks is determined
according to this threshold. The distance threshold τth is
determined according to deterministic speculations based on
the denoised image in the first step [1]. Each set GSBR is an
N × NGSB 3D array of similar blocks, where NGSBR

is the
number of blocks in the set GSBR .

3.2 Collaborative filtering

The 3D arrays obtained by block matching have both spa-
tial and “temporal” similarity. Therefore, the noise can be
efficiently removed by the collaborative 3D Wiener filter-
ing. Wiener shrinkage coefficients for the set of blocks are
determined from the 3D transform coefficient as follows:

WGSBR
=

∣∣∣T
(
GBE

SBR

)∣∣∣
2

∣∣∣T
(
GBE

SBR

)∣∣∣
2 + σ 2

, (11)

where GBE
SBR

is the 3D array for similar blocks from basic
estimate (BE), which is the output of the PES-TV step, T (.)

is the transformation operator, |T (GBE
SB)|2 is the power spec-

trum of the basic estimate image and σ 2 is the variance of
the noise which is estimated using the difference between the
noisy image and the denoised image obtained from PES-TV
step. After obtaining the coefficients, the collaborative filter-
ing is realized by elementwise multiplication of WGSBR

by
the 3D arrays of noisy image GSBR , as follows:

w�
rec = T−1

(
WGSBR

T (GSBR )
)

. (12)

where w�
rec is the reconstructed 3D array, and T−1(.) is

the inverse transformation operator. After filtering the 3D
array, inverse transform and aggregation operation [1] is per-
formed to get the final denoised image. The overall process
is explained graphically in Fig. 2.
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4 Simulation results and conclusions

In this section, simulation examples are presented. The basic
estimate, which is obtained in the first step, affects the
main denoising process in Wiener filtering step. In BM3D
approach, first step requires the knowledge of the variance of
the noise; however, for images corrupted by impulsive noise

Table 1 Comparison of the SNR results for denoising algorithms for
ε-contaminated Gaussian noise for “Note” image

ε σ1 σ2 SNRInput PES-TV Chambolle BM3D

0.1 5 30 14.64 29.67 22.26 24.43

0.1 5 40 12.55 27.84 20.32 20.75

0.1 5 50 10.75 25.84 18.63 17.59

0.1 5 60 9.29 24.12 17.37 15.09

0.1 5 70 7.98 22.52 16.24 13.14

0.1 5 80 6.89 21.03 14.97 11.60

0.1 10 30 12.56 25.98 21.71 25.73

0.1 10 40 11.13 24.74 19.97 23.83

0.1 10 50 9.85 23.24 18.46 21.56

0.1 10 60 8.58 22.07 17.10 19.11

0.1 10 70 7.52 20.49 16.03 16.71

0.1 10 80 6.46 18.84 15.12 14.87

0.05 5 30 16.75 28.60 23.78 26.93

0.05 5 40 14.98 26.04 21.54 23.10

0.05 5 50 13.41 23.91 19.91 19.98

0.05 5 60 12.10 21.63 18.63 17.60

0.05 5 70 10.80 19.50 17.50 15.87

0.05 5 80 9.76 17.23 16.38 14.38

0.05 10 30 13.68 26.90 22.62 26.70

0.05 10 40 12.66 25.68 21.12 25.46

0.05 10 50 11.71 24.72 19.60 23.73

0.05 10 60 10.72 23.62 18.30 21.43

0.05 10 70 9.82 21.77 17.22 19.33

0.05 10 80 8.92 20.29 16.45 17.25

the exact variance is unknown. Therefore, this step fails to
generate an appropriate basic estimate for second step. Using
the PES-TV approach [3], we solve this problem.

The impulsive noise changes the pixel values in the image
as follows:

vi, j0 =
{
vi, j , if x < l

imin + y(imax − imin), if x > l
(13)

where vi, j is the (i, j)th pixel in the original image, x, y ∈
[0, 1] are two uniformly distributed randomvariables, l is the
parameter controlling how much of the image is corrupted,
and imax and imin are the severity of the noise [27]. The salt
and pepper noise and the ε-contaminated Gaussian noise are
two types of impulsive noises. The ε-contaminated Gaussian
noise is widely used to represent impulsive noise [18,28].
The PDF of ε-contaminated Gaussian noise is given by:

vi, j0 = vi, j +
{

η
i, j
1 , with probability 1 − ε

η
i, j
2 , with probability ε

(14)

whereη1 andη2 are independentGaussian noise sourceswith
variances σ 2

1 and σ 2
2 , respectively. We assume that σ1 � σ2,

and ε is a small positive number [21]. The reconstruction per-
formance is measured using the signal-to-noise ratio (SNR)
and peak-SNR (PSNR) criterions, which are defined as fol-
lows:

SNR = 20 × log10

( ‖worig‖
‖worig − wrec‖

)
, (15)

PSNR = 20 × log10

(
max(worig)

‖worig − wrec‖/N
)

, (16)

where worig is the original signal, wrec is the reconstructed
signal and N is the total number of pixels in image.

Denoising results for “Note” [3] image with
ε-contaminated noise are summarized in Table 1. In this toy

Table 2 PSNR Results for
denoising images corrupted with
ε-contaminated noise with
ε = 0.1, σ1 = 5, with different
σ2’s using PES-TV algorithm

Images σ2 = 30 σ2 = 40 σ2 = 50 σ2 = 60 σ2 = 70 σ2 = 80

House 36.87 34.39 31.87 29.74 28.00 26.53

Lena 34.55 32.85 31.40 29.97 28.55 27.27

Mandrill 28.31 27.86 27.36 26.76 25.33 24.59

Living room 31.61 30.94 29.57 28.41 27.46 26.38

Lake 32.03 31.29 29.71 28.64 27.57 26.58

Jet plane 34.56 32.75 31.20 29.85 28.32 27.05

Peppers 34.64 33.39 32.02 30.56 29.22 27.87

Pirate 31.46 30.80 29.60 28.50 27.49 26.53

Cameraman 35.29 33.45 31.45 29.74 28.14 26.65

Flower 31.17 31.03 29.85 28.78 27.69 26.88

Kodak (ave.) 32.85 31.19 29.88 28.65 27.51 26.48

Average 32.91 31.39 30.03 28.78 27.59 26.53
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Table 3 PSNR Results for
denoising images corrupted with
ε-contaminated noise with
ε = 0.1, σ1 = 5, with different
σ2’s using BM3D algorithm

Images σ2 = 30 σ2 = 40 σ2 = 50 σ2 = 60 σ2 = 70 σ2 = 80

House 34.65 30.40 27.59 25.34 23.69 22.40

Lena 33.53 30.13 27.28 25.13 23.55 22.29

Mandrill 31.48 28.88 26.66 24.89 23.36 22.27

Living room 33.06 30.14 27.64 25.56 23.90 22.49

Lake 33.70 30.36 27.63 25.42 23.75 22.46

Jet plane 33.50 30.28 27.67 25.47 24.02 22.68

Peppers 33.66 30.50 27.62 25.48 23.86 22.46

Pirate 32.58 29.74 27.67 25.20 23.69 22.45

Cameraman 33.99 30.32 27.39 25.29 23.69 22.40

Flower 32.72 30.27 27.91 25.76 24.07 22.76

Kodak (ave.) 32.11 30.53 28.10 26.05 24.37 23.04

Average 32.46 30.40 27.93 25.85 24.19 22.87

example, the PES-TV approach produces the best results.
The denoising results for a set of 34 images including 10
well-known test images from image processing literature and
24 images from Kodak Database [29], which are corrupted
by ε-contaminated noise with σ1 = 5 and ε = 0.1, and
σ2 ∈ [30, 80] are presented in Tables 2 and 3 for PES-TV
and BM3D algorithms, respectively. In this case, the noise is
the combination of two Gaussian noises with different vari-
ances; therefore, it cannot be exactly modeled as a noise with
a single variance parameter. ThePES-TValgorithmperforms
better and produces higher PSNR values compared to all
other denoising results obtained using [1,16,19], because it
does not require knowledge of variance of the noise. We also
present an additional illustrative example in Fig. 3. In this
figure the “peppers” image is corrupted with ε-contaminated
Gaussian noise and the denoising results for PES-TV and
BM3D methods are presented. The BM3D fails to clear the
impulsive noise.

In another set of experiments, images that are corrupted by
amixture of salt and pepper andGaussian noises are denoised
using the PES-TV denoising method and also with BM3D
and BM3D with median filtering (BM3DM) for comparison
purposes. The salt and pepper impulsive noise model is as
follows:

vi, j0 =

⎧
⎪⎨

⎪⎩

smin, with probability p

smax, with probability q

vi, j , with probability 1 − p − q

(17)

where vi, j is the gray level pixel value of the original image,
[smin, smax] are the dynamic range of the original image,
smin ≤ vi, j ≤ smax for all (i, j) values, v

i, j
0 is the gray level

pixel value of the noisy image and r = p + q defines the
noise level [30].

The density of the salt and pepper noise is set to 0.02 and
0.05 and Gaussian noise is added with different variances.

Fig. 3 a A portion of original “Peppers” image, b image corrupted by
ε-contaminated noise with ε = 0.1, σ1 = 5, and σ2 = 50, c denoised
image, using PES-TV algorithm; PSNR = 32.02dB, and d denoised
image, using BM3D; PSNR = 27.62dB. Standard BM3D algorithm
fails to clear impulsive noise

Results for this set of experiments are shown in Tables 4 and
5, respectively. In almost all cases, the PSNR values for PES-
TV algorithm are higher than other algorithms. In Tables 4
and 5, the third column refers to median filtering followed by
second stage (3D Wiener filtering) of the BM3D algorithm
(BM3DM ).

An illustrative comparison of the PES-TV vs. BM3D and
BM3DM is presented in Fig. 4 for “Lena” image. In this
example, the PES-TVdenoisingmethod performs better than
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Fig. 4 a A portion of original “Lena” image, b image corrupted by
salt and pepper noise with density 0.05, and additive white Gaussian
noise with standard deviation σ = 20, c denoised image, using PES-
TV algorithm; PSNR = 32.57dB, d denoised image, using BM3D;
PSNR = 28.95dB, and e denoised image, using BM3D-Median; PSNR
= 30.10dB

the other two denoising methods both visually and in the
sense of PSNR. For example in Fig. 4d the artifacts produced
by salt and pepper noise are not removed properly by BM3D
algorithm and the denoised image by BM3DM in Fig. 4e has
also some artifacts. This issue is solved by PES-TV denois-
ing method in Fig. 4c. This is also apparent in a fluorescence
microscopic image in Fig. 5. In this figure, the example fluo-
rescence microscopic image is corrupted by salt and pepper

Fig. 5 a Fluorescence microscopic image, b image corrupted by salt
and pepper noise with density 0.05, and additive white Gaussian noise
with standard deviation σ = 30, c denoised image, using PES-TV algo-
rithm; PSNR = 32.98 dB, d denoised image, using BM3D; PSNR =
28.61 dB, and e denoised image, using BM3D-Median; PSNR = 29.35
dB

noise with density 0.05, and additive white Gaussian noise
with standard deviation σ = 30 and denoised using the PES-
TV, BM3D and BM3DM denoising methods. Both visually
and in the sense of PSNR values, PES-TV performs better
compared to other two denoising methods.

In [20], the proximity operator-based denoising results
for the Cameraman and Lena images are reported for various
regularization parameter λ values for Gaussian noise with
σ = 15 and 25 standard deviation levels. Best PSNR values
for Lena image for σ = 15 (σ = 25) is 32.33dB (30.13dB),
when the regularization parameter λ = 0.09 (λ = 0.05). We
obtain PSNR values equal to 32.43 and 30.12dB, respec-
tively, without any regularization parameter adjustment. For
Cameraman our results are much better with PSNR = 33.10
and 30.60dB compared to 30.39 and 27.77dB with λ = 0.1
and λ = 0.07 for σ = 15 and 25, respectively.

The first step of the BM3D approach relies on hard
thresholding, which cannot remove isolated large amplitude
impulsive noise components. On the other hand, the PES-
TV approach successfully reduces the impulsive noise and
produces better estimate for the second step of the BM3D
denoising method. It is experimentally observed that the
proposed scheme on images corrupted by impulsive noise
results in much better denoising performance compared to
both Chambolle’s method and standard BM3D denoising.
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5 Conclusion

In this article, a novel algorithm for denoising images cor-
rupted by impulsive noise is presented. This algorithm is a
two-step algorithm, which in the first step the PES-TV-based
denoising algorithm produces basic denoised estimate for
the second step. Using this basic estimate, the second stage
groups the similar blocks of the noisy image and denoise
these 3D arrays of the similar blocks using collaborative 3D
Wiener filtering. The PES-TV algorithm does not require the
knowledge of the noise variance to denoise the image, then
produces better basic estimate for Wiener filtering step in
comparison with standard BM3D algorithm. Experimental
results indicate that higher SNR and PSNR, and better visual
results are obtained using the proposed denoising method
compared to other algorithms.
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