
Optimum feedback patterns in multivariable control systems 

KONURALP U N Y E L ~ O C L U ~  and M. EROL SEZER? 

The following problem is considered: 'Given a multivariable system with nl inputs 
and r outputs and an r x nl matrix whose non-negative (i,j)th element represents the 
cost of setting LIP a feedback link from the,jth output to the ith input, find a set of 
feedback links with minimum total cost, which does not give rise to fixed modes'. 
Utilizing the graph-theoretic churiicterization of structurally fixed modes, the 
problem is decomposed into two subproblems. which are then solved by using 
concepts and results from network theory. A combination of the optimum solutions 
of the subproblems provides a suboptimal solution to the original problem. 

1.  Introduction 
Consider a linear multivariable system described by 

where . Y E  R", 11 E R'", and y~ Rr denote the states, inputs, and outputs of .'Y' 
respectively. Suppose that each output/input pair (yj. u i )  is associated with a non- 
negative number kb which represents the cost of setting up a feedback path from 
output yj to input u i .  The problem we consider is to identify a set of feedback paths 
with minimum total cost, which allows for a satisfactory control of .'f using dynamic 
feedback controllers in these paths. I t  is well known ( Wang and Davison 1973, Sezer 
and Siljak 198 1, Reinschke 1984) that a satisfactory control can be achieved using 
dynamic compensators that obey a given feedback structure constraint if the system 
has rlo fixed modes with respect to the given feedback structure. Thus the problem is 
to identify the cheapest feedback pattern that avoids fixed modes. 

Although several characterizations of fixed modes exist in the literature (Corfmat 
and Morse 1976, Anderson and Clements 198 1 )  including graphical ones related to 
structurally fixed modes (Pichai ut al. 1984, Reinschke 1984), they are not directly 
applicable to the problem considered here, simply because testing of all possible 
feedback patterns for feasibility requires enormous computations. In the present 
work, we formulate the problem in a structural framework to avoid the difficulties 
involved in algebraic tests, and propose a reasonable sequential solution procedure 
through a decomposition of the problem based on a classification of structural fixed 
modes. We show that the two subproblems obtained by decomposition can be 
reformulated as network flow problems (Bazaraa and Jarvis 1977, Chaera er al. 1977), 
which can be solved using adaptations of known algorithms. 

Matrices and vectors are denoted throughout by upper and lower case italic 
letters; binary matrices by upper case boldface letters; and abstract objects such as a 
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set, a system etc. by script letters. A superscript c indicates the cost associated with a 
matrix or its elements. 

2. Digraphs, system structure, fixed modes 
In this section we review some basic concepts from graph theory (Harary et al. 

1965, Deo 1974) and the structural representation of dynamical systems through 
digraphs (Coates 1959, Siljak 1978), and results concerning fixed modes in multi- 
variable systems (Wang and Davison 1973), and the graphical characterization of 
structurally fixed modes (Pichai et al. 1984). 

A digraph 9 = ( V ,  &) is an ordered pair, where V is a finite set of vertices, and 8 is 
a finite set of ordered pairs of vertices called edges. If (vj, vi) E 8, then the vertex v j  is 
said to be adjacent to the vertex vi. An adjacency relation defines a binary matrix 
M = (mij), called the adjacency matrix of 9 ,  such that mij = 1 if and only if (vj, vi) E 8. 
A digraph is completely characterized by its adjacency matrix. A sequence of edges 
((vl, vZ), (vZ, v3), . . . , (v, - 0,)) where all vertices are distinct, is called a path from v, to 
v, . In this case, u, is said to be reachable from 0,. If v, coincides with v,, then the path is 
called a cycle. Any two vertices which are mutually reachable are said to be strongly 
connected. A maximal subgraph containing strongly connected vertices is called a 
strong component of 9. Strong components are uniquely determined. Reachability 
relation too can be described by a binary matrix R = (rij) such that rij = 1 if and only 
if v j  reaches vi. 

The structure of the system 9 in (1) can be conveniently described by a binary 
matrix 

called the system structure matrix, where A = (aij) with ai j  = 1 if and only if aij # 0, 
and B and C are defined similarly. The digraph 9 which assumes S as its adjacency 
matrix is called the digraph of the system 9'. For convenience, the vertex set of 9 can 
be partitioned as Y" = 9" u4P ug ,  where 3, +Y, and Oy denote the sets of state, input, 
and output vertices. 

Two systems which have the same system digraph are called structurally 
equivalent. System structure matrices of structurally equivalent systems are related by 
permutation transformations. Structurally equivalent systems form an equivalence 
class. A property is said to be a structural property of a system if it holds for at least 
one member of the equivalence class to which that particular system belongs. 

Let K = (kij) be an m x r binary matrix, which specifies a feedback pattern for the 
system 9' in (1) such that kij = 1 if and only if a feedback from output yj  to input ui is 
allowed. Let K be a constant matrix in the equivalence class K. Then, the closed-loop 
system consisting of 9 and the feedback law 

where v E Rm stands for reference inputs, is represented by the closed-loop system 
structure matrix 
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Accordingly, the closed-loop system digraph becomes = (-Y, &ugK), where 
gx = { ( y j ,  ui ) :  k i j  = 1) contains the feedback edges. 

The set of fixed modes of 9' with respect to K is defined as 

A,= r )  A(A+ BKC) 
K E K  

where A( ) denotes the set of eigenvalues of the indicated matrix. It is known that all 
the poles of 9' can be assigned arbitrarily using dynamic feedback compensators that 
obey the feedback structure constraint specified by some K if and only if A, = 0 ,  that 
is, 9' has no fixed modes with respect to K. 

Fixed modes of a system originate either from a perfect matching of the numerical 
values of the system parameters, or from the special structures of the system and the 
feedback pattern. In the latter case, all systems in the same equivalence class have 
fixed modes, and the system is said to have structurally fixed modes. Structurally fixed 
modes can be characterized in terms of the closed-loop system digraphs as stated by 
the following lemma. 

Lemma 1 (Pichai et al. 1984) 
A structured system S has no structurally fixed modes with respect to a feedback 

pattern K if and only if the following two conditions are satisfied: 

(a) the closed-loop system digraph @ is covered by a collection of vertex disjoint 
cycles; 

(b) each state vertex of occurs in a strong component that contains a feedback 
edge. 

If 9' has no structurally fixed modes with respect to  K we describe this fact 
symbolically as A, = 0. 

The state vertices that violate condition (b) of Lemma 1 correspond to a principal 
submatrix of A in 9. The modes of the associated structured subsystem are defined as 
B-type structurally fixed modes of 9'. Consider the subgraph obtained from d by 
removing these state vertices and the edges connected to them. If this subgraph has 
any structurally fixed modes, they are due to violation of condition (a), and are 
therefore called A-type structurally fixed modes of 9'. Note that A-type structurally 
fixed modes are always at the origin, and cannot be associated with a part of 9'. This 
way, structurally fixed modes of a system can be classified into two distinct groups, 
both of which result from an insufficient interconnection among system variables. 
This classification of fixed modes is useful in decomposing the optimization problem 
formulated in the next section. 

3. Problem statement and decomposition 
The problem we consider is pole placement in a system 9' using minimum cost 

dynamic feedback compensators. For this purpose we define the total cost of a given 
feedback pattern K to be 

and formulate our problem 
min c( K) 

9: 
s.t. A, = 0 1 
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In ( 5 ) ,  kij denotes the cost of setting up a feedback link from output yj to input ui. 
If a particular feedback link (yj, ui) is not to be used at all, then this constraint is 
represented by letting k:j = y, where y is a very large positive number. It should be 
noted that in the problem formulation we restrict our attention only to structurally 
fixed modes, which allows us to characterize the feasible feedback patterns in terms of 
the closed-loop system digraph &. Still, however, the feasibility condition A, = 0 
involves two tests for A- and B-type structurally fixed modes, which cannot be 
combined into a single graphical condition. Clearly, the only way to solve problem 9 
is to employ a clever enumeration technique if not a total enumeration. 

To avoid the computational burden of total enumeration, we propose to 
decompose the problem 9 into two simpler problems involving only A- and B-types 
of structurally fixed modes as follows: 

and 

where A(: and A! 
optimal solutions 

min c( K) 
9A : 

set. A: = 0 

min c(K) 
.YE: 

st. A! = 0 1 
refer to the corresponding types of fixed modes. If K: and K i  are 
of problems .PA and .PB, then 

(where ( +) denotes the boolean 'OR' operation) is a feasible feedback pattern for 
problem 9 such that 

max {c(K?), c(KE)J < c(KO) 4 c(K9 < c(K:) + c(Ki) ( 10) 

where K O  is the optimal solution of the original problem 9. From (10) it follows that 

that is, the solution Kkbtained through a decomposition of 9 is at most 100% more 
costly than the optimum solution. We can, therefore, think of K 9 s  a suboptimal 
solution of problem 9 .  

We note that once an optimal solution to one of the above problems is obtained, 
then some of the feedback links that appear in the corresponding feedback pattern 
may help satisfy the feasibility condition of the other problem without any additional 
cost. This suggests a sequential optimization procedure, where the two problems are 
solved sequentially with the cost matrix modified after solving the first problem. Thus, 
with K: = (ky) being a solution of problem PA, we modify the cost matrix K c  into 
K> = (kij'), where 

0, ky= 1 
k;; = 

kij, otherwise 

and replace problem 9', with 

min cA(K) 
~ A B :  

s.t. A:=@ 
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where 

Now, with K:, being the optimum solution of problem qAB, we have 

Thus, defining the suboptimal solution obtained through the sequential optimization 
of the problems YA and PAB as 

we have 

which shows that the loss due to decomposition is decreased by employing a 
sequential optimization scheme. 

Obviously, one could interchange the order of the two problems, and start with YB 
instead. In this case, problem .PA would be replaced by 

min cB(K) 
~ B A  

s.t. A:=@ I 
where K', and cB(K) are similar to Kc, and cA(K), and are defined after a solution Kg 
to problem PB is obtained. In what follows, we drop the two-letter subscript notation 
for convenience, with the understanding that PB denotes the modified problem PA, in 
the sequence (gA,  9,) and 9, denotes PBA in the sequence (9,, PBA). We also employ 
the notation P A ( 9 ,  Kc)  or P B ( 9 ,  Kc) to indicate explicitly the digraph and the cost 
matrix upon which PA or PB is formulated. 

Before considering solution procedures for PA and PB,  we would like to point out 
that, in general, the ultimate suboptimal solution depends on the order in which the 
two subproblems are solved as we demonstrate with an example in 5 7. 

4. Solution of problem P A ( 9 ,  Kc) 
It is known (Pichai et al. 1984) that condition (a) in the statement of Lemma 1 is 

equivalent to 

where gr (.) denotes the generic rank of the indicated matrix, and is equal to the 
maximum number of non-zero .entries that lie on different rows and columns (e.g. 
Shields and Pearson 1976, Duff 1981). Therefore, an alternative statement of problem 
PA can be given as 

min c(K) 
PA : 

s.t. g r ( S ) = n + m + r  I . 
In this formulation the constraint is stated in terms of the closed-loop system structure 
matrix S ,  but the cost involves only a part of S, namely K. In order to translate the 
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cost into one involving S ,  we define the system cost matrix SC as 

where A' = (a:,) with 

B' and C' are defined similarly; I" is a matrix of suitable dimension, consisting of all y; 
and I' has zero diagonals and y off-diagonals. In other words, S' is obtained from S by 
replacing zero elements by y and non-zero elements by 0 except those of K, which are 
replaced by the corresponding costs. Now defining the total cost associated with a 
system structure matrix S to be 

we reformulate problem PA as 

min c(S) 
gA : 

s.t. g r ( S ) = n + m + r  1 
Problem 9A as stated in (23) is known as the 'assignment problem', which is 

equivalent to a linear network flow problem (Bazaraa and Jarvis 1977, Chaera et al. 
1977). An efficient solution procedure for the assignment problem is the Hungarian 
assignment algorithm, which is repeated below for convenience. 

Hungarian assignment algorithm (Bazaraa and Jarvis 1977, Kuhn 1955) 
Step 1. For each row of S', subtract the minimum element of the row from all the 

elements of the row. 

Step 2. Repeat Step 1 for columns of 9'. 
Step 3. Pick the maximum number of zeros in 9' which lie on different rows and 

columns. If a zero is picked from every row, go to Step 5. 

Step 4. Draw a minimum number of lines (vertical or horizontal) that cover all zeros 
in 3' (the number of lines is the same as the number of zeros picked in Step 3). 
Find the minimum of all elements which are not covered by these lines; 
subtract the minimum from the uncovered elements and add to the ones that 
are covered by both horizontal and vertical lines. G o  to Step 3. 

Step 5. The optimum solution of problem PA is obtained simply by setting 

1, if a zero at the corresponding position of K c  is picked 
kp: = 

0, otherwise 

Before closing the section, we would like to point out. that Step 3 of the Hungarian 
assignment problem is the maximum transversality problem (Duff 1981), and is 
equivalent to computing the generic rank of a matrix. 
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5. Solution of problem PB(9,  Kc) 
Considering condition (b) of Lemma 1, we note that if a state vertex xi occurs in a 

strong component of the closed-loop system digraph & which contains a feedback 
edge, then all state vertices that are strongly connected to xi in the open-loop system 
digraph 9 have the same property. Therefore, a condensation of the strong 
components of 9 before inserting the feedback edges does not effect the set of feasible 
feedback patterns for problem PB. In other words, PB(9,  Kc) is equivalent to 
PB(9*, Kc), where 9* is obtained from 9 by condensing the strong components. Let 
the state vertices of 9 *  be %* = {xf, xf, . .., x;). Then, condition (b) requires that 
each xr  in a* reaches itself through a path (which should necessarily include a 
feedback edge, as 9 *  is acyclic). This observation allows us to reformulate condition 
(b) as a generalized assignment problem on a block cost matrix 

where each block mpq = (G~9),x, of W is associated with a pair of state vertices 
(x:, x;), and has the elements 

{kc, if ui reaches xz and x: reaches yj in 9 *  
Gpg = 
" , otherwise 

In other words, GGq is the cost of a path from x8 to x,* through yj and ui, which is 
infinity if no such path exists. It is clear that condition (b) is equivalent to picking N 
elements in @, which are located in different block rows and columns of w. Now, .PB 
can be reformulated as 

min c(K) 
PB : 

s t .  block gr (KG) = N 

where 

block gr (KG) = block gr (w) = gr (W) (27) 

with W = (w,,), . defined as 

1, ifG5q#y for some(i,j) 
W ~ 4  = 

0, otherwise 

We note that the generalized assignment problem in (26) is actually a network flow 
problem involving the transportation of supplies at the state vertices to themselves 
over the feedback edges. However, it is different than the ordinary assignment 
problem in (23) in that if the same feedback edge is picked more than once in different 
block rows and columns of to satisfy the feasibility condition, no extra cost is 
charged for the additional choices. Because of this, PB in (26) is a non-convex, non- 
linear problem, which cannot be solved by linear algorithms. In the following, we 
present an implicit enumeration algorithm for the solution of PB. For this purpose we 
first introduce the following notation. 

Let the feedback edges and the corresponding costs by renamed as el, e,, ..., e, and 
c,, c,, ..., c,, where s = mr such that to any el, 1 < 1 < s, there corresponds a unique 
feedback edge (yj, u,) ,  1 $ i $ m, 1 $ j < r, and c, = kf,. Associated with the set {e,  }, we 
have an s-dimensional array J whose elements take four distinct values, 1,O, F, and U .  
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Here J(1) = 1 or 0 means the corresponding feedback edge el is or is not included in 
the current pattern; J(1) = F indicates that el may later be included in the pattern, i.e. 
el is free; and finally J(1) = U means addition of el results in a feedback pattern whose 
cost is no smaller than the current optimum, i.e. el is useless at that step. The cost of a 
feedback pattern described by the current form of J is denoted by c(J),  and is 
computed as 

Finally, the current minimum is denoted by c*, and the current best pattern by J*. 

Implicit enumeration algorithm 
Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Initialization. Set J(1) = F, I S 1 S s, c* = y, k: = 1, 1 < i < m, 1 < j < 1. 
Find L = min (I: J(1) = F).  Set J(L) = 1. 

Check J for feasibility (subroutine). If J is feasible, set J * = J ,  c* = c(J), and 
go to Step 6. Otherwise proceed to the next step. 

For 1 < 1 < s and J(1) = F, if c (J )  + c, 2 c*, set J(1) = U. If there remains any 1 
with J(1) = F proceed to the next step. Otherwise go to Step 6. 

Check J for potential feasibility (subroutine). If J is potentially feasible, go to 
Step 2. Otherwise proceed to the next step. 

If J(1) # 1 for all I < 1 < s, proceed to the next step. Otherwise, find 
L = max {L: J(1) = I), set J(L) = 0, J(1) = F for I > L, and go to Step 4. 

For 1 < I <  s and J*(1) # 1, find the unique pair of indices (i, j) defined by I, 
and set k v  = 0; KOB = ( k v )  is an optimum solution of YB. 

Subroutine for feasibility and potential feasibility 
Step 1. Construct W = (w,,), . , corresponding to J as follows: 

(a) initially w,, = 0, 1 d p, q < N; 

(b) for 1 d l d s  and J ( l ) =  1 for feasibility, or J ( l ) =  1 or F for potential 
feasibility, find the unique pair of indices (i, j) defined by I. For all 1 < p, 
q S N and @cq # y, set w,, = 1. 

Step 2. If gr (W) = N, J is feasible (or potentially feasible). 

It is observed that the implicit enumeration algorithm is a branch-and-bound 
algorithm (Garfinkel and Nemhauser 1972), which scans a binary tree starting 
from the root ( F  F ... F). The two immediate successors of any node 
(* * ... * F F ... F), where * is either 1 or 0, are 
(* * ... * 1 F ... F) and (* * ... * 0 F ... F). The algorithm is a 
depth-first search (Tarjan 1972) on the tree, where a branch is bounded when either 
the pattern corresponding to its root is a feasible one with a smaller cost, or all the 
subsequent patterns are infeasible or have higher costs. . 

We note that the proposed implicit enumeration algorithm can be improved 
considerably if more attention is paid to the choice of the feedback edge to be included 
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into the current pattern in Step 2. Rather than picking the first edge marked F in the 
sequence, the decision may be based on other criteria. Below we suggest a few 
alternatives in the order of increasing complexity as follows: 

(a) choose L such that c, = min (c,: J ( l )  = F);  

(6) for 1 < 1 < s with J ( l )  = I ,  mark the blocks of rn in which the feedback edge el 
appears. For 1 < 1 < s with J(1) = F, let n, be the number of unmarked blocks 
of W, in which the edge el appears. Choose L such that n, = max (n,: J(1) = F ) ;  

(c) choose L such that c,/n, = min {c,/n,: J(1) = F),  where n, is defined as in (b) 
above. 

In case (a), simply the cheapest free feedback edge is added to the current pattern. 
In case (b), that edge having the potential of providing maximum increase in the 
generic rank of the test matrix W is preferred. Case ( c )  is a combination of both 
criteria, which favours the edge that costs least for a potential unit increase in the 
generic rank. Note, however, that in case the edges are included into the current 
pattern in an order other than the natural order, Step 6 of the algorithm should be 
modified so as to complement the last edge included in the pattern and to free the 
subsequent edges in the order. 

6. Special case 
Although the implicit enumeration algorithm of the previous section provides an 

optimum solution to the problem PB(9* ,  Kc), in the worst case it may have to go 
through all possible feedback patterns before the solution is reached. In this section, 
we speculate on an idea of translating the non-linear problem qB to a linear problem 
PA by constructing a modified digraph 9, and a modified cost matrix K', such that 
optimum solutions of PB(9*,  Kc) and q A ( g M ,  K',) are the same. The idea is 
motivated by the fact that if a set of feasible solutions to PB(9* ,  Kc) which contains 
the optimum solution KE were known, then one could always and easily construct 9, 
and K', such that PA(9,, K',) admits Kg as optimum solution. In the following, we 
show that for a class of digraphs 9 * , P A ( g M ,  Kh) can be constructed without 
knowing the optimum solution 

We start by defining the index sets I ,  and J, associated with the state vertices of 
9 *  as 

I ,  = {i:  ui reaches x: in B*), J, = { j: x: reaches yj  in 9*), 1 = 1,2, ..., N 

Suppose that there exists a permutation (I,, l,, ..., 1,) of the state vertices X* of 9 *  
such that 

Considering the reachability matrix 

of 9*, it is easy to see that condition (30) is equivalent to the existence of permutation 
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matrices P,, P,, and P, such that P:G*P, and P,H *Px have the following structures. 

where 1 indicates that the region is filled with 1s. Let the sets of input and output 
vertices of 9* be partitioned in accordance with the structures of P:G*P, and 
P,H*P, as 

We now construct an intermediate digraph 9: = (XT u @T u gf, QT), which is 
characterized by the adjacency matrix 

where 
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Note that the state vertices of 23: are arranged in the form of a chain, each group 
of inputs of 9 *  belonging to the same input set @, is replaced by a single input u:, and 
similarly each group of output vertices belonging to the same output set tY, is replaced 
by a single output y,* in 23:. 

We further define a modified cost matrix as K &  = ( k i y ) ,  . ,, where 

min {k; , :  ui E +?,, gj E g,), if s, d t, 

7, otherwise 

It is now easy to see that to any optimal solution of YB(9*, Kc) there corresponds 
an optimal solution of PB(9? ,  K',) with the same cost and vice versa, so that the 
original problem gB(9*,  Kc) can be replaced by pB(9;, K',). At this point it should 
be noted that gB(9:, K',) is already much simpler than YB(9*, Kc) because of the 
special structure of 97 and the fact that K', contains fewer non-y entries than K c  does 
(which speeds up Steps 4 and 5 of the implicit enumeration algorithm). 

The next step is to construct gM from 9; such that optimum solutions of 
PB(9T, K',) and P A ( g M ,  K',) coincide. For this purpose, we first note the following: 

(a) each feedback edge (y:, u:), s, ,< t,, defines a unique cycle in the closed-loop 
digraph a:, which covers the state vertices xf ,  s, d i < t,; 

( h )  a given feedback pattern is feasible for 9B(9 f ,  K',) if and only if the family of 
cycles defined by the corresponding feedback edges cover all the state vertices; 

(c) a state vertex can be common to at most two cycles in a cycle family defined by 
an optimal feedback pattern. 

Hence, PB(Q,*, K',) is also a state vertex covering problem. However, unlike 
problem 9,, the cycles that cover the state vertices of Bf need not be disjoint. This 
difficulty can be overcome, by expanding the state vertices of 9: as explained below. 
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To each x* for which s2 < i < t R -  ,, we associate a pair of integers kin, i  and kOutei 
such that 

i 3, if i = s, for some 3 < p < M 
k .  . = 

in.1 

2, otherwise 

3, if i = t ,  for some 1 < q < R - 2 

2, otherwise 

The modified digraph 9, = (TM u&* u Y*, gM) is then described by the adja- 
cency matrix 

SM = 

CM 0 I R  

where AM = ( A t ) ,  . ,, whose blocks are defined as follows: 

where the indicated rows and columns need not exist if xT or x:+, has no inputs 
and/or outputs connected to them. Finally, 

and BM and C M  are similar to B,* and Cf with dimensions modified as necessary. 
With 9, defined as above, it is a straightforward but a tedious task to show that 

to any non-redundant feasible solution of PB(9F, K',) there corresponds a feasible 
solution of P A ( g M ,  K h )  containing exactly the same feedback edges, and vice versa. 
The steps involved in the construction of gM are explained by an example in the next 
section. 
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7. Example 
Consider the digraph 9 shown in Fig. 1, where the cost matrix is given as 

Feasible feedback patterns for 3 can be obtained by inspection to be 

where * denotes either a 0 or  I .  Thus the optimum feedback pattern is 

resulting in c ( K O )  = 4. 

Figure 1 .  Digraph considered in the example. 

Now consider a decomposition of Y ( 9 ,  K c )  into YA(9,  K C )  and PB(9,  K c ) .  The 
optimum solution of YA(9,  K c )  is obtained directly by applying the Hungarian 
assignment algorithm to Sc  as 

To illustrate the solution of YB(9,  K c ) ,  we first form the digraph 9 *  shown in 
Fig. 2, by condensing the strong components of 9, and rename the feedback edges as 

( k l l ,  kl2, k21, k22) = ( e l ,  e2, e3, e.4) 

The implicit enumeration algorithm proceeds as follows. 

Step 1 .  J = (F ,  F, F, F ) ,  c* = y .  

Step 2. J = ( 1 ,  F, F, F ) .  
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Figure 2. Condensation of the digraph in Fig. 1. 

Step  3. Test for feasibility of J  

Since gr (W) = 3 < 4 = N ,  J  is not feasible. 

S t e p  4. No such 1 exists. 

Step  5. Test for potential feasibility of J :  since J  contains only 1 and F ,  W is full. 
Therefore, J  is potentially feasible. 

S t e p 2 .  J = ( l ,  1, F ,  F ) .  

S t ep  3 .  J  is feasible. J *  = ( I ,  1 ,  F ,  F ) ,  c* = c ( J )  = 6 .  

S t e p 6 .  J = ( l , O ,  F , F ) .  

S t ep  4. No such 1 exists. 

Step  5. J is potentially feasible. 

S t e p  2 .  J  = ( 1 ,  0 ,  1, F ) .  

S t ep  3. J  is not feasible. 

Step  4. As c ( J )  + c ,  = 6 = c*,  J: = ( 1 , 0 ,  1, U ) .  No I with J ( I )  = F  remains. 

Step  6.  J = ( l ,  0 ,O ,  F ) .  

S t e p  4. No such I exists. 
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Step 5. J is potentially feasible. 

Step 2. J = ( l ,0 ,0,  1). 

Step 3. J is feasible. J * = ( 1,0,0, I), c* = c(J)  = 5. 

Step 4. No such I exists. No 1 with J ( 1 )  = F remains. 

Step 6. J = (0, F, F, F). 

Step 4. No such I exists. 

Step 5. J is potentially feasible. 

Step 2. J .  = (0, 1, F, F). 

Step 3. J is feasible. J *  = (0, 1, F, F), c* = c(J) = 4. 

Step 6. J = (O,O, F, F). 

Step 4. No such 1 exists. 

Step 5. J is not potentially feasible. 

Step 6. J(1) # 1 for all I. 

Step 7. 

The tree generated by the implicit enumeration algorithm is shown in Fig. 3, where 
the branches are terminated at the nodes marked as F, H, or I. An F indicates that the 
corresponding pattern is a feasible one better than the previous feasible one, an H 
marks a pattern whose cost is higher than the cost of the current best pattern (even if it 
is potentially feasible), and an I marks the infeasible patterns. 

The suboptimal solution to problem 9(9, K c )  is obtained by combining K! and 
K i  as 

resulting in c(Ks) = 6 .  

OOFF I 

Figure 3. Tree generated by the implicit enumeration algor 



806 K .  ~ n ~ r l i o f l u  und M. E.  Sezer 

Now considering the reachability matrix of 9 * ,  we observe that 

which already have the special forms in (31), with s, = 1, s2 = 2; t, = 3, t2 = 4. The 
intermediate digraph 9 7  is shown in Fig. 4, and K ', = K '. It can easily be verified that 
application of the implicit enumeration algorithm to YB(9T, KC,) yields the same 
optimal feedback pattern Kg. 

To illustrate the construction of 9,, we compute 

and expand xT and x: as shown in Fig. 5. Application of the Hungarian assign- 

Figure 4. Intermediate digraph corresponding to the digraph of Fig. 2. 

Figure 5. Modified digraph and expansion of xf. 
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ment algorithm to the modified system cost matrix Sh yields the same optimum 
solution KE. 

If we employ the sequential optimization procedure, the cost matrix Kc is modi- 
fied to 

after solving p A ( g ,  Kc). Now, the optimum solution of g B ( 9 ,  K',) is obtained, either 
by the implicit enumeration algorithm .or through the use of the modified digraph, 
to be 

The corresponding suboptimal solution will then be 

resulting in c(K",) = 5. 
Finally, we point out that if the sequential optimization procedure is employed in 

the sequence (PB, PA), then we obtain 

so that K", = KO, that is the suboptimal solution coincides with the optimal one. 

8. Conclusions 
The problem of identifying a minimum cost feedback pattern, which does not give 

rise to structurally fixed modes, is considered. The problem is formulated in a graph- 
theoretic setting, and the graphical characterization of the fixed modes is utilized as 
the basic tool. A classification of the structurally fixed modes into two distinct types 
allows for a decomposition of the problem into two simpler subproblems, whose 
optimum solutions can be combined to obtain a suboptimal solution to the original 
problem. These two subproblems are reformulated as network flow problems, and 
concepts from network theory are utilized to obtain their solutions. 

Several remarks can be made concerning the formulation and the solution of the 
problem. First, it is observed that the problem of choosing a feasible feedback pattern 
that includes a minimum number of feedback edges, which was considered previously 
by Sezer (1983), is a special case of the problem formulated in this work, which 
corresponds to the case ktj = 1 for all i, j for which ktj # y. However still more general 
formulations are possible. For example, fixed initial costs can be assigned to the inputs 
and outputs in addition to the feedback costs. It may also be meaningful to group the 
inputs and outputs as in decentralized control, and assign costs to the multiple 
feedback links among the groups rather than to the individual links. These 
complications, however, make the already non-linear problem even more difficult to 
handle. 
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