
Set of open-loop block-diagonalizers of transfer matrices 
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The set of open-loop (right) block-diagonalizers of a given p x m transfer matrix 2, 
with specified block sizes, is studied. A characterization of this set is obtained in 
terms of a 'maximal' open-loop block-diagonalizer and a minimal proper basis of the 
kernel of 2. The relevance of the results to some non-interacting control problems is 
pointed out. In particular, the results obtained yield a minimum delay solution to 
the block-decoupling problem using dynamic state feedback. 

1. Introduction 
In this paper, we present a systematic approach to the study of the set of open-loop 

block-diagonalizers of a transfer matrix. We characterize (Theorems 1 and 2) all 
elements of this set via a representative of the subset of 'maximal open-loop 
diagonalizers' and a proper basis matrix for the kernel of the transfer matrix. The 
special open-loop diagonalizers defined via the Hermite normal form have the 
property of having a 'minimum rank zero coefficient matrix' (Corollary 1). These 
results lead to an easy recovery and extension (Theorem 3) of certain results that find 
application in non-interacting control. In particular, the recent result of Dion and 
Commault (1985) on the diagonalization problem by dynamic state feedback is easily 
extended to the block-diagonal case (Corollary 2). 

In 5 2, we examine the simpler problem of diagonalization in detail. These results 
are then extended to block-diagonalization in 9 3, where the treatment is quite concise 
since the details parallel the development of § 2. 

A short description of the terminology and notation used in the paper is as follows. 
We define the (causality) degree of a rational function of z with real coefficients (i.e. an 
element of the field of real rational functions IR(z)) to be the difference between the 
degrees of its numerator and denominator polynomials. Thus, if a is in R(z), then 
a = p/q for (coprime) polynomials p and q in RCz] and deg a := deg p - deg q.  The 
degree of 0 is assigned to be - co for convenience. An element a in R(z) is called 
proper if and only if deg a < 0 and strictly proper if and only if deg a < 0. The set of 
proper elements of R(z) form the ring of transfer functions (Morse 1975), denoted by 
Rpr(z). A degree 0 element (unit) of this ring is said to be biproper. 

If A is in R(Z)~"", then deg A:= max {deg Aij}, for i = 1, ..., p and j = 1, ..., m. A 
rational matrix is proper if and only if deg A < 0 and strictly proper if and only if 
deg A < 0. A p x m rational matrix is called lefi biproper if and only if it is proper and 
admits a proper right inverse, i.e. there exists a proper m x p matrix B such that 
AB = I; it is called right biproper if and only if its transpose A' is left biproper. If a 
square rational matrix is left (or right) biproper, then it is called biproper. If A,  
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denotes the coefficient of z0 in the Laurent series expansion in z-' of A, then a proper 
A is well known to be left biproper if and only if rank A, = p, or equivalently, A, is left 
invertible. Finally, we define the concept of row properness for a rational matrix. Let 
A be in R(z)Pxm with Ai denoting its ith row, a 1 x m matrix. Let pi:=deg Ai and 
define the row degree matrix D of A to be D:=diag (2") which is a diagonal non- 
singular matrix. Let B:= D-'A. The rational matrix A is called row proper if and only 
if B is left biproper. The zero coefficient matrix B, of the proper matrix B is called the 
highest row coeficient matrix of A and is denoted by A,. We note that if A is a 
polynomial matrix, then our concept of row properness is precisely that of Wolovich 
(1974). It is easy to see that any rational A (row proper or not) can be uniquely 
represented as A = D(A, + Y) for some strictly proper rational matrix Y. (The dual 
concepts are defined similarly or via 'matrix transpose'.) 

2. Open-loop diagonalizers 
Let Z be a p x m transfer matrix. Another m x p transfer matrix T is called an open 

loop diagonalizer (OLD) of Z if and only if D := Z T  is diagonal and non-singular. In 
this section, the set of OLDs of Z are examined. A convenient characterization of this 
set is obtained and certain elements of special properties relevant to diagonalization 
problems are identified. 

We start by observing that the condition 'rank Z = p' over R(z) is necessary for the 
existence of an OLD of Z since D is required to be non-singular. This condition is also 
sufficient, i.e. any full row-rank Z has an OLD. We prove this via the Hertnite normal 
form (Morse 1975) of Z over R,(z) under right equivalence. For convenience, we fix a 
complete residue system and a complete system of non-associates with respect to the 
monic polynomial z. Then, there exists a biproper matrix E such that ZB = [H 01, 
where H = DU for some unimodular polynomial matrix U and a proper diagonal 
matrix D = diag {z-~ ' )  with non-negative integers di(i = 1, . . . , p). Consequently, 
H - ' = U - ' D - is a polynomial matrix of column degrees, say, ei(i = 1, . . . , p). If we 
define 

T, = BIH-'Dm (1) 

where B, is the submatrix consisting of the first p columns of B and Dm := diag ( z -") ,  
then ZTm = Dm with Dm non-singular and Tm proper. Note that the condition 'rank 
Z = p' is used to assure that H- ' exists. The integers ei(i = 1, . . . , p) are called the 
essential orders of Z by Commault and Dion (1986) and Commault et al. (1986). Since 
H is unique, it follows that the essential orders associated with all OLDs of Z, defined 
via the Hermite normal form of Z as above, are the same. 

Let Wm be a right biproper matrix, the columns of which constitute a basis of 
ker Z. If rank Z = p, then Wm has size m x (m - p) and B, defined by B = [B, B,] of 
the construction above is one such basis matrix. A useful property of Tm of (1) is that 

In fact, from (1) and the properness of H-'Dm, Im Tmo is in Im B,, and, from the 
biproperness of B, Im B,, n Im B,, = 0; implying that Im Tmo n Im B,, = 0. 
However, any basis matrix Wm of Z is related to B, by Wm = B ,  A for some biproper A. 
It follows that Im Wmo = Im B,,, yielding (2). Also, observe that each column of T, of 
(1) is right biproper, i.e. deg Tmi = 0 for all i = 1, ..., p. We now show that any Tm 
defined through the Hermite normal form as above achieves the maximal column 
degrees for D = ZT. 
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Lemma 1 
If T is an OLD of Z with D = ZT then D i 1 D  is proper. 

Proof 
The proof is by contradiction. Let E := D; ' D and suppose deg Eii > 0 for some i. 

Then the ith column ?;: of T satisfies ZTE, ' = ZTmi = Dm, and hence the vector 
'T;Eil - Tmi is in ker Z, i.e. TE,' - Tmi = W,y for some proper vector y, and is itself 
proper. Furthermore, as 'T;E, is strictly proper by deg Eii > 0, we have ( T E ,  ' 
- T,,), = Tmio. Therefore, W,, yo = T,,, and this contradicts ( 2 )  since Tmio is non-zero. 

17 

A characterization of the set of all OLDs of Z may now be given in terms of T, 
and W,. 

Theorem 1 
Let rank Z = p and let T, be defined by (1). Also let W, be a right biproper basis 

matrix of ker Z. An m x p transfer matrix T is an OLD of Z if and only if 

for some transfer matrices Y,  and Y, with Y,  diagonal and non-singular. 

Proof 
Clearly, any T defined by (3) for some Y ,  and Y with stated properties is proper 

and satisfies Z T  = Dm Y,. Hence, it is an OLD of Z achieving D = Dm 5. Conversely, if 
T is an OLD of Z so that D = ZT is diagonal and non-singular then from (I), 
T - T,D; ' D = Wm Y for some (m - p) x p rational matrix Y. Since Y ,  := D; ' D is 
proper by Lemma 1 and since W, is right biproper, it follows that Y is proper. 
(Actually, Y = W(T - T,&) for a proper left inverse W of W,.) Consequently, (3) 
holds with Y,  proper, diagonal and non-singular, and with Y proper. 0 

Let an OLD TM of Z be called maximal if and only if D,'D, is biproper, where 
DM:= ZTM, i.e. if and' only if it achieves the same orders as T, of (1). An easy 
consequence of Theorem 1 is that an OLD TM of Z is maximal if and only if 

TM= TmBd + W,Y (4) 

for some biproper diagonal B, and proper Y. We now show that a maximal OLD has 
all its columns right biproper and that in the set of maximal OLDs of Z the elements 
defined via the Hermite normal form of Z have 'minimal' zero-coefficient matrices. 

Corollary 1 
If TM is a maximal OLD of Z, then 

(i) deg TMi = 0 for all i = 1, ... , p 

(ii) rank TMo 2 rank T,, 
(iii) if TA and T$ are two maximal OLDs defined via the Hermite normal form of 

Z as in (I), then 
rank T; ,  = rank T:, 
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Proof 
Let TM be written as in (4) for some Bd and Y. If (i) fails, then for some i we 

must have deg TMi < 0. This means TMio = 0 which implies, from (4), that Tmio is in 
Im Wmo, contradicting (2). This establishes (i). If (ii) fails, then rank TMo c r a n k  
Tmo = rank Tmo Bdo, where the equality is by non-singularity of Bdo. Hence, there exists 
a non-zero constant vector a such that TMoa = 0 whereas TmoBdoa is non-zero. Using 
(4), we have TMo = TmoBd0 + Wmo Yo which implies that Tmo Bdoa - Wmo Yoa = 0 or that 
(2) fails to hold. This establishes (ii). Finally, statement (iii) follows directly from (ii), 
since in this case the inequality works both ways. Cl 

Remark 
Note that (i) does not necessarily imply that TM is maximal and also note that rank 

equality need not hold in (ii). In fact, consider the transfer matrix Z for which one 
particular Tm computed by (1) turns out to be as below 

The following OLD T of Z has deg ?I. = 0, for i = 1,2, but it is not maximal and TM 
below is a maximal OLD of Z but rank TMo = 2 > 1 = rank T,, 

3. Blockdiagonalizers 
Let us now consider a more general problem of open-loop diagonalization for a 

p x m transfer matrix Z. We call an m x p transfer matrix T an open-loop block- 
diagonalizer (OLBD) of Z with block sizes {pi)( {pi)-OLBD) if and only if D := ZT, 
where D = diag {Dl, . . . , D,) with Di a pi x pi non-singular matrix for i = 1, . . . , k. 
Clearly, it must hold that 

From the non-singularity of D, the condition 'rank Z = p' over R(z) is again necessary 
for the existence of a {pi}-OLBD. We now generalize the procedure of the previous 
section to construct a 'maximal OLBD' for a full row-rank transfer matrix Z. 

Let ZB = [H 01, where H is the Hermite normal form of Z and B is a biproper 
matrix, as before. We partition the columns of the polynomial matrix H := H- ' as 

where H~ has pi columns. Let Pi be a minimal polynomial basis matrix for Im fii which 
is an R(z)-vector space with dimension pi (see Forney 1975). Thus, Pi is an m x pi right 
unimodular and column proper polynomial matrix; and for some non-singular 
polynomial matrix Gi, we have 

PiGi = Ai 
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From the column properness of Pi, its highest column coefficient matrix Pih has full 
column rank, implying the existence of a pi x pi minor Mi of Pi such that 

PiMi-' is right biproper 

(Note that the matrix Mi can be chosen by picking indexes j,, ..., j,, such that the 
corresponding rows of Pih are linearly independent and then forming Mi out of the 
corresponding rows of Pi.) We now prove the following result as a first step in defining 
a maximal {pi}-OLBD of 2. 

Lemma 2 
The matrices D: := (MiGi) -' and  hi^: are proper, and given any other proper 

matrix Ei such that H,E, is proper, (D:) Ei is proper. 

Proof 
By the definition of D:, we have P iMr l  = A,D:. Now, H,H, = I where Hi denotes 

the ith block row of the matrix H. It follows that Df = HiPiM;' and H,D: are both 
proper by the properness of Hi and PiM; '. This proves the first part of the claim. 
Now suppose Y,  := H~E,  is proper. We have 

Y,Eil - PiM;'(DT)-' = 0 

This implies, by the biproperness of PiML1 that (D:)-'Ei is proper. 0 

We now define 

and observe that T* is proper and 

ZT* = D* 

Moreover, if, for some (pi)-OLBD T of 2 ,  one has Z T =  E for some non-singular 
E=diag{E,,  ..., E,}, then [H O]B-'T=Eimplyingthat ~ ~ ~ ~ i ~ p r ~ p e r f ~ r i = i ,  
..., k. By Lemma 2, this implies that (D:) - ' E,, and hence (D*) - ' E, is proper. Therefore, 
T* is a maximal {pi)-OLBD of Z. 

In the same manner as Theorem 1, we can prove the following characterization of 
the set of all (pi)-OLBDs of Z. 

Theorem 2 
Let Wm be a right biproper basis matrix of ker Z and let T* be defined by (5). An 

m x p transfer matrix T is a {pi)-OLBD of Z if and only if 

for some {pi}-block diagonal proper Y, and proper Y. 

If the matrix Y,, of (6 )  is biproper then clearly the set of matrices T obtained by (6) 
yields the set of all maximal {pi}-OLBDs of 2. Let ZT& = D& for a maximal {pi)- 
OLBD T c  of Z. From (6), (D&)-ID* is biproper. Therefore, all maximal {pi}- 
OLBDs achieve the same row degree set as that of D*. Let us denote 

e: := -(ith row degree of D*), i = 1, ..., p 
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These non-negative integers serve as natural generalizations of the essential orders 
{ei) of 5 2 and it can easily be shown, similar to Commault et al. (1986,g 4), that they 
are invariant under right multiplication of Z by biproper matrices. Since Dm of 5 2 is a 
{pi)-OLBD of Z for any choice of the set {pi), it follows from the maximality of D* 
that 

e; < ei, i =  1, ..., p (7) 

Observe that, similar to Tm of the previous section, T* satisfies 

Using this property, it can easily be shown that for a maximal {pi)-OLBD TM of Z, the 
conditions (ii) and (iii) of Corollary 1 still hold on replacing Tm by T*. (Condition (i) 
also holds but it can be strengthened to read: 'The ith column block (TM)i of TM is 
right biproper for i = 1 ,  . . . , k'.) 

As an important consequence of the characterizations above, we now prove the 
following results. For this, we need a natural extension of the concept of row 
properness to block-rows. 

Definition 
A p x m transfer matrix Z is called {pi)-b1ock:row proper if and only if there exists 

a non-singular (pi)-block diagonal matrix D and a left biproper matrix B such that 
Z =  DB. 

Note that for pi = 1, i = 1, . . . , p, this definition coincides with row properness. In 
the other extreme case of k = 1 and p, = p, Z is (pi)-block-row proper if and only if 
rank Z = p. 

Theorem 3 
Consider a p x rn transfer matrix Z with rank Z = p. 

(i) Z has a right biproper {pi)-OLBD if and only if rank T,' 2 2p - rn, in which 
case it also admits a maximal right biproper {pi)-OLBD. 

(ii) There exists a (pi)-OLBD T of Z such that ZT = D with D- 'Z left biproper if 
and only if Z is (pi)-block-row proper. Such (pi)-OLBDs are maximal and 
right biproper. 

Proof 
(i) Let T be a right biproper {pi)-OLBD of Z. By Theorem 1, T = T* Y,, + Wm Y 

for some proper, block-diagonal, and non-singular Y,, and a proper Y. Thus, 
To = T,' Y,,, + Wmo Yo which implies as rank To = p that rank [T,' Wmo] 2 p. Since 
rank Wmo = rn - p and since Im T,' n Im W,, = 0, we must have rank Tmo 2 2 p  - rn. 
Conversely, if rank T,* 2 2p - m, then by (6), we have rank [T,* Wmo] 2 p. We now 
construct a right biproper {pi)-OLBD of 2. Let columns {j,, ..., j,,-,] of T,' be 
linearly independent. Now define an (rn - p) x p constant matrix K by ISii = 1 if i is 
not in the set s := { j , ,  ..., j,,-,) and Kij = 0 otherwise. Consider 

which is clearly a maximal OLBD. Furthermore, it is right biproper as we now prove. 
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Suppose rank To c p so that for some constant vector u, we have Toa = Tgu + WmoKu 
= 0. This implies from (7) that T,*u = 0 and WmoKu = 0. By the fact that Wm, is of full 
column rank, the second equality yields Ku = 0. B y  definition of K, we have ui = 0 for 
all i not in s due to Ku = 0 and for all i in s due to Tga = 0. Thus, u = 0. This proves 
that T is right biproper. 

(ii) Let Z be {pi}-block-row proper so that Z = DB for a {pi}-block diagonal D, 
where BT = I for some proper T from the left biproperness of B. Hence, ZT = D with 
T right biproper. Conversely, if Z T =  D for some {pi)-OLBD of Z such that 
B := D- ' Z  is proper, then directly by definition, Z is {pi}-block-row proper. As 
D- ' D* = D- ' ZT* is proper, we also have that T is maximal. Furthermore, BT = I 
implying that T is right biproper. 0 

The second part (ii), is a generalization of the following result of Verghese and 
Kailath (1981) and Ohta and Kodama (1985), concerning row properness. There 
exists an OLD of Z with deg Dii = ith row degree of Z if and only if Z is row proper. 
This specialization to the case p = k of Theorem 3 (ii) implies the following fact 
concerning the relation between essential orders and the 'generalized' essential orders 
{e*; i = 1, . . . , p). If Z is row proper, then the equality holds in (7) for all partitioning 
(pi) of the rows of 2. This is because, if Z is row proper, then ei is the ith row degree of 
Z and Z = DmB for a left biproper B. Thus, D, 'D* = BT* is proper; yielding equality 
in (7). 

The first part (i) of Theorem 3, when coupled with Theorem 3 of Commault and 
Dion (1986), yields a 'minimum delay decoupled' solution to block-decoupling by 
dynamic state feedback problem with specified block sizes (see Dion and Commault 
1985, Commault and Dion 1986) for a strictly proper transfer matrix Z with 'null 
static kernel', i.e. with ker Z n Rm = {O}. We give a formal definition of the problem for 
convenience. 

Problem definition 
Given an n-dimensional realization C, = ( A ,  B, C) of Z, determine a constant 

m x p matrix L and an m x n transfer matrix F such that the closed-loop transfer 
matrix 

is non-singular and (pi)-block diagonal. 

A solution to this problem in the special case of p = k and pi = 1, i.e. to the 
diagonalization problem by dynamic state feedback, was given by Dion and 
Commault (1985). The proof below, when specialized to the case p = k and pi = 1, may 
be viewed as an alternative and shorter proof to that of Dion and Commault (1985). 

Corollary 2 
Let Z be a p x m full row rank, strictly proper transfer matrix of null static kernel. 

The block decoupling problem by dynamic state feedback (and constant precom- 
pensator) is solvable for any realization C, = ( A ,  B, C) of Z if and only if 

rank T,*> 2p - m 

in which case, there also exists a minimum delay decoupled solution. 
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Proof 
Only if. Let a pair (L, F) with the stated properties exist so that 2 is {pi)-block 

diagonal. Then, T := [I - F(zI - A)  - B] - ' L is easily seen to be a right biproper {pi]- 
OLBD of 2-since To = L, where the latter is of full column rank by non-singularity 
of 2. From Theorem 3 (i), it follows that the rank inequality holds. 

If. By the hypothesis of 'null static kernel', the matrix B is of full column rank. Let 
B# be such that B" B = I. If the rank inequality holds, then Theorem 3 (i) implies the 
existence of a maximal right biproper {pi)-OLBD, say TM, of 2. Let TEo be such that 
T&,TMo = I, which exists by right biproperness of TM. We now define 

L:= TMo, F : = ( I -  TMT$o)B"(zI-A) 

and note that F is proper since I - TM TE0 is strictly proper. Moreover 

2?=2[1 - F(ZI- A ) - ~ B ] - ' L = z T ~ =  D'B*,, 

for some biproper and {pi)-block diagonal BM, where the last equality is given by 
the fact that TM is 'maximal'. This establishes that the constructed pair (L, F) is a 
solution to the problem and that they achieve maximum possible causality degrees 
{e:; i = 1, ..., p). 0 

4. Conclusions 
We have obtained a useful characterization, in Theorems 1 and 2, of the set of all 

open-loop block-diagonalizers (decouplers) of a given transfer matrix. An essential 
element of this description has been a maximal {pi]-OLBD (T*) defined naturally via 
the Hermite normal form over W,,(z) of the transfer matrix. We have also obtained 
suitable extensions of the concepts of row properness and essential orders for use in 
block decoupling problems. 

This characterization is bound to find many applications in feedback-decoupling 
theory in view of the fact that most of the feedback-decoupling problems can be 
formulated as open-loop problems after suitable transformations. Block-decoupling 
by dynamic state feedback is one such problem and we have obtained a solution, in 
Corollary 2, of this problem by the use of Theorem 2. A further application of the 
characterization result of this paper is in the diagonalization by dynamic output 
feedback problem considered by Eldem and dzguler (1987), where Theorem 1 is used 
to describe the set of all solutions. 
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