
246 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 2, MARCH 1988 

Sequential Decoding for Multiple 
Access Channels 

ERDAL ARIKAN, MEMBER, IEEE 

Abstroet --The use of sequential decoding in multiple access channels is 
considered. -The Fano metric, which achieves all achievable rates in the 
one-user case, fails to do so in the multiuser case. A new metric is 
introduced and an inner bound is given to its achievable rate region. This 
inner bound region is large enough to encourage the use of sequential 
decoding in practice. The new metric is optimal, in the sense of achieving 
all achievable rates, in the case of one-user and painvise-reversible chan- 
nels. Whether the metric is optimal for all multiple access channels 
remains an open problem. It is worth noting that even in the one-user case, 
the new metric differs from the Fano metric in a nontrivial way, showing 
that the Fano metric is not uniquely optimal for such channels. A new and 
stricter criterion of achievabiility in sequential decoding is also introduced 
and examined. 

I. INTRODUCTION 

E CONSIDER the application of sequential decod- W ing to multiple access channels (MAC's). Sequential 
decoding is a decoding algorithm for tree codes, originally 
developed for channels with one transmitter and one re- 
ceiver [l], [2]. MAC's are models of communication sys- 
tems where a number of transmitters share a common 
transmission medium to transmit statistically independent 
messages to a common receiver. A typical example of a 
MAC is the up-link of a satellite channel with multiple 
ground stations. 

The MAC model that we use is the standard infor- 
mation-theoretic one [3] shown in Fig. 1. The sources 
here generate statistically independent sequences of letters 
from their respective finite alphabets; source sequences are 
encoded independently of each other and sent over the 
channel. The decoder observes the channel output se- 
quence and generates an estimate for each source se- 
quence. The channels that we consider are discrete-time 
memoryless stationary channels with finite input and out- 
put alphabets. A channel with these properties is com- 
pletely characterized by specifying its input alphabets 
X,, . . . , X,, output alphabet Y, and transition probabilities 
P ( y ~ x , , - ~ - , x , )  for each ~ E Y ,  x 1 ~ X 1 , . . ~ , x , ~ X n .  The 
quantity P(y lx , ;  * e ,  x , )  denotes the probability that y 
is observed at the channel output given that x ,  is trans- 
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mitted at input i, i = l , . . - , n .  We shall use the notation 
(P; X,, . , X,; Y )  to denote such a channel. 

-- 
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F-flAn E n  

Fig. 1. Multiple access channel model. 

A.  General Background 

To provide a framework and motivation for studying 
sequential decoding in MAC's, we first summarize some 
known results on MAC's. For a more detailed discussion 
of all the issues discussed in this section and a comparison 
of various approaches to multiple access communications, 
refer to the excellent survey article by Gallager [4]. 

The capacity region of a MAC is defined as the region 
of source rates at which communication with arbitrarily 
small probability of decoding error is possible. (The prob- 
ability of decoding error here is the average decoding error 
assuming that all messages are equally likely.) This region 
was determined by Ahlswede [5] and Liao [6].  

The capacity region of a MAC is typically larger than 
the set of rates achievable through conventional ways of 
using such channels, such as time-division multiplexing 
(TDM) and, if applicable, frequency-division multiplexing 
(FDM). The desire to find practical ways of achieving 
these theoretically possible higher rates is the main motiva- 
tion for studying coding for MAC's. In this respect, the 
following results are significant. 

Slepian and Wolf [7] proved that for block codes and for 
any rate in the capacity region, it is possible to make the 
probability of maximum-likelihood decoding error go to 
zero exponentially in the block length. This result also 
holds [4] for linear block codes for which the encoding 
complexity grows approximately linearly with the code- 
length. Thus the probability of decoding error can be made 
to approach zero exponentially in the encoding complex- 
ity. A similar result was proved by Peterson and Costello 
[8] for tree codes. 
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The previous results indicate that a favorable trade-off is 
possible between the probability of decoding error and the 
encoding complexity. Unfortunately, these results are all 
based on maximum likelihood decoding, for whch the 
decoding complexity grows exponentially in the block or 
constraint length. Therefore, just as in the case of single- 
user channels, the main obstacle to the use of coding in 
MAC's appears to be the complexity of decoding. We shall 
investigate whether sequential decoding, which is a practi- 
cal decoding algorithm for single-user channels at low 
enough rates, can be used also in MAC's. 

B. Multiuser Tree Codes and Sequential Decoding 

Henceforth, we consider a system as in Fig. 1, where the 
encoders are tree encoders and the decoder is a sequential 
decoder. We make two assumptions about the system. 
First, we assume that the number of channel input sym- 
bols per branch is the same for each user's tree code. 
Second, we assume that the users are synchronized so that 
they start transmitting at a common point in time.' 

Under these assumptions the tree codes in the system 
can be collectively represented as a single tree code, which 
we call a multiuser (or n-user) tree code. An example of a 
two-user tree code corresponding to two single-user tree 
codes is shown in Fig. 2. A more complete description of 
multiuser tree codes will be given in Section 11. 

Sequential decoding for MAC's consists of applying the 
ordinary sequential decoding algorithm to a multiuser tree 
code. Recall that sequential decoding is essentially a search 
algorithm for finding the transmitted (correct) path in a 
tree code. The search is guided by a metric,2 which is 
a measure of correlation between paths in the code tree 
and the received sequence. If the code and the metric are 
properly chosen, the metric value tends to decrease on all 
paths except for the transmitted path. Thus sequential 
decoding is simply a search for that path on which the 
metric has a nonnegative drift. 

The search effort in sequential decoding is a random 
quantity as it depends on the severity of channel noise 
(transmission errors). The remarkable point about sequen- 
tial decoding is the possibility of making the expected 
value of the search effort per correctly decoded source 
digit independent of the codelength and hence of the 
desired level of reliability. This is possible, of course, only 
if the desired rate is low enough. 

The rate of a single-user tree code with k channel input 
symbols per branch and degree d @e., d immediate de- 
scendants for each node) is defined as (l/k)ln(d) nats or 
(l/k)log,(d) bits per channel use. Throughout we shall 
use the natural units unless otherwise stated. The rate of 
an n-user tree code is defined as an n-tuple ( R , , .  -, R,,), 
where Ri is the rate of the ith user's tree code, i = 1,- - -, n .  

'It is possible to prove the main results of this paper in a model where 
one allows arbitrary but bounded time shifts among the users. The first 
assumption is less crucial and can be dropped easily. These questions will 
not be addressed in this paper, however. 

*This is not a metric in the customary mathematical sense of the word. 

Code e ,  c o d e  e2 

bC 10 cc 10 
01 

Source alphabets- {O, 1). x, = (0.1). x,- {a, b, c) 

(4 

(b) 
Fig. 2. (a) First two levels of users 1 and 2's tree codes. Arrows indicate 

mapping from source sequences to paths; e.g., on input of 0, encoder 
always takes upper branch from current node. (b) First two levels of 
two-user tree code corresponding to codes in part (a). 

A point ( R , , .  * * ,  R,) is said to be achievable by sequen- 
tial decoding if an infinite n-user tree code exists with rate 
L (R1; . -, R,) (componentwise) and a metric such that 
the expected search effort per correctly decoded source 
digit is finite. The set of all achievable points is called the 
achievable rate region (of sequential decoding) and is de- 
noted by R,,,. Our goal is to find out if R,,, is large 
enough to make sequential decoding worthwhile. 

Searching for the correct path in a multiuser tree code is 
more difficult than in a single-user tree code. In a multi- 
user tree code partially correct paths exist (i.e., paths that 
agree with the correct path in certain components) which 
are correlated with the correct path and hence with the 
channel output. Consequently, compared to a totally in- 
correct path, partially correct paths can be more readily 
mistaken for the correct path during sequential decoding, 
causing complications that are nonexistent in the single- 
user case. 

As a result, the well-known Fano metric [2], which is 
optimal (in the sense of achieving all achievable rates) in 
the single-user case, fails to work satisfactorily in the 
multiuser case. The main contribution of this paper is to 



248 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 3 4 ,  NO. 2, MARCH 1988 

introduce a new metric and to prove that it works satisfac- 
torily in a sense to be quantified later. We do not know, 
however, whether this metric achieves all of R camp. Further 
discussion of problems relating to multiuser sequential 
decoding can be found in [4]. 

C. The New Metric 

To keep the notation simple in this introduction, we 
state the results only for the two-user case. These results 
will be restated and proved for an arbitrary number of 
users in the following sections. 

Consider a two-user channel (P; X,, X 2 ;  Y) and a two- 
user tree code for this channel. Let k be the number of 
channel symbols per branch in each user's tree code. The 
metric p that we propose for sequential decoding in this 
situation is as follows. 

For any el E Xf, t, E X i ,  and q E Yk, 

d E 1 ,  € 2 , d  

where Os Rl<Ro(Q,{l})-(21n3)/k 

In the foregoing expressions, P denotes transition prob- 
abilities over blocks of length k. (We shall use boldface 
characters to indicate quantities relating to blocks.) For 
example, P(q1E1, E2) is the probability that q is received 
given that user 1 transmits 6, and user 2 transmits E2. 

0 I R, < Ro(Q, (2)) - (21n3)/k 

R1+ R,<R,(Q,(1,2})-(2b3)/k. 
The integer k appearing in these expressions represents the 
block length for Q = (Q1, Q2). Thus by choosing Q over 
sufficiently long blocks, we can make the term (21n3)/k 
as small as desired. It then follows, by a straightforward 
argument given in Section IV-C, that the achievable rate 
region of 1.1, over all Q, is inner-bounded by the region R o ,  
which is defined as follows: 

m 

R o : =  U Ro(k)  
k = l  

R o ( k )  := URo(Q). (1.3) 
Q 

The union in (1.3) is over all Q = (Q,, Q 2 )  such that Q, 
is a p.d. on Xf and Q2 is a p.d. on X i .  The region Ro(Q) 
is defined as the set of all (R,, R 2 )  such that 

0 5 Ri < Ro(Q, (1)) 

0 5 R2 < Ro(Q, (2)) 
The metric p is parametrized by the probability distribu- R,+R2<Ro(Q,{1,2}). 

tions (p.d.'s) Q1 on Xf and Q, on X i ,  and the real 
numbers B,, B,, and B3, which are referred to as the bias 
terms. For the metric to work satisfactorily, the bias terms 
must be chosen properly. One possibility, as suggested by 

follows: 

Since the achievable rate region of any metric is by defini- 
tion a subset Of Rcomp,  we have R~ R c o m p ,  the main 

Of this paper* 

rates achievable by time-division multiplexing (TDM), 
consider the two-user erasure channel of Fig. 3. The shaded 

the analysis in the following sections, is to take them as To see that R O  can be significantly larger than the set Of 

region represents R,((Ql, Q2)) for Q, = Q2 = uniform dis- 
tribution on (0, l}. Also included in R,, though not shown 

4 = ( R 2  + Ro(Q, {2}))/2 

B3 = (R,+ R2 + R,(Q, {1,2}))/2 
'Note that the numbers R , ( Q ; )  are closely related to reliability 

(1.2) exponents for MAC'S [7], [4]. 
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in the figure, are the points ( 1 , O )  and ( O , l ) ,  and their 
convex hull with the shaded region. Thus sequential decod- 
ing achieves a sum rate as large as 1.42 bits/channel use, 
whereas TDM is limited to sum rates of 1 bit/channel use. 

5 
4 2  

0.94 1.0 bits 

Fig. 3.  Two-user erasure channel and its achievable rate regions. 

Remarks: 
1) It is not known whether a MAC exists for which 

the following statement is false: 

R c closure of R , . (1.4) 

The set 
closure of R ,\ R , 

consists of only those points that lie on the “outer surface” 
of R,, and for all practical purposes R, and its closure are 
the same. Therefore, if (1.4) holds for a channel, its R,, 
is essentially determined. 

Two classes of channels exist for which (1.4) holds. 
These are the classes of single-user channels, discussed 
next, and painvise-reversible channels, discussed in Section 

2) In the case of a single-user channel (P; X, Y), the 
IV-D. 

metric p is defined as follows. For each E E X k ,  q E Y k ,  

5 E xk 

where Q is a p.d. on X k ,  B is the bias term, and the 
integer k represents the number of symbols on each branch 
of the tree code. 

The results of Section IV imply that, as Q and B vary 
over their possible values, this metric achieves all rates in 
the interval R, := [0, R,) ,  where 

The maximum is over all p.d.’s Q on X. The parameter R ,  
is usually referred to as the computational cutoff rate of 
sequential decoding. 

In fact, one does not need to consider all parameter 
values to show that p achieves all rates below R,. To 
achieve a rate R E [0, R,) ,  it suffices to take 

Q ( E )  = O ( ~ I ) Q ( ~ * )  * ’ ’  O ( t k ) ,  
E = (‘$19 * * > t k )  E X k  

where Q is a p.d. that achieves the maximum in (1.5) and 
B = ( R ,  + R ) / 2 .  

This choice of parameters also simplifies the form of the 
metric for it can now be expressed as a sum of metrics over 
single letters. Unfortunately, no such simplification is pos- 
sible in the multiuser case. 

Note that in the single-user case the metric p is not 
equivalent to (more precisely, not an affine function of) 
the Fano metric. We thus have perhaps the surprising 
conclusion that the Fano metric is not unique in achieving 
all of R, for single-user channels. 

For single-user channels it is known [9], [la] that Rcomp 
c [0, R, ] .  Therefore, with the possible exception of R, ,  
the regions R ,  and R,,, coincide. We may have R ,  E 
R,,,,, as in the case of a binary symmetric channel with 
zero crossover probability. On the other hand, it is not 
known nor ‘is it of any practical importance if a channel 
exists for which R ,  4 R,mp.4 

D. Organization 

The rest of this paper is organized as follows. Section I1 
contains the notation and gives a precise definition of 
R,,,. In Section I11 sufficient conditions are found on the 
achievability of a rate by a given metric. In Section IV we 
introduce the new metric in its general form and prove 
that it achieves R,. Section V contains a discussion of 
some properties, such as convexity, of R,, and a listing of 
several open problems. In Section VI we examine an 
alternative definition of achievability in sequential decod- 
ing. Section VI1 is a summary of the results. 

11. MULTI-USER TREE CODING 
AND SEQUENTIAL DECODING 

A. Description of the System 

The discussion henceforth is, unless otherwise stated, in 
the context of a fixed but arbitrary multiple access com- 
munication system. We use the following notation for 
labeling various parts of this system. 

The channel will be denoted by (P; XI, - a ,  X,; Y). Thus, 
n will be the number of users, Xi the channel input 
alphabet for user i ,  and Y the channel output alphabet. 
We shall let (0,. - , Mi - l }  be the source alphabet of user 

4We conjecture that, for all channels whose zero-error capacity is 0, 
either R, = 0 or R ,  Z Rcomp. 
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i .  A generic output sequence of source i will be denoted by In either case, a X b X . e - X c is said to be the product of 
ui = Ui(1), u;(2) ,  * * * 

where u , ( m ) ~  {O;-.,M,-l) for each m = l , 2 , - - .  . The 
first m letters in ui will be denoted by ui( . .m),  i.e., 

u , ( . . m )  = u,(I) , -  . , u , ( m ) .  
User i ’ s  encoder will be denoted by ei, and its function 

will be to generate a block of k letters from alphabet X, in 
response to each letter it accepts from source i .  The integer 
k is assumed the same for each e,, i = 1; - e ,  n ,  but other- 
wise it is arbitrary. The output sequence of ei,  in response 
to a source sequence ui,  will be denoted by eiui, the mth 
block in the output sequence by e,u,(m),  and the first m 
blocks by e,u,( . .m).  

The collection of encoders e,,. . . , e, will be said to have 
parameter (M, , .  . 1 ,  M,; k) and rate ( R , ;  -, R , )  where 
R ,  = (l/k)ln(M,) nats/channel use. We shall also view 
the encoder ei as a mapping from sequences over 
(0,. . . , M, - l} to sequences over Xi ,  represent this map- 
ping as a tree diagram as described later, and refer to e, as 
user i ’ s  tree code. 

The tree representing ei will have one node at level m 
for each initial segment u,(. .m), and conversely. Because 
of this one-to-one correspondence, we shall refer to ui(. . m )  
as a node in e,. By convention, ui(..O) will denote the 
origin node in e,. The branch e, connecting node u i ( . . m )  
to node u,(. .m + 1) will be labeled by the block e,u,(m + 1) 
of k letters from X,. Because of the resulting one-to-one 
correspondence between paths in ei and the set of all 
source sequences for user i, we shall refer to a source 
sequence ui also as a path in e,. 

We shall assume that the users start their transmissions 
at a common point in time. This assumption and the one 
that k, the number of channel input symbols per branch, is 
the same for all users ensure that for each m = 1,2; ., 
each user transmits the mth branch of its tree code in 
synchronism with each other. 

Branch synchronization among users allows us to view 
the collection of encoders (tree codes) e,;. .,e, as one 
joint encoder (tree code) with a source alphabet of size 
M ,  * . . M ,  and a channel input alphabet X, X . . . x X,, 
the Cartesian product of the channel input alphabets. The 
joint encoder (tree code) will be denoted by e. 

To emphasize that e is not an arbitrary tree code, but 
the product of n component tree codes, we will refer to it as 
an n-user tree code. The way a joint tree code is related to 
its component tree codes is illustrated in Fig. 2. 

The following notation will be useful for further descrip- 
tion and analysis of the system. For any collection of 

4, b, * * , C. 

Using this notation, we define the joint source sequence u 
corresponding to a collection of source sequences ul, * * * ,  u, 
by u = u1 X . . . X u,. The mth element in u will be de- 
noted by u(m) ,  and the first m elements by u( . .m) .  Note 
that these definitions imply the relations 

u ( m )  = u , ( m )  x . . - x u , ( m )  = ( u , ( m ) , . .  - ,  u , ( m ) )  

u(. .m)=u,(. .m)X . . .  xu,(..m). 

The output sequence, in response to a joint source se- 
quence u, of the joint encoder e will be denoted by eu, the 
mth output block of e by eu(m), and the first m output 
blocks of e by eu(. .m). Note that, for u = u1 X . X u,, 

eu = elul X . . . X e,u, 

e.( m )  = e lq (  m) x * x e,u,( m) 
eu( . .m)  =elul( . .m)x s . 1  Xe,u,(..m). 

The correct path in e, is defined as the path that 
corresponds to the actual output sequence of source i .  A 
node in ei will be referred to as a correct node if it lies on 
the correct path. The correct path in e is defined as the 
product of the correct paths in the component trees. A 
node in e will be referred to as a correct node if it lies on 
the correct path in e. 

We shall denote the channel output sequence by y ,  the 
block in y received in response to the m th channel input 
block by y(rn), and the first m such blocks by y ( . . m ) .  We 
shall assume that the sources are memoryless and statisti- 
cally independent of each other, and that each source 
generates letters according to the uniform p.d. on its 
output alphabet. These assumptions are equivalent to as- 
suming that each path in the joint tree code e is equally 
likely to be the correct (transmitted) path. We shall assume 
that the decoder is a sequential decoder, which will try to 
find the correct path in the joint tree code e after observ- 
ing the channel output sequence y .  

B. Sequential Decoding 

The purpose of this section is to give a precise definition 
of achievability in sequential decoding. We begin with a 
review of sequential decoding in the context of the system 
just described. 

Generally speaking, a metric r for sequential decoding 
is any function 

W 

r: u (X,X ... X X , ) ~ ~ X Y ~ ~ + [ - ~ , ~ )  
h = 1  

does not depend on the portion of the received sequence 
beyond level m, a restriction essential to the idea of 
sequential decoding. Also note that the metric is allowed 
to take on the value - w, thereby enabling the sequential 
decoder to exclude a node from further consideration if 
somehow it is determined that that node is incorrect. 

It: 1 

a X b X  

If a = a , , a , , . . . ,  b = b 1 , b 2 ; . . ,  c = c 1 , c 2 , - - .  are se- 
quences over A ,  B, . . . , C ,  respectively, then let 

Xc:=((a,,b,,~~~,c,),~~~,(a,,b,;~~,cr)). 

. ’ . := (a17 b13* * * 7 C i ) ,  (a27 b2,. * * 9 C z ) ?  * * * . 
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A metric r is said to be branchwise additive if there interpret D,(e, r) as a rough measure of the average work 
exists a function y, y: (XI X - . X X,)k X Y k  -+ required to move forward one step on the correct path. 
[ - bo, + bo) such that This interpretation is the intuitive basis of the following 

definitions. A metric r is said to achieve a point6 R =  
(R,,.. -, R,) if, for any given L,  a tree code e exists with 
rate 2 R (componentwise) such that 

m 

i = l  
r ( e u ( . . m ) ,  y ( . . m ) )  = c u ( e u ( i ) ,  Y ( i ) ) ,  

in which case y is called the branch metric for r. We shall 
refer to a branch metric simply as a metric when no &(e, r)  < A 
confusion can arise. An example of a branch metric is the 
function p that was introduced in Section I. 

Our analysis of sequential decoding will be given for the 
stack algorithm,' which is a version of sequential decoding 
due to Zigangirov [ l l ]  and Jelinek [12]. The following is a 
brief description of the stack algorithm. The nodes that are 
referred to in the description are the nodes of the joint tree 
code e. 

Each step of the algorithm consists of updating an 
ordered list of nodes, referred to as the stack. Initially, the 
stack contains only the origin node. At all times the nodes 
on the stack are ordered with respect to their metric values, 
the node with the highest metric value being at the stack 
top. To update the stack, one deletes the node at the stack 
top and inserts its immediate descendants into the stack 
after computing their metric values. Ties among metric 
values are broken according to some arbitrary rule. 

In a finite tree code the stack algorithm ends as soon as 
a node at the last level of the tree reaches the stack top, 
which is then declared as the decoder output. Of course, in 
an infinite tree code the stack algorithm never ends. We 
shall consider only infinite tree codes because we are 
concerned primarily with the average complexity of 
sequential decoding-a concept most cleanly formalized 
and conservatively estimated in the framework of infinite 
tree codes. 

For every integer m 21 and path u in e,  the mth 
incorrect subtree of u is defined as follows: 

I , ( u )  = {nodes v ( . . j )  in 

e :  j > m ,  u ( . . m - l )  = u ( . . m - l ) ,  
and u ( . . m )  # u ( . . m ) } .  

In words, I,(u) is the set of nodes, at levels 2 m, lying on 
paths that diverge from u at level m - 1 .  

We let $(e, s, y ,  I') denote the number of nodes in 
Z,(s) that reach the stack top given that e is the code, s 
the correct path, y the received sequence, and the 
metric. We let $(e, r) denote the value of C,(e,s, y ,  r) 
averaged over s and y .  More precisely, q ( e ,  r) = 
EsEylesC,(e, s, y ,  r), where E, denotes expectation with 
respect to (wrt) the probability that s is the correct path, 
and E,,,, denotes expectation wrt the conditional probabil- 
ity that y is received given that es is transmitted. 

For each L 21, we let 
D, (e, r ) := (c, (e, r ) + . + c, ( e, r))/L. 

Since a node can reach the stack top at most once, we can 

'The main results of this paper can be easily extended to the Fano 
algorithm. 

where A is a finite number independent of L.'A point R is 
said to be achievable by sequential decoding if there exists a 
metric r that achieves R .  

The achievable rate region of a metric I' is defined as the 
set of all points that r achieves. The achievable rate region 
of sequential decoding is defined as the set of all points that 
are achievable by some metric and is denoted by Rcomp. 

111. SUFFICIENT CONDITIONS ON ACHIEVABILITY 

This section finds sufficient conditions on the achiev- 
ability of a point by a branchwise-additive metric I'. 
Throughout the section, we take r as fixed but otherwise 
arbitrary, and let y denote the branch metric for r. In the 
single-user case, there are well-known sufficient conditions 
on achievability (see, e.g., [13,  ch. 61). The following is a 
straightforward generalization of these results. 

Recall that a point R is achievable by r iff for each L a 
code e exists with rate L R such that DL(e, r) < A  < 00, 

where A is independent of L. The computation of DL( e, r) 
for any nontrivial e and r is a hopelessly complicated 
task, so instead of working directly with any individual 
code, we shall use random-coding techniques. That is, we 
shall consider the average value of D,(e, r) over all e in 
an ensemble of codes. By an ensemble, we mean a set of 
codes and a probability measure on this set. The idea here 
is simple: if we can find a finite number A such that, for 
all L,  the ensemble average of D,(e, r) < A ,  then for any 
given L,  a code e exists such that D,(e, r) < A .  

In the following, we shall consider a family of ensembles 
{Ens( M ,  Q ) }  parametrized by ( M ,  Q). Here, M is of the 
form M = ( M I , .  . . , M,; k) and designates the parameter 
of the codes in the ensemble Ens(M, 9). The second 
parameter is of the form Q =  (Q1;- . ,Q,) ,  where Q, is a 
p.d. on X," for each i = l ; .  ., n ,  and it specifies the 
probability measure associated with Ens( M ,  Q). 

More precisely, the ensemble Ens(M, Q )  has as its code 
set the set of all n-user tree codes with parameter M. The 
probability measure associated with Ens ( M ,  Q) is such 
that a code chosen at random from this probability mea- 
sure has the same statistical properties as the outcome of a 
random experiment in which, for each i= l ; . . ,n ,  each 
branch in user i 's tree code is independently assigned the 
symbol 6 E X," with probability Q , ( [ ) .  

61n all of these definitions, it is implicitly assumed that the coordinates 
of the points are nonnegative. 

'This definition, which is the one commonly used in the literature, 
allows e to depend on L. For an alternative definition, where e has to be 
independent of L,  see Section VI. 
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Now we shall consider the expected value of D,(e, r) 
over Ens ( M ,  Q )  for a fixed but otherwise arbitrary ( M ,  Q).  
To simplify the notation, we shall suppress arguments that 
are held fixed through the following development. The 

probability measure associated with Ens ( M ,  Q ) .  

and if m 2 j, 

A ( s, m, (. . j ) ,  

=EeEyleseXP t C ( ~ ( e u ( h ) ,  ~ ( h ) )  notation E, will denote the expectation operation wrt the { i 1 5 h S J  

EeD,(e) = (1/L)Ee{C,(e)+ +C,(e) )  - y(es(h), Y ( W  - c y(es(h), Y ( h ) ) ) } .  
= ( l / L ) { E , C , ( e ) +  +EeCL(e)}. (3.1) j < h < m  

Therefore, E,D,(e) can be upper-bounded by upper- (3-7) 
bounding E,Cl(e) for each i .  Since the branch labels are statistically independent and 

the channel is memoryless, (3.6) and (3.7) can be rewritten 
as follows. For any u(.  . j )  E I f ( s ) ,  if j > m, 

A (  s, m ,  u ( .  . j ) ,  t )  

=EeEsEyIesCi(e,s, Y )  

= EsEeEy\esCi(e, s, Y ) .  (3-2) 
Reversing the order of expectations is justified by the 

nonnegativity of the terms involved. E,Cl(e) will be 
upper-bounded with the help of the following lemma (c.f., 

= n 'eEy(h)1es(h) 
r s h s m  

[14, lemma 6.2.1]).8 .exP {t(y(eu(h), Y ( h ) ) -  y(es(h), A h ) ) ) )  
Lemma 1: For any t 2 0, fl EeEy(h)les(h)eXP { ty(eu(h), y ( h ) ) ) ,  (3*8) 

c , ( e , s , y )  I C e x p { t ( r ( 4 . . j ) ,  A . . j ) )  m < h S J  

u( J )  E I , ( s )  m 2 I and if m 2 j ,  
-r(es(..m), y(..m)))}. (3.3) 

Proof: A node u ( . . j ) ~ I , ( s )  reaches the stack top 
A ( s ,  m, u( . . j ) ,  t )  

only if = n EeEy(h)les(h)  
I S h l J  

r (eu( . . j ) ,  y ( . .  j ) )  2 r ( e s ( . . m ) ,  y(.-m)), 

for some m 2 i. (3.4) 
Therefore, for t 2 0, exp { t(r(eu(. . j ) ,  y ( .  . j ) )  - 
I'(es(. .m), y(. .m)))) upper-bounds the indicator function 
of the event that u ( . . j )  E I l ( s )  reaches the stack top. The 
lemma follows by summing over all nodes in I f ( s ) .  

A ( s ,  m , u ( . . j ) , t )  := E,EYlesexp(t(r(e~( . . j ) ,  y ( . . j ) )  

By Lemma 1, 

Let 

- r(es(..m), y(..m)))}. 

E,Cl(e) I E, A ( s ,  m,u(. . j ) ,  t ) ,  
u(..J) E I , ( s )  m 2 I 

for all t 2 0. (3.5) 
We now seek an upper bound on A(s, m, u(. . j ) ,  t ) .  Note 
that, for any u(.  . j )  E I l ( s ) ,  if j > m, 

A ( s ,  m , 4 . . j ) ,  t )  

=EeEylesexp t C ( ~ ( e u ( h ) ,  ~ ( h ) )  { ( i s h s m  

- v(es(h), Y ( W )  + c y(eu(h), Y ( h ) ) ) } ,  
m < h s j  

( 3 4  

*We could simplify (3.2) by observing that E,E,,&(e,s,y) has the 
same value for all s; hence in (3.2) E, can be dropped and s replaced by 
any fixed path. 

(3.9) 
where Ey(h),es(h) denotes expectation wrt the conditional 
probability that y ( h )  is received at the channel output 
given that es( h )  is transmitted. 

To simplify the expression for A(s, m, u(.  . j ) ,  t ) ,  we 
need some definitions. The type of a node u(..m) = 

ul(. .m) x . e x un(. .m) wrt a path u = ul x X u, is 
defined as an m-tuple (TI;  * a ,  T'), where T,, 1 I j s m, is 
the set of users i ,  l s i l n ,  such that ul( . . j)#ul( . . j) .  

For later use, we wish to point out here that the number 
of types for level-m nodes wrt any fixed path equals 
(rn + 1) It. This can be seen by observing that if (T,, . . . , T,) 
is a type, then TJ must be a subset of Th for all h > j .  Thus 
m + 1 ways exist in which a user i first appears (one 
possibility being that it does not appear at all) in the 
sequence of sets T,; . -, T,. By a similar argument it can 
be seen that the number of types for level-m nodes in 
Z, (u), where u is an arbitrary fixed path, equals (m - i + 2)" 
becausenow TI= =T,-,=0. 

The underlying probability measure, incorporating the 
randomness of the code and the channel transitions, with 
respect to which the expectations must be computed can 
now be stated explicitly as follows. Let u(.  . j )  be a node in 
I l ( s )  with type (T,, e ,  T,) wrt s, where necessarily TI = 

=T,-,=0. Then for any h~ { l , . . . ,  j } ,  q € Y k ,  E =  
6, x X E,, and 1 ={, X . . .  Xl,, where [,E X,!, {,E 
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(3.10) 
where 1 is the indicator function and Th is the complement 
of Th in { l , . . . , n } .  

The notation is simplified by writing 

Q ( E )  in place of II Q r ( k r )  
l s r s n  

1 { 5 F , = t F * }  inplaceof n l { S p = t p }  
P E ' h  

for every nonempty Th c { 1, - . . , n }. For Th = 0 ,  we shall 
adopt the convention that 1{ = E F ~ }  = 1 and Q( E T , )  = 1. 

Using this notation, (3.10) can be rewritten as 

P r { e s ( h ) = E , e u ( h ) = S , y ( h ) = q }  

= Q ( ~ ) Q ( s ~ * ) ~ {  SF,= tF,}phIt) .  
We can now evaluate the terms appearing in (3.8) and (3.9) 
as follows: 

EeEy(h)(es(h)exp { - t y ( e s ( h ) ,  y ( h ) ) }  

=cCQ(E)P(r l lE)exp{-ty(E,r l ) }  (3.11) 
r l E  

EeEylcsexP { t ( ~ ( e u ( h ) ,  ~ ( h ) ) - ~ ( e s ( h ) ,  ~ ( ' 1 ) ) )  
= c c ~ ~ ( t ) ~ ( ~ ~ ~ ) i { ~ ~ ~ = t ~ ~ }  

r l E S  

*P(rllE)exp{ f ( Y ( L d - Y ( t d l ) ) }  (3.12) 

EeEyleseXP { t~ (eu(h  ), Y ( h ) ) )  

= C C C Q ( E ) Q ( J ~ , ) ~ { ~ ~ ~ = S ~ ~ }  
I t S  

+(rllE)exp { t Y ( P , d ) .  (3.13) 

In (3.11)-(3.13), q runs through Y", E and S through 

We observe that the right side of (3.11) is independent 
of s and h ,  and the right sides of (3.12) and (3.13) depend 
only on Th. Therefore, for further simplifications we define 
a( t ) ,  a (Th, t ) ,  and P(Th, t )  as the right sides of (3.11), 
(3.12), and (3.13), respectively. We also define, for any 

( X ,  x * * * x X,)". 

type T = (T,,. * - 9  T,), 

4-1 , t )  * * *a(Tm,t)P(Tm+,J)  * * . P ( T , J ) ,  
j > m  

a ( T , , t )  - .u(T, , t )a<t)"- ' ,  m 2 j .  

x ( m , T , t )  := 

Now for any node u(.. j )  of type T wrt s ,  A(s, m, 
u( . .  j ) ,  t )  = x ( m ,  T ,  t ) .  Thus A(s, m,u( . .  j ) ,  t )  depends on 
u(.. j )  only through its type wrt s. We now proceed to 
simplify the summation in (3.5). 

For all i and j ,  1 I i I j ,  let T ( i ,  j) be the set of types 
(T,; e ,  T,) such that T, = =0 and T, Z0. Thus 
T(i, j )  is just the set of all possible types for level-j nodes 
that are in I l ( s ) ,  for any arbitrary s. 

Let N(f) be the number of nodes of type T wrt a fixed 
path. (Clearly, N ( T )  is the same for any fixed path.) We 
can rewrite (3.5) as follows: 

= 

00 00 c 
m = i  

EeC1(e) I E, c C c 
j = i  T E T ( 2 , j )  U( J ) .  

type of u( j)wrt s = T 

. A ( s ,  m , u ( . . j ) ,  t )  
W 

= E , C  c N ( T )  E n ( m , T , t ) ,  
J = t  T E T ( f , J )  m = i  

for all t 2 0. (3.14) 

Now we shall upper-bound N(T)x(rn ,  T ,  t). 

if T = 0 ;  

For T c {l; . 0 ,  n} and M =  ( M , , . .  -, M,,; k), let 

For any type T = (T,, . *, T,), let a( T) := M( Tl) . . . 
M(T,) .  Also let 

\k( t ) := max { M (  T )  max { u ( T ,  t ), P ( T,  t ) } } . 

Now for any T E T(i, j ) ,  we have the following trivial 
inequality : 

T Z 0  

N ( T ) A ( m , T , t )  I M ( T ) x ( r n , T , t )  

if j > m ;  

, if m 2 j .  

Substituting this inequality into (3.14) and noting that E, 
is superfluous, 

W 00 

j = i  T E T ( 2 , j )  h = O  

all t L 0. (3.15) 

Recalling that the number of types in T(i, j )  equals ( j  - i 
+ 2Y, 

m m 

J = I  ( h = O  
E , C , ( e ) I  C ( j - i + 2 ) f l \ k ( c ) J - '  j - i +  C a ( t l h  

m 00 

J = o  h - 0  

all t 20.  (3.16) 

The right side of (3.16) will be finite if \ k ( t )  < 1  and 
a ( t )  < 1. We have thus obtained the following sufficient 
conditions on achievability.' 

91t is possible to obtain a stronger version of Theorem 1 in which 
a ( t )  < 1 is relaxed to a(?) <1 by following Gallager's proof for the 
single-user case [13, appendix 6B] more closely than we did here. 
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Theorem 1: A point R is achievable by r if, for an 
ensemble Ens( M ,  Q )  of codes with rate 2 R, there exists a 
t > 0 such that for each nonempty T C {l; . -, n } ,  

a ( t )  <1 M ( T ) P ( T , t )  < 1  M ( T ) a ( T , t )  <1. 

Proof: Let R be given, and suppose that an ensemble 
exists as in the statement of the theorem. Then for this 
ensemble, by (3.1) and (3.16), E,D,(e, r) < A ,  where A 
denotes the right side of (3.16) and is finite and indepen- 
dent of L. It can be concluded that, for any given L,  the 
ensemble contains a code e for which D,(e, r) < A .  

IV. THE NEW METRIC 

In this section, we shall consider a parametric family of 
metrics and find an inner bound to the union of their 
achievable rate regions. Both the metric and the inner 
bound region are generalizations of the ones that were 
introduced in Section I, and the reader may find it helpful 
to go through the following arguments first by setting 
n = 2. 

A.  The Metric 

The metric parameters are of the form (Q,  B )  where 
Q = (Q1; . -, Q,)  and B = { B ( T ) } .  Here Q, is a p.d. on 
X," for each i = 1;. e ,  n ,  and some integer k 21 (the same 
k for each i). The integer k corresponds to the number of 
symbols per branch in the tree codes to which this metric 
is applicable; in other words, in decoding a tree code with 
k symbols per branch, we can only use those metrics for 
whxh Q, is a p.d. on XF. The numbers B ( T )  are called 
the bias terms, and one B ( T )  exists for each nonempty 
subset T of {l; . ., n } .  

For any such parameter (Q, B ) ,  the branch metric p ( Q , B )  
is defined as follows. For each q E Y k  and [ = 

t l x  xE,, where E,EX,", i = l ; * . , n ,  

p ( Q , B ) ( E ? q )  := { p ( Q , B ) , T ( t ? q ) }  (4.1) 

where the minimum is taken over all nonempty subsets of 
{l; . e, n } ,  and for each T we have 

Sr 

(4 4 
Here, P(q1E) and (I([,) are as defined in the previous 

sections. The notation P(qIE;J.,ST) is new; it denotes the 
conditional probability that q is received at the channel 
output given that the transmitted block at input i equals S ,  
if i E T and 6; if i E T. The summation in (4.2) is over the 
Cartesian product of the sets { X j  }; E ,. 

The "minimum" in the definition of p(Q,g)  serves the 
following purpose. We want to have a metric that has a 
negative drift on each incorrect path, irrespective of 
the number of users that are followed correctly on that 
path. This is accomplished here by setting p ( Q , B )  = 
min { p(Q, B ) ,  T }  and choosing p(Q,  B),  , in such a way that it 

has a negative e5pectation on all branches on whch only 
the users in set T are followed correctly. As will become 
clear in the following analysis, another major considera- 
tion in the selection of the functions ptQ, B ) ,  , has been the 
form of the sufficiency conditions of Theorem 1. 

B. Inner Bound for a Fixed Parameter 

We now fix M ,  Q, and B and consider the ensemble 
Ens(M, Q )  and the metric p(Q,  B). The goal is to find an 
inner bound to the achievable rate region of p(Q:g),.  We 
start the analysis with the following lemma, which is just a 
special case of Theorem 1 at t = 1. 

Lemma 2: Suppose that for Ens(M, Q )  and ptQ, B )  the 
following conditions are satisfied: 

1) a(1) (1; 
2) M ( T ) P ( T , 1 ) < 1  forallnonempty T c { l , . . - , n } ;  
3 )  M ( T ) a ( T , l )  <1 for all nonempty T c {l; ., n } .  

Then p(Q, B )  achieves the point (l/k)(ln M , , .  . -,ln M,) .  
Next we find upper bounds on a(l) ,  P(T, l) ,  and cr( T,  1). 

These upper bounds will yield weaker but more readily 
applicable sufficient conditions on achievability than those 
in Lemma 2: 

a(1) = C CQ(E)P(qIE)exP { - P ( Q , B ) ( k q ) }  
V E  

where 

This is the desired upper bound on cy(1). 

In the following expressions we will use the notation 
p(Q,B) (ST ,  F;T, q) to denote the value of p(?,!, for the case 
where the branch label for user i equals Si  if I E T and Si if 
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i E T. 

I T  

Lemma 3: Suppose that the following are true: 

1) & ~ X P  { - k[Ro(Q, T ) -  B(T)I} 
2) M ( T )  exp { - k B ( T ) }  < 1, for each nonempty 

subset T of {l; ., n } .  

Then p ( Q ,  achieves the point (l/k)(ln M,; .,In M , ) .  
Now7 we focus on the following particular choice for the 

bias terms, which turns out to be a satisfactory one. For 
every nonempty subset T of {l; -, n}, let 

B M ( T )  := (1/2){Ro(Q,T)+(l /k) lnM(T)) .  
We shall denote the metric with parameter (Q, B M )  by 

a ( M , Q )  := ~ { R , ( Q , T ) - ( l / k ) l n M ( T ) }  
p(A4.Q). Let 

where the minimum is over all nonempty subsets of 
{l; . -, n}. 
Lemma 4: If 6 ( M ,  Q) > (2/k)ln(2" -l), then p ( , , Q )  

achieves the point (l/k)(ln M I , -  . .,ln M,) .  
Proof: Suppose that 6 ( M ,  Q) > (2/k)ln(2" - 1). We 

only need to show that p ( M , Q )  satisfies the conditions of 
Lemma 3: 

= exp { - k [ R o ( Q ,  T )  - ( V k )  In M ( T ) ]  /2} 

<exp{-k6(M,Q)/2) <1. 
The second condition is also satisfied, and the proof is 
complete. 

We have thus shown that the region 

I T  %,((I) := ( ( R , , . - - , R , ) :  

c Q ( JT 1 / m G m  I 0 I R ,  < R o( Q, T)  - (2/k) In (2" - l ) ,  all T 
i € T  

is an inner bound to the achievable rate regon of P ( , , ~ )  

for all (M, Q )  for which 6( M ,  Q) > (2/k)ln(2" - 1). 

= exp { - kB( T ) }  . (4.5) 

As a result of (4.3)-(4.9, Lemma 2 can be restated in the 
following weaker but more useful form. 

C, The Union of %,(Q) Over All Q 

We now seek an inner bound to the union, over all 
possible (M, Q), of the achievable rate region of P( , ,~ ) .  
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We start with some definitions: 

P( k ) := { Q = ( Q , , .  . . , Q ,  ) : Q, is a p.d. on X:, 

all i = I ; . . , n )  
- 

R , ( k )  := u R , ( Q )  R , : =  u R , ( k )  
Q E W k )  k 2 l  

R, (  Q )  := { ( R , ,  * . . , R , )  : 0 I 

R , ( k ) : =  u R , ( Q )  R o : =  u R , ( k ) .  

It is clear that R , ( Q )  c R,(Q),  R , ( k )  c R,(k), 2, c R,, 
and 

E ,  C u {achievable rate region of P ( ~ , ~ ) } .  (4.6) 
all ( M ,  Q )  

The remainder of this section is devoted to proving the 
following result. 

R ,  < R,( Q ,  T ) ,  all T 
r € T  

Q E W k )  k 2 1  

Theorem 2: We have 

R, c u {achievable rate region of / . L ( ~ , ~ ) } .  (4.7) 

We prove (4.7) by showing that R o = z o .  The argu- 
ments involved are trivial corollaries to Lemma 5 ,  stated 
next. 

For any finite set X ,  any p.d. Q on X ,  and any integer 
m 2 1, let e(") denote the (product-form) p.d. on X" such 
that for any ( = + a ,  tm)  E X", 

all (MI Q )  

=e([,) . . . Q ( < r n ) *  

For any k, m, and Q = (Q,;  e e ,  Q,) E P ( k ) ,  let the 
parameter Q(")  E P(mk) be defined by Q'") := 

(Qi"), * * , QA")). 
Lemma 5: We have 

R , ( Q ,  T )  = Ro(Q(") ,  T ) ,  for all possible Q ,  T ,  and m. 

The proof is straightforward and will be omitted. We 
will also omit the proof of the following corollary. 

Corollary 1: We have the following: 

1) K o ( Q )  CKo(Q'"' ) ;  
2) R , ( k )  = R,(km); 
3) Ro(Q) = Ro(Q'"'); 
4) R,(k) c R,(km)* 

These statements hold for all possible values of Q, m, 
and k. 

It follows from the corollary that R , ( k ! )  includes all of 
the sets Bo(?), 1 I h I k. Also, the difference between 
R,(k) and R,(k)_vanishes in the limit as k goes to 
infinity. Therefore, R ,  = R, ,  and the proof of Theorem 2 
is complete. 

D. Discussion of Results 

1) This section has shown that RocRcomp for all 
MAC'S. To complement this result, we note that it is not 
known if a channel exists for which the statement 

Rcomp c closure of R ,  (4.8) 

is false. We should also note that the set (closure of 
R,\R,) consists of only those points that lie on the "outer 
surface" of R, .  More precisely, for any point (R,, .  . ., R , )  
in this set, and any E > 0, a point exists in R ,  which is 
componentwise 2 ( R ,  - E ,  R ,  - E ;  ., R ,  - E ) .  Therefore, 
if (4.8) is satisfied for a channel, then Rcomp and R ,  for 
that channel can be regarded as essentially the same. 

As pointed out in Section I, (4.8) is true for all single-user 
channels. Another class of channels for which (4.8) is true 
is, as proved in [9], the class of pairwise-reversible chan- 
nels. A MAC (P; X,; , X,; Y )  is said to be pairwise 
reversible [15] if, for each E , ,  5, E XI, i = 1,- . ., n ,  

An example of a pairwise-reversible channel is the two-user 
erasure channel of Fig. 3. In fact, painvise-reversible chan- 
nels include all such noiseless channels, Le., channels for 
which the transition probabilities are either 0 or 1. 

For noiseless channels it is known that Rcomp = R, .  
Furthermore, all points in Rcomp are achieved by a simple 
branch metric which assigns the value 0 to a branch that is 
consistent with the channel output and - GQ to one that is 
inconsistent. 

2) A further result relating to the regions R ,  and Rcomp 
is the following. For any ensemble Ens(M,Q) with 
6 ( M ,  9 )  < 0, 

E , D , ( e , r ) + m  as L - G Q ,  

regardless of what the metric r is. Here the expectation is 
over all codes in Ens ( M ,  Q ) ,  and r need not be a branch- 
wise additive metric. 

This is a result about "typical" codes. It does not imply 
that RComp~closure R ,  for any MAC. However, this 
result is significant for at least one reason. It shows that 
R ,  is essentially the largest region that can be proven to be 
an inner bound to R,,, by using random-coding argu- 
ments over the class of ensembles we have considered in 
this paper. For a proof of this result and further discus- 
sions, refer to [9]. 

3) The previous results suggest the following procedure 
for finding, if they exist, a suitable code-metric pair for 
achieving a desired rate R = (R , ;  e ,  R, ) .  First try to find 
a parameter ( M ,  Q )  such that 6( M ,  Q )  > 0 and the rate of 
codes in Ens(M,Q) is 2 R. (Unfortunately, no practical 
algorithm is known for finding such an ( M ,  Q )  or de- 
termining that none exists.) Supposing that such an ( M ,  Q )  
has been found, let m be the smallest integer such that 
6 ( M ( " ) ,  e(")) > (2/(mk))ln(2" - l), where k is the block 
length for Q ,  (ie., Q E P(k)),  and M ( " )  = 
(MF, . .  ., M,"; km). Select a code at random from 
Ens(M("), Q'")) and use 

The probability that the average computation for a code 
selected at random from an ensemble is more than twice 

as the metric. 
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the average computation over all codes in the ensemble is 
smaller than 1/2. Therefore, significant assurance exists 
that a randomly constructed code will not be far worse 
than typical. 

We have suggested the use of the smallest m satisfying 
6( M ( “ ) ,  Q‘”)) > (2/(mk))ln(2“ - 1) because the complex- 
ity of each step in the stack algorithm (also in other 
sequential decoding algorithms) is proportional to the de- 
gree of the tree code, and the degree increases exponen- 
tially with the number of symbols per branch. 

4) The metric in sequential decoding can be regarded as 
a likelihood ratio for testing the hypothesis H,: “the 
branch is on the correct path” against the alternative H,: 
“the branch is on an incorrect path.” H, is a simple 
hypothesis for all n. On the other hand, H ,  is a composite 
hypothesis consisting of 2“ - 1 p.d.’s (one p.d. for each 
possible way the current branch may have diverged from 
the correct path). 

From this point of view, the additional difficulties in 
multiuser sequential decoding can be attributed to the fact 
that testing a simple H, against a composite HI is an 
inherently more difficult problem than testing a simple H, 
against a simple H,, which is the case for n =l. This point 
of view can also be used to explain why we have been able 
to prove larger inner bounds for metrics over longer 
branches. The number of symbols per branch of the tree 
code corresponds to the number of samples in the hy- 
pothesis testing framework. Therefore, as the branch length 
increases, it becomes easier to distinguish H, from each 
p.d. in Hl. Clearly, it is of crucial importance that the 
number 2” - 1 of p.d.’s in Hl is independent of the branch 
length. 

V. SOME REMARKS ON THE REGIONS R ,  AND R,,, 

Here, we list some properties of the regions R ,  and 
RComp and some open problems relating to them. 

1) No algorithm is known for determining whether or 
not a given point belongs to I?,,,; neither is one known 
for R,. In fact, the only known general characterization of 
R,,,, is its definition. 

2) It is not known if R,,, is convex. Note that the 
possibility of time-sharing between two different tree codes 
and decoding each independently does not imply the con- 
vexity of R,,,,. This is because, in general, the operation 
of two independent sequential decoders cannot be simu- 
lated by a single sequential decoder. Also note that it may 
be possible to prove the convexity of R,,, (if indeed it is 
convex) without actually having to find an analytical char- 
acterization of R,,,. 

3) For n =1, we have R ,  = R,(1) by Gallager’s parallel 
channels theorem [13, pp. 149-1501, and R ,  is easily 
determined. However, for n 2 2, no such single letter char- 
acterization of R, is known. In fact, there are multiuser 
channels for which R ,  # R,( l ) .  An example of such 
a channel is the two-user m-ary collision channel 
(P; X, ,  X,; Y), where X, = X ,  = { 0,1, * * * ,  m - l}, Y = 

{e,O,l;. . ,m-l}, and 

P(x,lx,,O) = P(x,lO, x,) =1, 
P(elxl, x2) =I, 

all x1 E X,, x, E X,, 
all X ~ E  {l;. ., m -l}, 

X 2 E  { l , - - . , rn - l} .  

A simple calculation shows that the point (1.5 bits, 1.5 
bits) lies outside R,(l). R,(2) contains all points (R,  R )  
such that 0 I R < (1/2)log, (m) bits. Therefore, for m > 8, 
R,(2) is strictly larger than R,(l). It can also be shown 
that, for any r ,  r-user collision channels exist for which 

4) The region R ,  is convex. To see this, let Q = 
(Q1,-. 0 ,  Q,) E P(k) and @ =  ( @ , , e .  0 ,  @,) E P ( j )  be arbi- 
trary parameters. Let ml and m 2  be arbitrary integers. 
Consider the parameter H = (H, ;  - e ,  H,) E P(rn,k + 
m 2  j )  such that 

R ,  # R,(l)U . . . u R,(r ) .  

H, = ~ ! m l k )  x Q ( m 2 j ) ,  all i. 

In other words, Hi is a product-form distribution with 
mlk “copies” of Qi and m 2  j “copies” of Qj. Convexity of 
R, is an immediate consequence of the following relation- 

( m l  + m,)Ro(H, T )  = mlRO(Q, T ) +  m,Ro(@, T ) ,  

all T. 

While R ,  is convex, gven any r we can find a channel 
(e.g., an r-user collision channel) for which R , ( r )  is not 
convex. 

It is not known if R, = convex-hull R,(1) for all MAC‘S. 
If this were true, we would then have a characterization of 
R ,  similar to that for the capacity region [5], [6]. 

ship: 

5 )  If T c S, then R,(Q,  T) I R,(Q,  S ) .  

Proof: Let Q E P( k). Then 

. L  

= -in c CQW{ c Q(E,,,)CQWPG~G) 

2 -in c CQW c Q(C,, ,){CQ(E~)K~~O)~ 

= -in c cQ(E~){cQ(s~)PG~G)~ 

v k  E \ T  €7 

v k  E\T ET 

rl €7 €T 

= kR,(Q, T )  
where the third step follows by Jensen’s inequality. 

Note that the proof works for T = O  as well. Hence 

6) For any subset T of users, let 
Ro(Q, S )  2 0- 

P(qlET) := CQ(ET)P(qlE). 
ET 
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The quantity P(ql tT)  can be interpreted as the transition 
Probability between the users in the set T and the receiver, 
supposing that the users in T transmit (7 with probability 
Q(t7 ) .  If one is only interested in decoding the messages 
of the users in T, then one may model the remaining users 
as noise sources and thus obtain a reduced channel with 
these transition probabilities. Such schemes have been 
studied in [9]. The following inequality is of interest in 
comparing the achievable rates for the reduced channel 
with those for the original one. For any Q E P( k ) ,  

-1n c ( ZQ((~)/T~EJ)’s ~ R , ( Q ,  T I -  

kR,(Q,  T )  = -in EQW(ZQ(W/E~)~~  

q ET 

Proof: We have 

q tt ET 

= -1n c q e( hr cQ(tT)/e(6,)Po)2 ET 

2 - l n ~ { ~ Q ( t ~ ) , / v ) ’  rl 

= -1n c q ( cQG~)/G~GT)* ET 

where the third step follows by Minkowsky’s inequality. 

VI. STRONG ACHIEVABILITY 

The achievability concept used in the sequential decod- 
ing literature coincides with the one given in Section 11. 
There is a disturbing point about this definition, however: 
the code e is allowed to depend on L.  Instead, we would 
like to see achievability defined as follows. A point R =  
(R,, . ., R,) is said to be strongly achievable by a metric r 
if a code e exists with rate 2 R such that for all L ,  

&(e, r> < A 

where A is a finite number independent of L.  
Thus for achievability in this stronger sense, we need a 

code e that is uniformly good for all L. Obviously, any 
point that is strongly achievable is also achievable. It is not 
known, however, if the converse is true. The following 
theorem provides a partial answer. 

Theorem 3: All points in R, are strongly achievable. 

Proof: For any R = ( R , ;  . -, R,) E R,, by the results 
of Section IV, an ensemble Ens (M, Q) of codes exists with 
rate 2 R such that 

EeCi(e,  r)  < A ,  all i > l ,  

where denotes the metric of Section IV and A is a finite 
number independent of i .  

If we regard e as a random code from Ens( M, Q), then 
C,(e,  r), C,(e, r), . . . is a stationary sequence of random 

variables. By Birkhoffs ergodic theorem [16, p. 1131, as 
L -, 00, D,(e, r) converges (almost surely) to a random 
variable D ( e ,  r) such that E,D(e, F) = EeCl(e, r). Thus 
one has 

E, l im D,(e,  I?) = E,D(e ,  r) = E,C,(e, r). 
L’KJ 

Therefore a code Z must exist in Ens(M, Q) such that 
limsupD,(Z, r) I EeCl(e, r). Now we show that this im- 
pliessup{D,(Z,T): L 2 1 )  <00 .  

Suppose to the contrary that sup { DL( Z, I’): L 2 1 )  = 00. 

There must then be some finite L such that D,(Z, r) = 00, 

implying that Ci(Z, r) = 60 for some i ,  1 I i I L.  This 
implies in turn that Dj(Z, r) = 00 for all j 2 i ,  a contradic- 
tion. 

VII. SUMMARY 

A new metric has been introduced for sequential decod- 
ing on MAC‘S, and an inner bound R, to the achievable 
rate region of this metric has been found. The region R ,  is 
large enough to suggest that sequential decoding is a 
worthwhile decoding algorithm for MAC‘S. 

Several open problems regarding the regions R,,,, and 
R , have been presented. The main open problem is whether 
RComp is strictly larger than the closure of R ,  for any 
MAC. Two other interesting open problems are whether 
R,, is convex and whether R, = convex-hull R,( l ) .  A 
shortcoming of the common concept of achievability in 
sequential decoding has been pointed out, and it has been 
proven that points in R o  are also achievable in a stronger 
sense. 
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