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Abstract: We consider a certain T period aggregate production planning model, where the two sources of 
production are regular and overtime. The model allows for time varying production, holding and 
backordering costs and includes bounds on inventory and backorders. We show that the problem has a 
rather interesting network structure and exploit this structure to develop a greedy algorithm to solve the 
problem. The procedure is easy to implement and has a computational complexity of O(T2

). We report 
computational experience with the greedy procedure and demonstrate its superiority to a well known 
network simplex code, GNET, implemented on the classical network formulation of the problem. 
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Introduction 

A special class of aggregate scheduling models are those that fit into a transportation model framework. 
The first transportation type aggregate scheduling model was suggested by Bowman [3] and later discussed 
by Bishop [2], Manne [11] and Sadleir [13]. This problem involved finding the minimum cost production 
schedule over a T period finite planning horizon with known demands d0 t = 1, 2, ... , T. The demand in 
each period must be satisfied out of production or existing inventory in that period, i.e., backordering is 
not allowed. In each of the T periods goods can be produced with regular time at a unit cost of 'a' and 
with overtime at a unit cost of 'w' where w >a. The items can be stored indefinitely at a cost of h per unit 
per period. There are also capacity restrictions on regular time and overtime production in each of the T 
periods. 

It was subsequently shown by Johnson [8] that a simple noniterative method would suffice to solve 
Bowman's model. Later, an alternative solution procedure was suggested by Szwarc [14]. 

In a recent paper Posner and Szwarc [12] generalized Bowman's Aggregate Scheduling model to include 
backordering at a unit cost of b per period. It was shown in [12] that this problem can also be solved by a 
noniterative procedure with a computational requirement of O(T 2

). For other related literature see [12]. 
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This paper will examine a generalization of Posner and Szwarc's aggregate scheduling model that 
includes upperbounds on inventory and backordering and allows for time varying production, inventory 
holding and backordering costs. 

This generalized model has a well known standard minimum cost network flow representation (see for 
example Johnson and Montgomery [7, p. 205]). An optimal solution for this representation may be 
obtained by any one of the following algorithms: network simplex, out-of-kilter, flow augmentation. For 
further information on these algorithms see for example Bazaraa and Jarvis [1]. None of these algorithms 
is polynomially bounded for solving general minimum cost network flow problems. Also, whether or not 
any of these three algorithms is polynomially bounded for the standard network representation of the 
problem is not known. 

In this paper we show that the problem has a different and very interesting network flow representation. 
We propose an algorithm which finds an optimal solution to this specially structured network flow 
problem by solving a sequence of shortest path problems. The algorithm requires O(T) augmentations and 
is of computational complexity O(T2

). We report some computational results which compare very 
favorably with the computational times obtained from a well known network simplex code, GNET [4], 
applied on the classical formulation of the problem. 

Problem statement 

In developing the optimization model we will use the following notation for t = 1, 2, ... , T: 

dt Demand in period t; 
at Regular time production cost per unit in period t, at> 0; 
w 1 Overtime production cost per unit in period t, w 1 > a 1; 

h1 Inventory holding cost per unit in period t assessed on ending inventories, h1 > 0; 
b1 Backordering cost per unit in period t, b1 > 0; 
R t Regular time production capacity in period t; 
0 1 Overtime production capacity in period t; 
/31 Upper bound on the number of units that can be backordered in period t, {31 ~ 0; 
S1 Upper bound on inventory at the end of period t, S1 ~ 0; 
r1 Number of units produced using regular time in period t; 
o1 Number of units produced using overtime in period t; 
I, Ending inventory of period t; 
B, Number of units backordered in period t; 

Without loss of generality we assume that Ir = I 0 = Br = B0 = 0, that is Sr = f3r = 0. 
We now write the optimization problem: 

T T T 

(P1) Minimize Z = L (a,r1 + w 1o1 ) + L hJ1 + L h1B, 
t~l t~ 1 t~l 

subject to 
t = 1, 2, ... , T, 

It+ It= St, } t=1,2, ... ,T-1, 

/ 0 = lr=B0 = Br= 0, 

all variables nonnegative, 

where x,, y, B, and 11 are the slack variables associated with the constraints in which they appear. A 
standard network representation of this problem (P1) is shown in Figure 1. 
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Figure 1. A standard network representation of (Pl) 

Hereafter we assume that (P1) has a feasible and therefore an optimal solution. 
(P1) can be transformed into a balanced uncapacitated transportation problem by performing elemen

tary row operations as summarized by Klein [10]. Defining 

T T 

dT+1 = L (R/+ Ot)- L dl' (1) 
1=1 t=l 

and performing the appropriate elementary row operations, we obtain the equivalent problem (P2), a 
balanced uncapacitated transportation problem. 

(P2) minimize 

subject to 

T T-1 T-1 

Z= L (a 1r1 +,w 1o1 ) + L h 111 + L b1Bt> 
t=l t=l t=l 

r1 +x1 =Rt> } 
or+ Yr = 01' t = 1, 2, ... , T, 

r/ + ot + It -1 + Bt -1 + Bt + jt = d t + st + !3r -1' 

T 

L (xt + Yr) = dT+1• 
t=l 

10 = Ir= B0 = Br= 10 = B0 = 0, 

all variables nonnegative. 

Also note that by definition /30 = Sr = 0. 

(2.a) 

(2.b) 

(2.c) 

(2.d) 

(2.e) 

(2.f) 

(2.g) 

(2.h) 

We will now put (P2) in the transportation tableau format. In the transportation tableau the first four 
rows will correspond to regular time production, overtime production, ending inventory and backordered 
quantity in period 1, respectively and the second, third, fourth and up to (T- 1)st four rows will 
correspond to regular time production, overtime production, ending inventory and backordered quantity 
in their respective periods. The last two rows will correspond to the regular time production and overtime 
production in period T, respectively. Also the first T columns will represent the demand periods and 
column T + 1 will be the slack column. The capacities for regular time production, overtime production, 
inventory and backordering are Rl' 0~' S1 and /31' respectively. We note that demand in period 1 is d1 + S1 

and in period Tit is dr + f3r_ 1• For period t, t = 2, 3, ... , T- 1, demand is d1 + S1 + f3r_ 1. To clarify this 
representation we put a three period problem in the transportation format in Table 1. 

Note in Table 1 that, the entry in the upper left hand corner of each cell is the variable represented by 
that cell and the entry in the upper right hand corner is the associated cost. The cells with an asterisk '*' 
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Table I 

Demand periods Capac-

1 2 3 Slack 
ities 

Regular time 1 r1 a1 * * x1 0 R1 
Overtime 1 01 w1 * * YJ 0 01 
Inventory 1 /1 0 /1 h1 * • s1 
Backordering 1 B1 b1 Ji1 0 * * /31 
Regular time 2 * rz a2 • x2 0 R2 
Overtime 2 * o2 w2 * Y2 0 02 
Inventory 2 * /2 0 12 hz • S2 
Backordering 2 * B2 b2 B2 0 • {32 
Regular time 3 * * r3 a3 x3 0 R3 
Overtime 3 * * 03 w3 Y3 0 03 

d1 + s1 d 2 + Sz + /31 d3 + /32 d 4 = r.;~ 1 (R, + 0,)- r.;~, 1 d, 
Note: all cells with a ' •' have infinite cost. 

indicate the excluded arcs in the corresponding transportation network. No shipments can be made on 
these arcs. This exclusion can be enforced by assigning sufficiently large positive costs to these arcs. 

It is a well known fact that the addition of a constant to any row or column of the cost matrix of a 
balanced transportation problem leaves the optimal solution unchanged. We now perform the following 
operations on the cost matrix of (P2) (Table 1). By convention let the slack column be column T + 1, and 
also let any sum, E;=kz; = 0 if I< k. 

(1) To each column j, j = 2, 3, ... , T, add (-E{:ihd. 
(2) Add -a1 + E{:ihk to the j-th regular time row, j = 1, 2, ... , T. 

(3) Add -1~{ + E{:ihk t? the j-th over~ime~ow, j = 1, = ... , T. 
(4) Add Ek= 1hk to each mventory row J, 1- 2, 3, ... , T 1. 
(5) Add E{~ 1 hk to each backordering row j, j= 1, 2, ... , T-1. 

It is instructive to see how similar operations were performed in [12]. After performing these operations we 
obtain the equivalent transportation problem (P3). 

T T T-1 

(P3) Minimize Z= L c1x 1 + L C1Y1 + L (b1 +h 1 )B~' 
1=1 t=1 t=l 

subject to (2.a), (2.b), (2.c), (2.d), (2.e), {2.f), (2.g), (2.h), 

where 

C"' 
if t = 1, rw, if t = 1' 

r-1 and - t-1 
ct= -at+ L hk if 1 < t ~ T, ct= -wt+ L hk if 1 < t ~ T. 

k=l k=1 

Table 2 

0 * * - a1 R1 
0 * * - wl 01 
0 0 * * s1 
bl + hl 0 * * {31 

* 0 * - a2 + h1 R2 

* 0 * - w2 + hl 02 

• 0 0 * s2 

• b2 + h2 0 * {32 

* * 0 -a3+h1+h 2 R3 

* * 0 -w3 +h1+h 2 03 

d1 +S1 d2 + S2 + /31 d3 + /32 d4 
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The transportation tableau (Table 2) summarizes these operations for the three period example given in 
Table 1. 

Note that in the objective function of (P3) only x 0 y1 and B1 have nonzero coefficients. In accordance 
with this observation we will rewrite (P3) only in terms of variables xn y1 and B1• Upon performing a 
series of algebraic manipulations (involving only additions and subtractions) on (P3) we obtain (P4). For 
space considerations the details of this transformation are not discussed here. However, the interested 
reader can find these details along with a constructive proof of the equivalence of (P4) and (P3) and 
therefore (P4) and (P1) in [6]. 

(P4) Minimize 

subject to 

T T T-l T-l 

Z= Lctxt+ Lctyt+ L etB/+ LeA, 
t=l t=l t=l /=1 

/ 

L (x;+Y;)-e1 ~B:~'l'l' 
i=l 

/ 

vt- st ~ L ( x; + Y;) ~ 'l't + el' 
i=l 

T 

L (xt + Yt) = dT+l, 
t=l 

0 ~XI~ Rl'} 
0 0 

t = 1, 2, ... , T, 
~Yt ~ I' 

B/~0, t=1,2, ... ,T-1, 

t= 1, 2, ... , T-1, 

(3.a) 

(3.b) 

(3.c) 

(3.d) 

(3.e) 

where for each t E {1, 2, ... , T- 1 }, e1 = b1 + h1; V 1 = L::= 1(R; + 0;)- I::= 1d;; 81 = max[O, - v1 ]; '1'1 = {31 -

81; e1 = v1 + 81 and B/ = B1 - 81• Also note that the term (L:'[::leA) in the objective function of (P4) is a 
constant. 

At this point we would like to emphasize the fact that, (P4) can be directly obtained from (P1) by some 
simple transformations on the original data. Therefore the users of our procedure do not have to go 
through the problem transformations given in this paper and in [6] to obtaine (P4). 

Upon solving (P4), one obtains the optimal values of xn y1 and B1 • Once these optimal values are 
determined, once can go back to the transportation tableau (Table 2) and compute the optimal values of rn 
on Bn I 1 and 11• This is done easily since in each row of the transportation tableau only two assignments 
can be made. For the regular time, overtime and backordering rows, the solution to (P4) yields one of these 
assignments. After the optimal assignments are placed in these rows, obtaining the optimal values of I 1 

and 11 is trivial. 
Problem (P4) has a very interesting and special network flow representation which is amenable to 

solution by a greedy flow augmenting algorithm. To be specific this problem is called a minimum cost 
maximum flow problem. 

In what follows we will give the network flow representation implied by (P4), comment on some of the 
properties of this representation and give an O(T 2

) algorithm to solve the production scheduling problem. 

A network flow representation of (P4) 

A network flow representation of (P4) is given in Figure 2. We will call this network G. 
The lower and upper bounds indicated by constraints (3.b) are denoted LB1 and UB0 t = 1, 2, ... , T- 1, 

respectively. Therefore 

LB1 = max[O, V1 - S1 ] and UB1 = '1'1 + e1 • 



(lower bound, upper bound) 

Figure 2. A network representation of (P4) 

Figure 3. A network representation of the numerical example 
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Note that since X 0 y1 ~ 0, t = 1, 2, ... , T, we define LB1 = max[O, v1 - S1]. Also the constraint (3.c) is 
replaced by 

T 

LBr= dT+l ~ L (xr + Yr) ~ dr+I = UBr. 
t~l 

The two arcs between the source nodeS and node 3t- 2, t = 1, 2, ... , T, correspond to regular time and 
overtime slack variables. These arcs will be called regular slack and overtime slack arcs in their respective 
periods. Between each pair of nodes 3t- 1 and 3t, t = 1, 2, ... , T- 1, there are two arcs; the top one will 
be labelled the backordering arc and the bottom one will be called the free arc, for their respective periods. 
For period t, t = 1, 2, ... , T- 1, constraints (3.a), (3.b) and (3.e) are represented by arcs (3t- 2, 3t- 1), 
(3t, 3t + 1) and the backordering and free arcs in that period. Note that if for any period t, vt ~ 0, then 
et = 0 implying that the free arc for that period is closed. Constraints (3.d) are represented by the regular 
and overtime slack arcs and the arc (3T- 1, S') represents constraint (3.c). We also note that arcs (3t, 
3t + 1) are not actually needed, however we introduced them for visual convenience. 

As clearly illustrated Figure 2, the objective is to send exactly dT+ 1 units (x0 y1 ) from the source node 
S, to the sink nodeS' at a minimum cost while observing the lower and upper bounds on the arcs. It is 
also instructive to note that the only arcs that may have nonzero cost are the regular and overtime slack 
arcs and the backordering arcs. 

An O(T2
) algorithm for solving (P4) 

In this section we present an algorithm for solving (P4) by exploiting the network structure given in 
Figure 2. The algorithm makes assignments to x 1 andy~' t = 1, 2, ... , T, in a greedy fashion by augmenting 
flow over a sequence of shortest paths, in the corresponding network until flow equals dr+I· The 
computational complexity of the procedure is O(T2

). 

Let the arcs a1 be numbered as follows 

at (3t- 2, 3t- 1), t = 1, 2, ... , T; 

aT+i 

(i2T-l+i 

a3T-2+i 

a4T-2+i 

asT-2+t 

(i6T-2 

backordering arc in period i, i = 1, 2, ... , T - 1 ; 
free arc in period i, i = 1, 2, ... , T- 1; 
regular time slack arc in period i, i = 1, 2, ... , T; 
overtime slack in period i, i = 1, 2, ... , T; 
(3t,3t+1), t=1,2, ... ,T-1; 
(3T-1, S'). 

Also let c k and (l k, u k) represent the cost, and lower and upper bounds on arc ii k, k = 1, 2, ... , 6 T - 2, 
respectively. We note that ck = + oo if lk = uk = 0 for any arc iik. Note here that lr= ur= dT+ 1 = UBr= 
LBr· 

The algorithm 

for t = 1 to T do 
begin 

while It > 0 do 
begin 

Find the shortest path P1 from nodeS to node 3t- 2. 
Find the shortest path P2 from node 3t- 1 to S' 
..1 1 = min {ud 

iikEP1 

..1 2 = min{ud 
iikEP2 
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Ll = min{Ll1, Ll2, lt} 
Augment Ll units along the path P = P 1 U ii1 U P2 • 

Update lk, uk and ck along P as 

{
0 iflk~Ll 

lk +-- . 
I k - Ll tf l k > Ll , and 

uk +-- uk- Ll. For all lk = uk = 0, iik E P set ck = + oo. 
end 
endwhile 

end 
endfor 

421 

The rest of this section is devoted to the proof of validity and the computational complexity of the 
algorithm. We need the following results to establish the computational complexity of the algorithm. 

Lemma 1. Finding the shores! path between any pair of nodes (i, j) in G requires O(T) additions and 
comparisons. 

Proof. From Figure 2, it is clear that if i =P S we need at most T additions and comparisons to find the 
shortest path between nodes i and j. If i = S, then we need at most 3T additions and comparisons to find 
the shortest path between node S and a node j, j =P S. 0 

Remark 1. In the execution of the algorithm no flow is reduced on an arc and at each augmentation either 
a lower bound is satisfied or an arc is saturated. 

As an immediate consequence of Remark 1 we have: 

Lemma 2. The algorithm terminates after at most 6T- 2 augmentations. 

Proof. There are at most 5T- 2 positive upper bounds and at most T positive lower bounds in this 
problem. From Remark 1, it may take as many as 6T- 2 augmentations for the algorithm to terminate. 

Theorem 1. The algorithm is of complexity O(T 2
). 

Proof. The proof immediately follows from Lemmas 1 and 2, the fact that augmenting along the shortest 
path requires O(T) additions and comparisons. 

Theorem 2. The complexity of the procedure to solve the aggregate production planning problem (P1) is 
O(T 2

). 

Proof. Obtaining (P4) from the original data is of complexity O(T) (see the details of obtaining (P4) from 
(P3) in [6]). Solving (P4) yields the optimal values of x~' Yn t = 1, 2, ... , T and B~' t = 1, 2, ... , T- 1. Once 
these values are obtained, one has to go back to the transportation tableau (Table 2) and find the optimal 
values of r1 , o1 B~' 11 and l 1 as discussed in the previous section. Evidently, completing the transportation 
tableau is also of complexity O(T). Combining these observations with Theorem 1 yields the desired 
result. 

Let f,, for each arc a, in G be the flow obtained by the algorithm. In proving the validity of the 
algorithm we will make use of the following G' derived from G as follows. (This is the procedure used in 
Klein's [9] method for finding minimum cost maximum flow by negative cycles.) 
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G' has the same node set G. Let A and A' represent arc sets of G and G' respectively. We construct 
the arcs of G' as follows. 

If a1 E A and fj <.!!J then place a1 in A' with capacity u; = u1 - fj, and cost c; = c1. Also if a1 E A and 
fj > 11 then place a1 in A' with capacity u; = fj -11 and cost c; = -c1, 

where ~J is an arc exactly in opposite direction to a1. i.e., if a1 =(p, q) then ~1 =(q, p). Let 
C = { a 1, a 2, ... , ak} be a directed cycle (circuit) in G' where the head node of a 1 = (p, q) is the tail node 
of arc a 2 = (q, r). Moreover the head node of arc ak = (z, p) is the tail node of a 1. Let 

c(C) = L c;. 
a 1EC 

A circuit C with c( C) < 0 is called a negative circuit. Klein [9] suggested a method for finding a minimum 
cost maximum flow by using negative circuits. First the maximum flow is found. Given the maximum flow 
this algorithm then proceeds on finding negative circuits in G' and circulating as much flow as possible 
along this circuit. The G' network, u; and c; are updated and the process is repeated until all negative 
circuits are eliminated from G'. When G' does not contain any negative circuits then the current maximum 
flow is in fact the minimum cost maximum flow. The proof of optimality of a given maximum flow to be 
the minimum cost maximum flow when G' does not contain any negative circuits is given in [9]. 

Theorem 3. The algorithm produces an optimal solution to (P4). 

Proof. We will simply show that at the termination of the algorithm no negative cycles are present in the 
network. Note that because of the structure of the network the only cycles which do not include nodeS 
are the cycles formed by the backordering arcs and free arcs at each period 1, 2, ... , T- 1. Any other cycle 
in G must include node S. From the construction of the algorithm, if there is any allocation to slack arcs in 
a given period it is always first to the cheapest slack arc. Therefore a negative cycle containing node S will 
imply an augmentation not done on a shortest path which contradicts the construction of the algorithm. In 
a very similar manner it is easy to show that a negative cycle not including node S implies that the 
backordering arc is used instead of the available free arc at some period t, which also is contradictory to 
the construction of the algorithm. D 

A numerical example 

We now give a four period numerical example to illustrate the algorithm: 

a.= a= 10 J , 

h =h=5 
J ' 

w.=w= 12 J , 

b =b=1 
J • ' 

dj= d= 10, 

e1 = 6, 

j = 1, 2, 3, 4; 

j=1, 2, 3; 

S1 =4, sz = 3, S3=4, /31 = 2, f3z = 4, /33 = 3; 

R1 = 10, R 2 = 3, R 3 = 14, R 4 = 8, 01 = 5, 0 2 =1, 03=4, 

v1 = 5, v2 = -1, v3 = 7; 

81 = 83 = 0, 82 = 1, o/1 = 2, 'i'z = 3, o/3 = 3, E1 = 5, e2 = 0, 

04=2; 

E3 = 7; 
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Table 3 
Summary of computations 

Augmentation 
stage 

1 
2 
3 

Assignment 
(variable, units) 

(JI, 1) 
(yb 2) 
(y3, 4) 

Arcs on the shortest path a 

from s to s', p = pl u at u p2 

(lits' at, iis, li19, ii2, ii6, ii2o' ii3, iiw, ii2b ii4, il22) 
same as above, except at = a 3 

(a 17 , a3 , a10 , a2b at, a 22 ) 

a at is the arc with the smallest index such that I k > 0 in the i-th augmentation stage 

We now formulate (P4). 

Length of the 
shortest path 

-6 
-6 
-2 

Minimize Z = 6 + ( -10x1 - 5x2 + Ox 3 + 5x4 ) + ( -12y1 - 7y2 - 2y3 + 3y4 ) 

+6B{ + 6B~ + 6B;, 

subject to x1 + y1 - 5.:;; B{.:;; 2, 

x1 + x 2 + YI + Y2- 0.:;; B~.:;; 3, 

x 1 + x 2 + x 3 + YI + Y2 + y3 - 7.:;; B;.:;; 3, 

1.:;: x1 + y 1 .:;; 7, 

0.:;; X1 + X2 + Y1 + Y2.:;; 3, 

3 .:;; xl + x2 + x3 + x4 + Yl + Y2 + Y3 .:;; 10, 

7 .:;; X1 + X2 + X3 + Y1 + Y2 + Y3 + Y4.:;; 7, 

0.:;; x 1 .:;; 10, 0.:;; x 2 .:;; 3, 0.:;; x 3 .:;; 14, 

O.:;;y1 .:;;5, O.:;;Y2.:;;1, O.;;;y3 .;;;4, 

0.:;; x 4 .:;; 8, 

0 .;;;y4.:;; 2. 

423 

Figure 3 is the network representation of the numerical example, where ai, i = 1, ... , 6T- 2, are the arcs 
as defined in the previous section. Table 3 summarizes the flow augmentation for this example. Note that 
the optimal solution to the network flow problem has B{ = B; = 0 and B~ = 3. Therefore from B1 = B; + 
01 , t = 1, 2, 3, we get B1 = 0, B2 = 4, B3 = 0. 

The optimal solution to the production scheduling problem is given in the following transportation 
tableau (Table 4). 

Computational experience 

In this section we present some computational experience with the algorithm presented in this paper 
(referred to as SCHED hereafter). We tested SCHED against one of the fastest network simplex codes in the 
literature, GNET [4] 1

. GNET was used to solve the standard minimum cost network flow representation of 
problem (P1). These two algorithms were tested on 6 sets of randomly generated problems with number of 
planning periods T E {8, 12, 16, 20, 24, 30}. Each set contained 12 test problems and all of the 72 
problems had feasible solutions 2

. All the data were integer as required by GNET. 
SCHED was coded in FORTRAN and computational experiments were conducted on an IBM 3090 

computer. Both GNET and ScHED were complied with EXTENDED H FORTRAN compiler. Computational 
results are presented in Table 5. CPU times include the transformation operations from (P1) to (P4) for 
ScHED and exclude input and output operations both for GNET and SCHED. 

ScHED uniformly outperformed GNET in all of the 72 problems solved. On the average, for the 72 
problems solved, ScHED was about 8 times faster than GNET. 

1 We would like to express our sincere thanks to G. Bradley and his coauthors for giving us permission to use GNET. 
2 A listing of ScHED and the test problems are available from the authors. 
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Table 4 
Optimal solution to the numerical example 

Sources Periods Capacities 

1 2 3 4 Slack 

RTI 10 * * * 0 10 
OTI 2 * * * 3 5 
INVI 2 2 * * * 4 
BOI 0 2 * * * 2 
RT2 * 3 * * 0 3 
OT2 * 1 * * 0 1 
INV2 * 3 0 * * 3 
B02 * 4 0 * * 4 
RT3 * * 14 * 0 14 
OT3 * * 0 * 4 4 
INV3 * * 4 0 * 4 
B03 * * 0 3 * 3 
RT4 * * * 8 0 8 
OT4 * * * 2 0 2 

Demands 14 15 18 13 7 

Before closing this section we would like to emphasize on the importance of fast algorithms for solving 
the problem (PI). Consider a problem (P*) identical to (PI) except for the objective function which is 
concave. It is demonstrated in [5] that branch and bound procedure is an efficient way for solving (P * ). In 
this branch and bound procedure one needs to solve a very large number of subproblems which are of the 
form (PI). Therefore, using algorithm SCHED as opposed to GNET will produce an optimal solution in a 
significantly smaller CPU time. 

Concluding remarks 

In this paper we presented a one pass greedy procedure for solving a popular aggregate production 
model. This model is a generalization of the model presented in [9] in that it allows for time varying 
production, inventory and backordering costs and includes bounds on inventory and backorders. The 
procedure is of computational complexity O(T2

) where T is the number of periods in the planning 
horizon. We showed that the problem can be transformed into a minimum cost-maximum flow problem 
with a very special structure. We exploited this structure to develop the greedy procedure. The procedure 
was computationally tested against a well known network simplex code, GNET, on a set of randomly 
generated problems. The computational results demonstrated the superiority of the greedy procedure to 
GNET. 

Table 5 

SCHED GNET 

(1) (2) (3) (4) (5) (6) (7) 
Problem Number of Average number Average CPU time Average number of Average CPU time Ratio of 
set periods of augmentations ( miliseconds) simplex pivots ( miliseconds) (6)/(4) 

1 8 5.00 0.27 28.08 1.47 5.44 
2 12 2.92 0.28 45.50 3.07 10.96 
3 16 3.67 0.40 62.25 3.98 9.95 
4 20 5.08 0.62 77.42 5.62 9.06 
5 24 10.67 1.45 90.25 6.83 4.71 
6 30 5.41 0.98 102.90 8.25 8.42 
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In closing, we note that although the model included two sources of production (regular and overtime), 
it can be easily extended to more than two sources, 
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